(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6259110
(24)【登録日】2017年12月15日
(45)【発行日】2018年1月10日
(54)【発明の名称】ガス処理システム内のタービンシステムの利用システム及び方法
(51)【国際特許分類】
B01D 53/14 20060101AFI20171227BHJP
F02C 7/22 20060101ALI20171227BHJP
F02C 7/228 20060101ALI20171227BHJP
F02C 3/22 20060101ALI20171227BHJP
【FI】
B01D53/14 200
F02C7/22 D
F02C7/228
F02C7/22 B
F02C3/22
【請求項の数】11
【全頁数】16
(21)【出願番号】特願2016-552201(P2016-552201)
(86)(22)【出願日】2014年10月28日
(65)【公表番号】特表2016-538130(P2016-538130A)
(43)【公表日】2016年12月8日
(86)【国際出願番号】US2014062535
(87)【国際公開番号】WO2015065949
(87)【国際公開日】20150507
【審査請求日】2016年6月28日
(31)【優先権主張番号】61/896,255
(32)【優先日】2013年10月28日
(33)【優先権主張国】US
(31)【優先権主張番号】14/525,081
(32)【優先日】2014年10月27日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】516099646
【氏名又は名称】エナジー リカバリー,インコーポレイティド
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100077517
【弁理士】
【氏名又は名称】石田 敬
(74)【代理人】
【識別番号】100087413
【弁理士】
【氏名又は名称】古賀 哲次
(74)【代理人】
【識別番号】100093665
【弁理士】
【氏名又は名称】蛯谷 厚志
(74)【代理人】
【識別番号】100173107
【弁理士】
【氏名又は名称】胡田 尚則
(74)【代理人】
【識別番号】100128495
【弁理士】
【氏名又は名称】出野 知
(74)【代理人】
【識別番号】100195213
【弁理士】
【氏名又は名称】木村 健治
(72)【発明者】
【氏名】ジェレミー グラント マーティン
(72)【発明者】
【氏名】ジョン シエンキエビチュ
(72)【発明者】
【氏名】プレム クリシュ
(72)【発明者】
【氏名】イーン マー
(72)【発明者】
【氏名】マーク リクター
(72)【発明者】
【氏名】フェリックス ウィンクラー
【審査官】
松井 一泰
(56)【参考文献】
【文献】
特開昭60−172331(JP,A)
【文献】
特開昭61−107920(JP,A)
【文献】
特開昭61−272289(JP,A)
【文献】
特開昭62−143808(JP,A)
【文献】
特開平08−048984(JP,A)
【文献】
特表2005−522326(JP,A)
【文献】
特開2006−305544(JP,A)
【文献】
特表2012−521874(JP,A)
【文献】
特表2012−527992(JP,A)
【文献】
特表2013−509300(JP,A)
【文献】
特開昭60−204976(JP,A)
【文献】
特表昭62−503113(JP,A)
【文献】
特開平02−286881(JP,A)
【文献】
特開2013−039527(JP,A)
【文献】
特開2010−201379(JP,A)
【文献】
特開平10−202054(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B01D 53/14− 53/18
B01D 53/34− 53/73
B01D 53/74− 53/85
B01D 53/92
B01D 53/96
F03B 1/00− 11/08
B01J 10/00− 12/02
B01J 14/00− 19/32
F02C 1/00− 9/58
F23R 3/00− 7/00
(57)【特許請求の範囲】
【請求項1】
リーン溶媒流体流の溶媒を使用して、未処理の供給ガスから酸性ガスを除去する高圧反応容器であって、処理後のクリーンガス及び第1流路を通じて高圧流体流の第1の流れを出力する、高圧反応容器と、
メインノズル、補助ノズル、及び出口を有するタービンであって、前記メインノズルが前記第1流路からメイン流路を通じて前記高圧流体流の第2の流れを受け、前記高圧流体流の前記第2の流れが前記第1の流れの一部であり、前記高圧流体流が前記タービンを駆動する、タービンと、
補助流路に沿って配置された補助ノズル弁であって、前記補助ノズル弁が前記タービンの前記補助ノズルへの前記高圧流体流の第3の流れを制御し、前記高圧流体流の前記第3の流れが前記第1の流れの一部である、補助ノズル弁と
を含む溶媒ガス処理システムを含むシステム。
【請求項2】
前記高圧流体流の前記第1の流れが、前記メインノズルの第1の流れ容量より多い場合に、前記補助ノズル弁が開くか又は部分的に開く、請求項1に記載のシステム。
【請求項3】
前記高圧流体流の前記第1の流れが、前記メインノズルの前記第1の流れ容量より少ない場合に、前記補助ノズル弁が閉じるか又は部分的に閉じる、請求項2に記載のシステム。
【請求項4】
バイパス流路に沿って配置されたバイパス弁を含み、前記バイパス流路が、前記第1流路から直接前記出口流路まで前記高圧流体流の一部を導く、請求項1に記載のシステム。
【請求項5】
前記高圧流体流の前記第3の流れが、前記補助ノズルの第2の流れ容量より多い場合に、前記バイパス弁が開くか又は部分的に開く、請求項4に記載のシステム。
【請求項6】
前記高圧流体流の前記第1の流れが、前記メインノズルの第1の流れ容量より少ない場合に、前記第1絞り弁が閉じるか又は部分的に閉じる、請求項1に記載のシステム。
