特許第6261922号(P6261922)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ NTN株式会社の特許一覧

特許6261922流体動圧軸受装置及び内方部材の製造方法
<>
  • 特許6261922-流体動圧軸受装置及び内方部材の製造方法 図000002
  • 特許6261922-流体動圧軸受装置及び内方部材の製造方法 図000003
  • 特許6261922-流体動圧軸受装置及び内方部材の製造方法 図000004
  • 特許6261922-流体動圧軸受装置及び内方部材の製造方法 図000005
  • 特許6261922-流体動圧軸受装置及び内方部材の製造方法 図000006
  • 特許6261922-流体動圧軸受装置及び内方部材の製造方法 図000007
  • 特許6261922-流体動圧軸受装置及び内方部材の製造方法 図000008
  • 特許6261922-流体動圧軸受装置及び内方部材の製造方法 図000009
  • 特許6261922-流体動圧軸受装置及び内方部材の製造方法 図000010
  • 特許6261922-流体動圧軸受装置及び内方部材の製造方法 図000011
  • 特許6261922-流体動圧軸受装置及び内方部材の製造方法 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6261922
(24)【登録日】2017年12月22日
(45)【発行日】2018年1月17日
(54)【発明の名称】流体動圧軸受装置及び内方部材の製造方法
(51)【国際特許分類】
   F16C 33/12 20060101AFI20180104BHJP
   F16C 17/10 20060101ALI20180104BHJP
   F16C 33/14 20060101ALI20180104BHJP
【FI】
   F16C33/12 B
   F16C17/10 A
   F16C33/14 A
【請求項の数】7
【全頁数】15
(21)【出願番号】特願2013-189457(P2013-189457)
(22)【出願日】2013年9月12日
(65)【公開番号】特開2015-55312(P2015-55312A)
(43)【公開日】2015年3月23日
【審査請求日】2016年8月26日
(73)【特許権者】
【識別番号】000102692
【氏名又は名称】NTN株式会社
(74)【代理人】
【識別番号】100107423
【弁理士】
【氏名又は名称】城村 邦彦
(74)【代理人】
【識別番号】100120949
【弁理士】
【氏名又は名称】熊野 剛
(74)【代理人】
【識別番号】100155457
【弁理士】
【氏名又は名称】野口 祐輔
(72)【発明者】
【氏名】堀 政治
【審査官】 渡邊 義之
(56)【参考文献】
【文献】 特開2012−177467(JP,A)
【文献】 特開2011−33156(JP,A)
【文献】 特開平11−62969(JP,A)
【文献】 特開平3−161140(JP,A)
【文献】 特開2012−42035(JP,A)
【文献】 特開平11−336760(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F16C 17/00− 17/26
F16C 33/28
H02K 7/00− 7/20
(57)【特許請求の範囲】
【請求項1】
外方部材と、前記外方部材の内周に配された焼結金属からなる内方部材と、前記内方部材の外周面と前記外方部材の内周面との間に形成されるラジアル軸受隙間と、前記内方部材の軸方向一方の端面とこれに軸方向で対向する前記外方部材の内側面との間、及び、前記内方部材の軸方向他方の端面とこれに軸方向で対向する前記外方部材の内側面との間にそれぞれ形成されるスラスト軸受隙間と、前記ラジアル軸受隙間及び前記スラスト軸受隙間に満たされた潤滑油と、前記内方部材の外周面に転造加工で形成されたラジアル動圧発生部とを備えた流体動圧軸受装置であって、
前記ラジアル動圧発生部が形成された前記内方部材の気孔率が25%より大きい流体動圧軸受装置。
【請求項2】
外方部材と、前記外方部材の内周に配された焼結金属からなる内方部材と、前記内方部材の外周面と前記外方部材の内周面との間に形成されるラジアル軸受隙間と、前記内方部材の軸方向一方の端面とこれに軸方向で対向する前記外方部材の内側面との間、及び、前記内方部材の軸方向他方の端面とこれに軸方向で対向する前記外方部材の内側面との間にそれぞれ形成されるスラスト軸受隙間と、前記ラジアル軸受隙間及び前記スラスト軸受隙間に満たされた潤滑油と、前記内方部材の外周面に転造加工で形成されたラジアル動圧発生部とを備えた流体動圧軸受装置であって、