【請求項7】
前記出口からの前記低圧流体流の前記第4の流れが、前記出口の第3の流れ容量より少ない場合に、前記第1絞り弁が閉じるか又は部分的に閉じる、請求項6に記載のシステム。
【請求項8】
前記メイン流路又は前記第1流路に沿って配置された第2絞り弁であって、前記高圧反応容器からの前記高圧流体流の流れを制御する第2絞り弁を含む、請求項1に記載のシステム。
【請求項9】
前記タービンが前記高圧流体流の第1圧力を受け取り、前記低圧流体流の第2圧力を出力し、前記タービンが、前記第1圧力と前記第2圧力の間の差に基づいて回転機械エネルギーを作り出す、請求項1に記載のシステム。
【請求項10】
前記システムの少なくとも1つの動作パラメータに関するフィードバックを受けるコントローラーを含み、前記コントローラーが、前記高圧反応容器からの及び前記タービンへの前記高圧流体流の前記第1の流れが、受け取った前記フィードバックに基づいて前記タービンの前記メインノズルの動作可能な流れの範囲内にあるかどうかを決定し、前記補助ノズル弁を調整して、前記高圧反応容器からの及び前記タービンへの前記高圧流体流の前記第1の流れを増加させ又は減少させ、前記システムの前記少なくとも1つの動作パラメータが、圧力、流量、又はそれらの組み合わせを含む、請求項1に記載のシステム。
【請求項11】
前記溶媒ガス処理システムが、出口流路に沿って配置された第1絞り弁を含み、前記第1絞り弁が、前記出口からの低圧流体流の第4の流れを制御する、請求項1に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願の相互参照]
本出願は、2013年10月28日出願の「アミンガス処理におけるタービン系レベル制御用の制御システム」と題した米国仮特許出願第61/896255号、及び2014年10月27日出願の「ガス処理システム内のタービンシステムの利用システム及び方法」と題した米国非仮特許出願第14/525081号の優先権と利益を主張し、それらは、全ての目的に対して、参照により全体として本明細書に組み込まれる。
【背景技術】
【0002】
本セクションは、以下に記載され及び/又は特許請求の範囲に記載される本発明の様々な態様に関連し得る技術の様々な態様について、読者に紹介することを意図するものである。ここでの議論は、本発明の様々な態様のより良い理解を容易にするため、背景情報を読者に提供するのに有用であると考えられる。したがって、これらの説明はこのような観点で読むべきであり、先行技術の自認としてではないことを理解すべきである。
【0003】
本明細書に開示する発明の主題はタービンシステムに関連し、特に、酸性ガス除去システムのようなガス処理システム内の流体の動作パラメータを制御するためのシステム及び方法に関連する。
【0004】
様々な産業上の用途内においては、高圧反応容器は様々なガス処理用途に利用されることがある。例えば、様々な石油化学用途、天然ガス処理用途、及びその他の産業処理プラント用途において、酸性ガス除去システムは、高圧反応容器(例えば、高圧反応容器)を利用して所望のガスのサワーガス成分を除去することがある。実際に、天然の油層から出る天然ガスは、様々な量のサワーガス(例えば、二酸化炭素、硫化水素など)を含有し得る。これらの産業上の用途上又は産業上の用途内において、天然ガスのサワーガス成分を除去してサワーガスの影響を低減するのを助けることは、高圧反応容器にとって有益である場合がある。
【0005】
幾つかの状況では、液体溶媒は高圧反応容器を出ることがあり、反応物質として高圧反応容器に戻される前に処理されることがある。例えば、液体溶媒は、高圧反応容器内の水位を制御するために調整する圧力低減機構を通過することがある。酸性ガス除去システムでは、高圧反応容器を出る液体溶媒の様々な動作パラメータを調整して、供給ガスからサワーガス成分を除去する連続システムを提供するのを助けることができる。幾つかの状況では、サワーガス成分が供給ガスから抽出される前後に、液体溶媒の圧力及び温度を増加させ又は減少させる。しかしながら、圧力低減機構のような液体溶媒の動作パラメータを制御するために一般的に利用される機構は、効率を向上しかつ損失エネルギーを回収するように改善することができる。したがって、様々な産業プロセスにおいては、高圧反応容器を出る液体溶媒の動作パラメータを制御するために利用される機構を改善するためのシステム及び方法を提供することが有益である場合がある。
【0006】
以下の詳細な説明を、添付図面を参照して読むことで、本発明の様々な特徴、態様、及び利点がより良く理解され、添付図面では、全体を通して同様の文字は同様の部材を表している。
【図面の簡単な説明】
【0007】
【
図1】酸性ガス除去システムの実施形態の模式図であり、高圧反応容器から高圧流体を受け取るように構成されるタービンシステムを表している。
【
図2】
図1のタービンシステムの実施形態の模式図であり、タービンシステムが補助ノズル弁、バイパス弁、及び絞り弁を含んでいる。
【
図3】
図2のタービンシステムにおける絞り弁の実施形態の模式図であり、絞り弁がタービンシステム内で異なる位置に配置されている。
【
図4】
図2のタービンシステムの実施形態の模式図であり、タービンシステムの1つ又は複数の弁が監視/分析システムと連結されている。
【
図5】
図2のタービンシステム内に配置されたタービンの実施形態の透視図である。
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明の1つ又は複数の具体的な実施形態が以下に説明される。これらの説明された実施形態は、本発明の単なる例示である。加えて、これらの例示的な実施形態の簡潔な説明を提供するために、実際の実施態様の全ての特徴が、本明細書中に記載されていない場合がある。任意のそのような実際の実施態様の開発では、任意のエンジニアリング又はデザインプロジェクトの場合と同様に、実施態様により異なり得る開発者の特定の目的、例えば、システム関連及びビジネス関連の制約の順守を達成するために、数多くの実施態様による特定の決定をしなければならないことが認められるべきである。さらに、そのような開発の努力は、複雑であり時間を要し得るが、本開示の利益を受ける当業者にとっては、デザイン、製作、及び製造の日常の仕事であることが認められるべきである。
【0009】
本発明の様々な実施形態の要素を紹介する場合、冠詞「1つの(a)」、「1つの(an)」、「その(the)」及び「前記(said)」は、1つ又は複数の要素が存在することを意味することを意図している。「含む(comprising)」、「含む(including)」及び「有する(having)」という用語は、包括的であることを意図し、列挙する要素以外に追加の要素が存在する場合があることを意味する。
【0010】
本明細書で説明される実施形態は、一般的に、様々なガス処理技術で高圧反応容器を利用する産業上の用途に関する。例えば、様々な石油化学用途、天然ガス処理用途、及びその他の産業処理プラント用途において、高圧反応容器が、所望のガスを液体溶媒で処理するために利用されることがある。特に、これらの産業システム内の高圧反応容器の水位を管理及び監視することができる。例えば、幾つかの実施形態においては、液体溶媒は高圧反応容器から除去されることがあり、そして反応物質として高圧反応容器に戻される前に減圧弁を通過することがある。さらに、高圧反応容器から除去された液体溶媒の量を監視又は管理することで、減圧弁を高圧反応容器の水位を管理するように構成することができる。しかしながら、圧力低減機構のような液体溶媒の動作パラメータを制御するために一般的に利用される機構は、効率を向上しかつ損失エネルギーを回収するように改善することができる。したがって、さらに以下に説明されるように、高圧反応容器から出る液体溶媒の動作パラメータを制御又は管理するように構成されるタービンシステムを提供することは有益となる場合がある。
【0011】
例示される例、説明、及び実施形態において、酸性ガス除去システムは、高圧反応容器から出る液体溶媒の動作パラメータを管理するように構成される、タービンシステムを有する産業システムの一例として利用されることに留意すべきである。しかしながら、本明細書で説明される実施形態、システム、及び方法は、液体溶媒が高圧反応容器の外に導かれる任意の産業プロセスに一般的に適用可能である。さらに、本明細書で説明されるこれらの実施形態、システム、及び方法は、液体溶媒が高圧反応容器の外に導かれ、高圧反応容器の水位を制御するように構成される減圧弁を通過する任意の産業プロセスに一般的に適用可能である。
【課題を解決するための手段】
【0012】
上記のことを考慮すると、酸性ガス除去システムは、高圧反応容器から出る液体溶媒(例えば、液体流、液体流出物など)の動作パラメータを管理するように構成されるタービンシステムを有する産業プロセスの一例であることができる。さらに、タービンシステムは、次の処理のために高圧反応容器から除去される液体溶媒の量を制御又は管理することにより、高圧反応容器の動作パラメータを管理するように構成することができる。酸性ガス除去システムは、様々な産業上の用途、例えば石油化学又は化学用途、天然ガス処理用途、産業プラント用途などに利用されることがある。特に、酸性ガス除去システムは、酸性ガス除去システムの液体溶媒の流れを制御するように構成されるタービンと1つ又は複数の弁とを有するタービンシステムを含むことができる。さらに、タービンシステムは、液体溶媒流が酸性ガス除去システムを通じて処理される場合、液体溶媒流の圧力及び圧力低下を管理するのを助けることができる。このように、タービンシステムは、所望の液体を減圧するために典型的に利用される酸性ガス除去システムの他の機構、例えば減圧弁と置き換えるように構成することができる。
【0013】
酸性ガス除去システムは、所望のガスのサワーガス成分を除去するために一般的に利用することができ、それにより供給ガスを、サワーガス成分を実質的に含まないクリーンガス(例えば、スイートガス)に変換することができる。例えば、バージン天然ガスは、様々な量のサワーガス、例えば二酸化炭素又は硫化水素を含み得る天然ガス油層由来の所望の供給ガスの一種である。酸性ガス除去システムは、天然ガスのサワーガス成分を除去して、産業システム又はプロセスにおけるサワーガスの影響を低減するのを助けるように構成することができる。典型的に、酸性ガス除去システムは、様々な液体溶媒(例えば、アルキルアミン、アミン)の水溶液を伴う一連のプロセスを利用して、サワーガス成分を除去する。具体的には、所望の供給ガスのサワーガス成分は、高圧(例えば、およそ1000psiと1500psiの間)かつ比較的低温で溶媒水溶液によって吸収される。同様に、サワーガス成分は、低圧(例えば、およそ大気圧の近く)かつ比較的高温で溶媒水溶液によって放出される。したがって、酸性ガス除去システムは、水質溶媒溶液を再利用する循環プロセスを典型的に含む。例えば、所望の供給ガス、例えば天然ガスのサワーガス成分が、高圧反応容器内で高圧(例えば、およそ1000psiと1500psiの間)かつ比較的低温で溶媒溶液と接触して、サワーガス成分を吸収してクリーン(例えば、スイート)供給ガスを生成する溶媒溶液を作り出す。そのスイートガスは、酸性ガス除去システムにより製造される。さらに、サワーガス成分を吸収した溶媒溶液(例えば、高圧リッチ溶媒流体流)は、高圧かつ低温で高圧反応容器を出ることができる。高圧リッチ溶媒流体の圧力を低下し温度を増加することで、吸収されたサワーガス成分の高圧リッチ溶媒を抽出するのを助けることができ、それにより溶媒流体流を高圧反応容器内で再循環することができる。典型的に、幾つかの酸性ガス除去システム及び状況では、減圧弁が使用され、高圧リッチ溶媒流体の圧力を減らすことがある。しかしながら、減圧弁は、リッチ溶媒流体の圧力低下で作り出されたエネルギーを利用することができず、それによって効率を損失するという結果になる。
【0014】