前記内方部材の軸方向両端面の外周端に設けられた面取り部の内周側に隣接する、前記内方部材の軸方向両端面の外周領域を、予め内周領域よりも軸方向内側に後退させ、前記転造加工による塑性流動で前記外周領域を軸方向外側に移動させた流体動圧軸受装置。
【請求項3】
外方部材と、前記外方部材の内周に配された焼結金属からなる内方部材と、前記内方部材の外周面と前記外方部材の内周面との間に形成されるラジアル軸受隙間と、前記内方部材の軸方向一方の端面とこれに軸方向で対向する前記外方部材の内側面との間、及び、前記内方部材の軸方向他方の端面とこれに軸方向で対向する前記外方部材の内側面との間にそれぞれ形成されるスラスト軸受隙間と、前記ラジアル軸受隙間及び前記スラスト軸受隙間に満たされた潤滑油と、前記内方部材の外周面に転造加工で形成されたラジアル動圧発生部とを備えた流体動圧軸受装置であって、
前記外方部材の内側面が、平坦部と、前記平坦部の外径側に設けられ、前記平坦部よりも軸方向外側に後退した逃げ部とを有する流体動圧軸受装置。
【請求項4】
前記内方部材のうち、少なくとも前記ラジアル軸受隙間及び前記スラスト軸受隙間を形成する領域の表面開孔率が20%以下である請求項1〜3の何れかに記載の流体動圧軸受装置。
【請求項5】
前記外方部材が、前記内方部材の軸方向一方の端面と対向する内側面を有する第1外方部材と、前記内方部材の軸方向他方の端面と対向する内側面を有する第2外方部材とを有し、前記第1外方部材と前記第2外方部材とを軸方向で相対移動させることにより前記スラスト軸受隙間が設定された請求項1〜3の何れかに記載の流体動圧軸受装置。
【請求項6】
外周面に設けられたラジアル軸受面と、軸方向両端面に設けられたスラスト軸受面と、前記ラジアル軸受面に形成されたラジアル動圧発生部とを有し、焼結金属で形成された流体動圧軸受装置の内方部材の製造方法であって、
混合金属粉末を圧縮成形して圧粉体を形成する圧縮成形工程と、圧粉体を所定の焼結温度で焼成して焼結体を形成する焼結工程と、前記焼結体を所定寸法に整形することにより、前記焼結体に前記ラジアル軸受面及び前記スラスト軸受面を成形するサイジング工程と、サイジング工程の後、前記焼結体を軸方向両側から拘束しない状態で、前記焼結体の外周面に前記ラジアル動圧発生部を転造加工により形成する転造工程とを有し、
完成品の内方部材の気孔率が25%より大きくなるように各工程の条件を設定する流体動圧軸受装置の内方部材の製造方法。
【請求項7】
外周面に設けられたラジアル軸受面と、軸方向両端面に設けられたスラスト軸受面と、前記ラジアル軸受面に形成されたラジアル動圧発生部とを有し、焼結金属で形成された流体動圧軸受装置の内方部材の製造方法であって、
混合金属粉末を圧縮成形して圧粉体を形成する圧縮成形工程と、圧粉体を所定の焼結温度で焼成して焼結体を形成する焼結工程と、前記焼結体を所定寸法に整形することにより、前記焼結体に前記ラジアル軸受面及び前記スラスト軸受面を成形するサイジング工程と、サイジング工程の後、前記焼結体を軸方向両側から拘束しない状態で、前記焼結体の外周面に前記ラジアル動圧発生部を転造加工により形成する転造工程とを有し、
予め、前記焼結体の軸方向両端面の外周端に設けられた面取り部の内周側に隣接する、前記焼結体の軸方向両端面の外周領域を内周領域よりも軸方向内側に後退させて形成し、前記転造加工による塑性流動で前記焼結体の軸方向両端面の外周領域を軸方向外側に移動させる流体動圧軸受装置の内方部材の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内方部材と外方部材との間の軸受隙間に生じる潤滑油の動圧作用で、内方部材を相対回転自在に支持する流体動圧軸受装置及びこれに組み込まれる内方部材の製造方法に関する。
【背景技術】
【0002】
換気扇等の電気機器に搭載されるモータには軸受が組み込まれており、この軸受によって回転軸が相対回転自在に支持されている。この種の軸受として、外輪と、内輪と、これらの間に介在された複数の転動体と、複数の転動体を保持する保持器とからなる、いわゆる転がり軸受が一般的に使用されている(例えば、特許文献1)。
【0003】
例えば、住宅に設けられる小型の換気扇、特に、24時間換気システムに設けられる小型の換気扇は、低コスト化が要求されているが、転がり軸受は、上述のとおり数多くの部品で構成されていることから低コスト化には限度がある。また、上記システムの換気扇は基本的に連続運転されることから、特に低騒音であることが求められる。しかしながら、転がり軸受では、運転時に保持器のポケットと転動体とが衝突することによって生じるいわゆる保持器音や、内外輪の軌道面上を転動体が転動することによって生じる摩擦音等の発生が避けられないことから、更なる静粛性向上の要請に対応するのが困難である。