上で述べたように、本明細書で説明される実施形態において、タービンシステムは高圧リッチ溶媒流体の圧力を低減するのを助けるように構成することができる。実際に、以下に詳細がさらに説明されるように、幾つかの状況では、タービンシステムは様々な酸性ガス除去システムの減圧弁と置き換えるのを助けるように配置することができる。特に、タービンシステムは、リッチ溶媒流体の圧力が減少した際に作り出された圧力エネルギーの一部を回収するように構成され、この圧力エネルギーを回転機械エネルギーに変換することができる。幾つかの実施形態では、回転機械エネルギーは、酸性ガス除去システム及び/又は産業システムの別形態のエネルギーに利用され及び/又は変換されることがある。例えば、タービンシステムにより作り出された回転エネルギーを利用しポンプを駆動して、システム内の追加のプロセス流体を加圧し、発電機の駆動を通じて電気エネルギーに変換することができ、又は酸性ガス除去システム内の任意の他の方法で使用することができる。
【発明を実施するための形態】
【0015】
上記のことを考慮すると、
図1はタービンシステム12を備えた酸性ガス除去システム10の実施形態の模式図である。タービンシステム12は、
図2〜5でさらに説明されるように、タービン10(例えば、油圧タービン、液体タービンなど)と1つ又は複数の弁とを含む。特に、上で述べたように、タービンシステムは、以下にさらに詳細が説明されるように、典型的な酸性ガス除去システムに配置された減圧弁14と置き換わるように構成することができる。さらに、本明細書で説明されるシステム及び方法は、特別な種類の酸性ガス除去システム(例えば、水質溶媒溶液を使用した天然ガス処理)について一般的に説明されるが、その説明される技術及び機構は、任意の酸性ガス除去システム10に使用することができることに留意すべきである。例えば、本明細書で説明される実施形態は、タービンシステム12に置き換えることができる減圧弁14を有する任意の酸性ガス除去システム10に利用することができる。実際には、上で述べたように、減圧弁14の代わりにタービンシステム12を利用することでシステム10の効率を向上するのを助けることができ、作り出された圧力エネルギーの一部を回収し、その作り出された圧力エネルギーを回転機械エネルギーに変換するのを助けることができる。
【0016】
幾つかの実施形態においては、酸性ガス除去システム10は、高圧反応容器18の底部17に設けられる所望の供給ガス16を含む。供給ガス16は、サワーガス成分(例えば、酸性ガス)を含む任意の種類のガスであることができる。例えば、供給ガス16の種類は、天然の地質油層由来の天然ガス(例えば、エタン、プロパンなど)、合成ガス、又は一般的に酸性ガス成分を有する任意の種類のガスを含むことができる。供給ガス16のサワーガス成分は、二酸化炭素、硫化水素、メルカプタン類(例えば、メタンチオール、エタンチオールなど)などを含むことができる。幾つかの実施形態では、供給ガス16は、およそ300psigと2200psigの間の圧力で高圧反応容器18に入ることができる。加えて、高圧反応容器18に入る際の供給ガス16の温度は、およそ26℃と38℃の間であることができる。さらに、酸性ガス除去システム10は、一般的に低温で、高圧反応容器18の頂部19の近くに一般的に設けられるリーン溶媒溶液20(例えば、リーン溶媒水溶液、リーン溶媒溶液、水性リーン溶媒など)を含む。幾つかの実施形態においては、高圧反応容器18に入る際のリーン溶媒溶液20の温度は、およそ32℃と43℃の間であり又はおよそ38℃と49℃の間であることができる。実際に、幾つかの実施形態では、リーン溶媒溶液20の温度は、供給ガス16のより重い成分の凝集を避けるのを助けるために、供給ガス16の温度よりも高い温度で、任意の場所で30℃と50℃との間であることができる。供給ガス16が高圧反応容器18内を上方向22に移動すると、供給ガス16が発熱プロセスでリーン溶媒溶液20と接触する。
【0017】
したがって、幾つかの実施形態では、リーン溶媒溶液が高圧反応容器18内を下方向24に移動する際に、リーン溶媒溶液20は発熱プロセスで昇温し、供給ガス16のサワーガス成分を供給ガス16からリーン溶媒溶液20に移すことができる。このようにして、スイートガス26(例えば、クリーンガス26)は高圧反応容器を出る。具体的に、スイートガス26は、サワーガス成分を全く含まない所望の供給ガス16であることができる。さらに、リーン溶媒溶液20がサワーガス成分を吸収し、高圧リッチ溶媒28として高圧(例えば、およそ1000psiと1500psiの間)かつ一般的に高温(例えば、およそ55℃と65℃の間)で高圧反応容器18を出る。上で述べたように、酸性ガス除去システム10の溶媒溶液を再利用及び再循環することは有益となる場合がある。したがって、幾つかの実施形態においては、高圧リッチ溶媒28はさらに処理され、サワーガス成分を抽出してリーン溶媒溶液20を作り出す。それゆえ、幾つかの実施形態では、高圧リッチ溶媒28の圧力を減少させて、サワーガス成分を抽出することができる。また、幾つかの実施形態では、高圧リッチ溶媒28の温度を増加させて、サワーガス成分を抽出することができる。
【0018】
タービンシステム12は、
図2〜4でさらに説明されるように、高圧リッチ溶媒28の圧力を減らすように構成することができる。例えば、幾つかの実施形態においては、高圧リッチ溶媒28の圧力を、およそ25psigと100psigの間に減少させることがある。したがって、タービンシステム12から出る低圧リッチ溶媒30を、フラッシュタンク32に導くことができる。そのフラッシュタンク32は、低圧リッチ溶媒30の所望の成分、例えば、任意の残った炭化水素ガスを再蒸発し回収するように構成することができる。次いで、さらに、低圧リッチ溶媒30は、熱交換器34に導かれ、さらに下流処理36に導かれることがある。下流処理36は、サワーガス成分の低圧リッチ溶媒30を抽出するように構成される。幾つかの実施形態では、下流処理36は、再生器回路を含むことがあり、サワーガス成分がリーン溶媒溶液20を作り出すための熱を利用して低圧リッチ溶媒30から抽出される。幾つかの実施形態において、熱交換器34は、熱交換器34に入る低圧リッチ溶媒30と下流処理ユニット36を出るリーン溶媒溶液20の間の熱を交換するように構成される。さらに、熱交換器34を出るリーン溶媒溶液20は、リーン溶媒溶液20の圧力を高圧反応容器18の圧力(例えば、およそ25psigと100psigの間〜およそ1000psigと1200psigの間)に増加させるように構成されるリーン溶媒ポンプ38に入る。次いで、リーン溶媒弁40が開くように構成される場合、リーン溶媒溶液20は高圧反応容器18に戻される。幾つかの実施形態において、リーン溶媒溶液20の圧力を増加するために必要なエネルギーは、タービンシステム12によって作り出されたエネルギー由来であることがある。
【0019】
図2は、
図1のタービンシステム12の実施形態の模式図であり、タービンシステム12はタービン42と1つ又は複数の弁44とを含む。図示された実施形態において、弁44は補助ノズル弁46、バイパス弁48、及び絞り弁50を含む。特に、弁44は高圧反応容器18から出て、タービン42に導かれる高圧リッチ溶媒28の流れを管理するように構成することができる。酸性ガス除去システム10の溶媒循環プロセスの制御は、高圧反応容器18を出るリーン溶媒溶液20の流れ及び高圧リッチ溶媒28の流れを制御することで管理することができることに留意すべきである。このように、タービンシステム12は、高圧反応容器18を出る流れの抵抗を管理及び提供することで、酸性ガス除去システム10の全体のプロセスを制御するのを助けるように構成することができる。実際に、弁44は、高圧反応容器18を出る高圧リッチ溶媒28の流れ及びタービン42に入る高圧リッチ溶媒28の流れを同時に制御及び/又は管理するように、並行して働くことができる。
【0020】
幾つかの実施形態において、高圧リッチ溶媒28は、タービン42のメインノズル54(例えば、一次ノズル54)につながるメイン流路52を通じて、高圧反応容器18からタービン42に直接導くことができる。実際に、メインノズル54は、流れを制限又は制御するように構成される任意の要素なしに、高圧反応容器18から出る高圧リッチ溶媒28の流れに対し継続的に開いていることがある。幾つかの実施形態においては、高圧反応容器18を出てタービン42に入る流れの量を増加させることが必要となる場合がある。これらの状況において、補助ノズル弁46が開かれ又は係合され、タービン42の流れの量を増加させることがある。例えば、幾つかの状況では、補助流路56はメイン流路52から分岐することができ、補助ノズル弁46を通じて補助ノズル58に高圧リッチ溶媒の一部を導くことができる。補助ノズル弁46が完全に開いている場合、タービン42は、高圧反応容器18から出る最大量の高圧リッチ溶媒28を受けるように構成することができる。幾つかの実施形態において、補助ノズル弁46が部分的に開いていることがあり、そうすると大量の高圧リッチ溶媒28が高圧反応容器18から除去され、タービン42に導かれることに留意すべきである。上で述べたように、タービン42に導かれる高圧リッチ溶媒28の量は、酸性ガス除去システム10の全体の再循環プロセスの所望の動作パラメータに依存することがある。例えば、高圧反応容器の水位が許容範囲、高圧反応容器を超えて増加した場合、高圧反応容器18の水位を制御するために、大量の高圧リッチ溶媒28が高圧反応容器18から除去されることが要求されることがある。
【0021】
幾つかの実施形態において、タービンシステム12は、広範囲の流れの容量を処理するように構成することができる。例えば、幾つかの状況において、タービンシステム12は、高圧反応容器18から出る追加の流れ、例えば、メイン流路52及び補助流路56が処理することができる最大の流れを超える流れを処理するように構成することができる。これらの状況において、バイパス弁48が完全に又は部分的に開いて、高圧反応容器18から出る高圧リッチ溶媒28のオーバーフローを処理することがある。特に、バイパス流路60はメイン流路52から分岐して、高圧反応容器18から直接タービン42の流路の下流まで高圧リッチ溶媒28の一部を導くことができる。高圧反応容器18は、高圧リッチ溶媒28が高圧反応容器18を出る出口21を含むことができる。幾つかの実施形態において、バイパス流路60は、高圧リッチ溶媒28をタービン42及び絞り弁50の下流の出口流路に導くことができる。幾つかの実施形態において、絞り弁50がまた利用され、タービンシステム12が処理することができる流れの範囲を改善することができる。例えば、幾つかの状況において、タービンシステム12は少量の流れ、例えば、メイン流路52が処理するように構成される最小の流れを下回る流れを処理するように構成することができる。これらの状況において、絞り弁50は、完全に又は部分的に閉じて、高圧反応容器18から出る高圧リッチ溶媒28の減少した流れを処理することがある。例えば、絞り弁50を閉じることで、タービンシステム12に追加の抵抗を提供するのを助けることができる。上記で述べたように、タービン42は、高圧リッチ溶媒28の圧力を減らし、タービン出口59を通じ出口流路62に向かう低圧リッチ溶媒30を出力するように一般的に構成される。
【0022】
幾つかの実施形態において、複数の補助ノズル弁46、補助流路56、及び補助ノズル58がタービン42に提供されかつ構成されることができる。例えば、1つ又は複数の補助ノズル弁46(例えば、2、3、4、5、6、又はそれ以上)並びに対応する補助流路56及び補助ノズル58を、タービン42に構成することができる。さらに、幾つかの状況では、複数のタービンシステム12(例えば、2、3、4、5、6、又はそれ以上)を酸性ガス除去システム10に提供することができることに留意すべきである。これらの状況において、高圧反応容器18を出るメイン流路52は複数のメイン流路52に分けられることがある。複数のメイン流路52のそれぞれ1つは、複数のタービンシステム12の特定のタービンシステム12につながることができる。
【0023】
図3は、
図2のタービンシステム12の絞り弁50の実施形態の模式図であり、絞り弁50がタービンシステム12において異なる位置に配置される。例えば、
図2に関して上で述べたように、絞り弁50は、タービン42の下流及びバイパス流路60と出口59との間の第1接続点64の上流に、出口流路62に沿って配置することができる。他の実施形態においては、絞り弁66は、タービン42及び接続点64の下流に、出口流路62に沿って配置することができる。幾つかの実施形態では、絞り弁68は、高圧反応容器18の下流及びメイン流路52とバイパス流路60との間の第2接続点70の上流に配置することができる。さらに、幾つかの実施形態では、絞り弁72は、第2接続点70の下流に、タービン42の上流に、並びにメイン流路52及び補助流路56の前の第3接続点73の上流に配置することができる。他の実施形態では、絞り弁72は、第2接続点70の下流に、タービン42の上流に、及び第3接続点73の下流に配置することができる。
【0024】
幾つかの実施形態においては、絞り弁50又は66は、タービン42から出る流れを制限することにより、タービンシステム12の抵抗を増加させるように構成することができ、それによりタービンシステム12に少ない流れのプロファイルを処理するための機構を提供する。絞り弁68及び72は抵抗を増加し、高圧反応容器18からの高圧リッチ溶媒28の流れを限定するように構成することができる。さらに、要求される方法で高圧リッチ溶媒28の流れを管理して導くために、絞り弁50、66、68、及び72は任意の組み合わせで利用することができることに留意すべきである。例えば、幾つかの実施形態においては、絞り弁72を閉じて、タービン42に対しての高圧リッチ溶媒28の流れを限定して、出口流路62に向けて高圧リッチ溶媒28を導くことができる。他の実施形態においては、タービンシステム12に、任意の数の弁44をタービン42の上流か又は下流に配置し、より広い範囲の流れのプロファイルを処理することを提供するのを助けることができることに留意すべきである。またさらに、
図4でさらに説明されるように、追加の機構が、高圧リッチ溶媒28の流れのさらに少し異なる制御を用いてタービンシステム12に提供されることがある。
【0025】
図4は、
図2のタービンシステムの実施形態の模式図であり、タービンシステム12の1つ又は複数の弁が監視/分析システム74に連結される。監視/分析システム74は、ディスプレイ78、1つ又は複数の処理装置80、及びメモリ82に連結されるコントローラー76を含むことができる。コントローラー76は、タービンシステム12の1つ又は複数の構成物、例えば1つ又は複数の弁44又は1つ又は複数のセンサ75と連通し、そこから情報を集めるように構成することができる。例えば、幾つかの実施形態において、コントローラー76は、タービンシステム12の1つ又は複数の動作パラメータを管理及び制御するように構成することができる。
【0026】
幾つかの実施形態において、処理装置80は1つ又は複数の処理デバイスを含むことができ、メモリ82は、処理装置80により実行可能な命令を一括格納する1つ又は複数の有体の、非一時的な、機械可読な媒体を含み、本明細書で説明される方法を実行して動作を制御することができる。
【0027】
そのような機械可読な媒体は、処理装置によって又は処理装置を備える任意の汎用若しくは専用コンピュータ又は他の機械によってアクセスすることができる任意の利用可能な媒体であることができる。例として、そのような機械可読な媒体は、RAM、ROM、EPROM、EEPROM、CD−ROM、又は光ディスク記憶装置、磁気ディスク記憶装置、若しくは他の磁気記憶デバイス、あるいは機械が実行可能な命令又はデータ構造形式の所望のプログラムコードを実行又は保存するために使用することができ、かつ、処理装置又は処理装置を備える汎用若しくは専用コンピュータ若しくは他の機械によりアクセスされることができる任意の他の媒体を含むことができる。情報がネットワーク又は別の通信接続(配線接続、ワイヤレス、又は配線接続若しくはワイヤレスの組み合わせのいずれか)を通じて機械に転送され又は提供された際に、機械は、機械可読な媒体として接続を適切に表示する。このように、任意のそのような接続が機械可読な媒体と適切に呼ばれる。上記の組み合わせはまた、機械可読な媒体の範囲内に含まれる。例えば、機械が実行可能な命令は、処理装置又は任意の汎用コンピュータ、専用コンピュータ、又は専用処理機械に1つのある機能又は機能群を実行させる命令及びデータを含む。
【0028】
例えば、幾つかの実施形態において、コントローラー76は、それぞれの1つ又は複数の弁44と連結することができる電動アクチュエータ、スイッチ(例えば、ホールスイッチ、ソレノイドスイッチ、リレースイッチ、リミットスイッチ)などと連通するように構成することができる。このように、酸性ガス除去システム10の全体にわたる所望の流れのプロファイルに基づいて、コントローラー76は、任意の弁44を開く、閉じる、部分的に開く、又は部分的に閉じるように構成されることができる。さらに、幾つかの実施形態では、コントローラー76は、タービンシステム12及び酸性ガス除去システム10の全体にわたり配置された様々な感知デバイス75と連通するように構成されることができる。感知デバイス75は、流量計、温度センサ、振動センサ、クリアランスセンサ、圧力センサ、又は酸性ガス除去システム10の動作パラメータを感知するように構成される他のセンサを含むことがある。例えば、感知デバイス75は、高圧リッチ溶媒28、低圧リッチ溶媒30、リーン溶媒溶液20、供給ガス16などの温度、圧力、流量、反応率などを感知するように構成することができる。幾つかの実施形態において、感知デバイス75は、タービンシステム12に、例えばタービンシステム12の流路52、56、60又は62に沿って配置することができる。
【0029】
幾つかの実施形態において、特別な種類の感知デバイス75が、酸性ガス除去システム10の他の構成物に、例えば高圧反応容器18に配置されることがある。例えば、高圧反応容器18は、高圧反応容器18の様々な動作パラメータを監視するように構成されるレベル送信機84を含むことができる。幾つかの状況において、レベル送信機84は、リーン溶媒溶液20と供給ガス16との間の収縮器18の発熱プロセスに関する情報を提供するように構成することができる。レベル送信機により集められ、コントローラー76に転送される情報は、温度、圧力、反応率、作り出されたスイートガス26の量、作り出された高圧リッチ溶媒28の量などに関する情報を含むことがある。特に、高圧反応容器18に配置されることがあるレベル送信機84及び様々な他の感知デバイス75が利用され、は、高圧反応容器18の外に導かれる高圧リッチ溶媒28の量を決定することができる。
【0030】
さらに、レベル送信機84及び/又は他の感知デバイス75から受け取る情報又はフィードバックに基づいて、コントローラー76は、弁44を管理して所望の流れのプロファイルを達成するように構成することができる。例えば、もしコントローラー76が、高圧反応容器18の外に導かれる高圧リッチ溶媒の量がメインノズル54の処理することができる流れの容量又は流れの限界より多いという情報を受け取った場合、コントローラー76は補助ノズル弁46を開くか又は部分的に開くように構成することができる。同様に、もしコントローラー76が、高圧反応容器18の外に導かれた高圧リッチ溶媒の量がメインノズル54の処理することができる流れの容量又は流れの限界より少ないという情報又はフィードバックを受け取った場合、コントローラー76は、補助ノズル弁46を閉じるか又は部分的に閉じるように構成することができる。さらに、もしコントローラー76が、高圧反応容器18の外に導かれる高圧リッチ溶媒の量が補助ノズル58の処理することができる流れの容量よりおよそ10〜20%多いという情報を受け取った場合、コントローラー76は、バイパス弁48を開くか又は部分的に開くように構成することができる。同様に、もしコントローラー76が、高圧反応容器18の外に導かれた高圧リッチ溶媒の量が補助ノズル58の処理することができる流れの容量よりおよそ10〜20%少ないという情報又はフィードバックを受け取った場合、コントローラー76は、1つ又は複数の絞り弁50、66、68、72を閉じるか又は部分的に閉じるように構成することができる。他の実施形態において、他の種類の感知情報(例えば、レベル送信機84の情報)がまた使用され、タービンシステム12の全体の効率を改善するという方法で、弁44を制御することがあることに留意すべきである。それぞれの弁44によって処理される流れの容量又は流れの限界に関して提供される範囲は、例示した目的のためであり、それぞれの弁が操作する範囲は、所望の全体システムの効率によって変化することができることに留意すべきである。
【0031】
例えば、幾つかの状況、例えばタービンシステム12がメインノズル54の動作容量又は制限よりも少ない量の高圧リッチ溶媒28を受け取った場合、バイパス弁48を閉じ、補助ノズル弁46を閉じ、及び絞り弁50を完全に又は部分的にのいずれかで閉じることができる。もし、情報又はフィードバックを、高圧反応容器18の出力の増加に関するコントローラー76により受け取った場合、様々な弁44が開き、追加の流れに適応するように構成することができる。例えば、流れの量が増えた場合、絞り弁50が開き、タービン42が低圧リッチ溶媒30の流れを出力できるように構成することができる。さらに、追加の流れの量によって、補助弁46及びバイパス弁48もまた開くように構成されることができる。
【0032】
さらに、弁44は任意の組み合わせで操作されることがあり、弁44は重なった動作範囲を有することがあることに留意すべきである。例えば、幾つかの状況では、補助ノズル弁46は、絞り弁50が完全に開く前、絞り弁50が開くように構成されると同時に、又は絞り弁50が開くように構成された後に、開くように構成されることがある。同様に、バイパス弁48は、補助ノズル弁46が開くように構成される前、補助ノズル弁46が開くように構成されると同時に、又は補助ノズル弁46が開くように構成された後に、開くように構成されることがある。
【0033】
幾つかの実施形態においては、監視/分析システム74は、酸性ガス除去システム10とのオペレータ相互作用を可能にすることができる。例えば、監視/分析システム74のディスプレイ78は、ヒューマンマシンインタフェース(例えば、HMI)を含み、それがオペレータにより利用されて、感知情報又は手動の命令を受け取ることができる。特に、HMIは、オペレータからの情報を受け取るか又は提供するように構成されるユーザー入力/出力を含むことがある。例えば、幾つかの状況では、オペレータはそれぞれの弁44の動作範囲に入るように構成することができる。さらに、ディスプレイ78が利用されて、感知デバイス75から受け取った情報又はタービンシステム12若しくは酸性ガス除去システム10の任意の要素に一般的に関する情報を表示することができる。
【0034】
図5は、
図2のタービンシステム12に配置されたタービン42(例えば、液体タービン)の実施形態の透視図である。特に、タービン42はメインノズル54を含み、メイン流路52を通じて高圧リッチ溶媒28を直接受け取るように構成される。さらに、タービン42は補助ノズル58を含み、補助流路56を通じて高圧リッチ溶媒28を受け取るように構成され、これは補助ノズル弁46により管理される。
【0035】
本発明は、様々な修正及び代替形態が可能であり、具体的な実施形態が図面において例として示され、本明細書で詳しく説明されている。しかしながら、本発明は開示される特定の形態に限定されることを意図するものでないことが理解されるべきである。むしろ、本発明は特許請求の範囲により規定される本発明の趣旨及び範囲内にある、全ての修正物、等価物、及び代替物を包含することを意図するものである。
本発明の実施形態としては、以下の実施形態を挙げることができる。
(付記1)リーン溶媒流体流の溶媒を使用して、未処理の供給ガスから酸性ガスを除去する高圧反応容器であって、処理後のクリーンガス及び第1流路を通じて高圧流体流の第1の流れを出力する、高圧反応容器と、
メインノズル、補助ノズル、及び出口を有するタービンであって、前記メインノズルが前記第1流路からメイン流路を通じて前記高圧流体流の第2の流れを受け、前記高圧流体流の前記第2の流れが前記第1の流れの一部であり、前記高圧流体流が前記タービンを駆動する、タービンと、
補助流路に沿って配置された補助ノズル弁であって、前記補助ノズル弁が前記タービンの前記補助ノズルへの前記高圧流体流の第3の流れを制御し、前記高圧流体流の前記第3の流れが前記第1の流れの一部である、補助ノズル弁と、
出口流路に沿って配置された第1絞り弁であって、前記出口からの低圧流体流の第4の流れを制御する、第1絞り弁と
を含む溶媒ガス処理システムを含むシステム。
(付記2)前記高圧流体流の前記第1の流れ又は所望の第1の流れが、前記メインノズルの第1の流れの容量より多い場合に、前記補助ノズル弁が開くか又は部分的に開く、付記1に記載のシステム。
(付記3)前記高圧流体流の前記第1の流れ又は前記所望の第1の流れが、前記メインノズルの前記第1の流れの容量より少ない場合に、前記補助ノズル弁が閉じるか又は部分的に閉じる、付記2に記載のシステム。
(付記4)バイパス流路に沿って配置されたバイパス弁を含み、前記バイパス流路が、前記第1流路から直接前記出口流路まで前記高圧流体流の一部を導く、付記1に記載のシステム。
(付記5)前記高圧流体流の前記第3の流れ又は所望の第3の流れが、前記補助ノズルの第2の流れの容量より多い場合に、前記バイパス弁が開くか又は部分的に開く、付記4に記載のシステム。
(付記6)前記高圧流体流の前記第1の流れ又は所望の第1の流れが、前記メインノズルの第1の流れの容量より少ない場合に、前記第1絞り弁が閉じるか又は部分的に閉じる、付記1に記載のシステム。
(付記7)前記出口からの前記低圧流体流の前記第4の流れ又は所望の第4の流れが、前記出口の第3の流れの容量より少ない場合に、前記第1絞り弁が閉じるか又は部分的に閉じる、付記6に記載のシステム。
(付記8)前記メイン流路又は前記第1流路に沿って配置された第2絞り弁であって、前記高圧反応容器からの前記高圧流体流の流れを制御する第2絞り弁を含む、付記1に記載のシステム。
(付記9)前記タービンが前記高圧流体流の第1圧力を受け取り、前記低圧流体流の第2圧力を出力し、前記タービンが、前記第1圧力と前記第2圧力の間の差に基づいて回転機械エネルギーを作り出す、付記1に記載のシステム。
(付記10)前記システムの少なくとも1つの動作パラメータに関するフィードバックを受けるコントローラーであって、前記システムの動作パラメータを調整して、前記高圧流の前記第1の流れを制御する、付記1に記載のシステム。
(付記11)リーン溶媒流の溶媒を使用して、未処理の供給ガスから酸性ガスを除去する高圧反応容器であって、処理後のクリーンガス及び第1流路を通じて高圧流体流の第1の流れを出力する、高圧反応容器と、
少なくとも1つの処理装置と、メモリに格納された命令を実行するメモリとを含む溶媒ガス処理コントローラーであって、前記少なくとも1つの処理装置が、
溶媒ガス処理システムの1つ又は複数の動作パラメータに関する、溶媒ガス処理システムの全体にわたり配置された1つ又は複数のセンサからのフィードバックを受け、
前記高圧反応容器からの及びタービンシステムへの前記高圧反応容器の前記第1の流れが、受け取った前記フィードバックに基づいて前記タービンシステムのメインノズルの動作可能な流れの範囲内にあるかどうかを決定し、
前記高圧流体流の前記第1の流れが前記動作可能な流れの範囲を超える場合、補助ノズル弁を開き、
前記高圧流体流の前記第1の流れが前記動作可能な流れの範囲を下回る場合、補助ノズル弁を閉じる、溶媒ガス処理コントローラーと
を含むシステム。
(付記12)前記1つ又は複数のセンサが、前記高圧反応容器内に配置されたレベル送信機を含み、前記レベル送信機が、前記高圧流体流の前記第1の流れに関する情報を送信する、付記11に記載のシステム。
(付記13)前記システムの前記1つ又は複数の動作パラメータが、圧力、流量、温度、又はそれらの組み合わせを含む、付記11に記載のシステム。
(付記14)前記コントローラーが、前記タービンシステムへの前記高圧流体流の前記第1の流れを増加させ又は減少させるために、バイパス弁又は絞り弁を調整する、付記11に記載のシステム。
(付記15)前記コントローラーが、前記タービンシステムを出る低圧流体流の第2の流れを増加させ又は減少させるために、前記絞り弁を調整する、付記14に記載のシステム。
(付記16)前記コントローラーが、オペレータから前記動作可能な流れの範囲を受ける、ユーザー入力及び出力を有するディスプレイを含む、付記11に記載のシステム。
(付記17)高圧反応容器内の未処理の供給ガスから酸性ガスを除去する工程であって、前記高圧反応容器が、処理後のクリーンガス及び第1流路を通じて高圧流体流の第1の流れを出力する工程、
タービンシステムを通じて前記高圧反応容器からの前記高圧流の前記第1の流れを受け取る工程であって、前記高圧流が前記タービンシステムを駆動する工程、
溶媒ガス処理コントローラーを通じて、前記高圧流体流の前記第1の流れが前記タービンシステムのメインノズルの動作可能な流れの範囲内にあるかどうかを決定する工程、及び
前記高圧流体流の前記第1の流れが、前記メインノズルの前記動作可能な流れの範囲外にある場合、前記タービンシステムの1つ又は複数の動作パラメータを調整する工程、
を含む、方法。
(付記18)前記高圧流体流の前記第1の流れが、前記メインノズルの前記動作可能な流れの範囲外にある場合、補助ノズル弁、バイパス弁、又は絞り弁を制御して、前記タービンシステムへの前記高圧流体流の前記第1の流れを増加させ又は減少させる工程を含む、付記17に記載の方法。
(付記19)前記高圧流体流の前記第1の流れが、前記メインノズルの前記動作可能な流れの範囲及び前記補助ノズルの第2の動作可能な流れの範囲外にある場合、バイパス弁又は絞り弁を制御して、前記タービンシステムへの前記高圧流体流の前記第1の流れを増加させ又は減少させる工程を含む、付記18に記載の方法。
(付記20)前記1つ又は複数の動作パラメータを調整する工程が、前記タービンシステムを通じて、前記高圧流体流の前記第1の流れを制御することを含む、付記17に記載の方法。