【0004】
上記のような事情に鑑み、換気扇等のモータに組み込む軸受として、流体動圧軸受を使用する場合がある。例えば特許文献2に示されている流体動圧軸受装置は、内方部材と、内方部材の外周面及び両端面を囲む外方部材とを有し、内方部材が回転すると、内方部材の外周面と外方部材の内周面との間にラジアル軸受隙間が形成されると共に、内方部材の軸方向両端面と外方部材の内側面との間にそれぞれスラスト軸受隙間が形成され、これらのラジアル軸受隙間及びスラスト軸受隙間の潤滑油に生じる動圧作用で、内方部材が回転自在に支持される。このように、転がり軸受を流体動圧軸受で代替することにより、部品数の削減による低コスト化や、静粛性の向上を図っている。
【0005】
上記の流体動圧軸受装置では、内方部材が焼結金属で形成され、その外周面に動圧溝が転造加工により形成されている。これにより、転造加工の圧迫による内方部材の塑性流動を焼結金属の内部気孔で吸収できるため、塑性流動による内方部材の表面の盛り上がりが抑えられ、内方部材の外周面に動圧溝を精度良く形成することができる。
【0006】
また、上記の流体動圧軸受装置では、外方部材が、一方のスラスト軸受隙間を形成する第1外方部材と、他方のスラスト軸受隙間を形成する第2スラスト軸受隙間とで構成される。この流体動圧軸受装置では、以下のようにしてスラスト軸受隙間の設定が行われる。まず、内方部材の軸方向両端面に第1及び第2外方部材の内側面をそれぞれ当接させてスラスト軸受隙間を0の状態にする。その後、第1外方部材と第2外方部材とを相対的に軸方向移動させて、外方部材の内側面を内方部材の端面からスラスト軸受隙間の設定値の分だけ離隔させ、この状態で第1外方部材と第2外方部材とを固定することにより、スラスト軸受隙間が設定される。このように、外方部材の内方部材に対する移動量でスラスト軸受隙間を設定することにより、スラスト軸受隙間を高精度且つ容易に設定することができる。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2000−249142号公報
【特許文献2】特開2011−231874号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかし、焼結金属製の内方部材の外周面に転造加工により動圧溝を形成する場合、通常、内方部材の軸方向両端面は拘束されないため、転造加工の圧迫による影響が、内方部材の外周面(ラジアル軸受面)だけでなく、内方部材の軸方向両端面(スラスト軸受面)に及ぶことがある。具体的には、図11に誇張して示すように、内方部材101の外周面101aへの転造加工の圧迫により内方部材101の材料が軸方向両側に塑性流動し、この塑性流動により、内方部材101の端面101bの外周部が盛り上がることがある。この盛り上がり部101cにより、スラスト軸受隙間Tが不均一となってスラスト方向の軸受剛性が低下する恐れがある。特に、上記特許文献2のように外方部材102の内方部材101に対する移動量でスラスト軸受隙間Tを設定する場合、内方部材101の端面101bの盛り上がり部101cと外方部材102の内側面102aとが当接するため(図11の点線参照)、内方部材101の端面101bと外方部材102の内側面102aとの間には既に盛り上がり部101cの高さ(軸方向寸法)αの分の軸方向隙間が形成される。その後、外方部材102の内側面102aを内方部材101の端面101bから、スラスト軸受隙間Tの設定値Δの分だけ離反させると、内方部材101の端面101bと外方部材102の内側面102aとの間のスラスト軸受隙間T’の大きさは、盛り上がり部101cの高さαとスラスト軸受隙間の設定値Δとの合計量となる(T’=Δ+α)。このように、設定値Δより大きいスラスト軸受隙間T’が形成されることで、スラスト軸受隙間T’の潤滑油の圧力が十分に高まらず、スラスト方向の軸受剛性が不足する恐れがある。
【0009】
例えば、内方部材の外周面に転造加工により動圧溝を形成した後、内方部材にサイジングを施すことで、内方部材の端面の盛り上がりを解消する方法も考えられる。しかし、内方部材にサイジングを施すと外周面が圧迫されるため、外周面に形成した動圧溝が潰されて溝深さが浅くなり、ラジアル方向の軸受剛性が低下する恐れがある。
【0010】
以上の事情に鑑み、本発明は、転造加工により外周面にラジアル動圧発生部が形成される焼結金属製の内方部材において、軸受剛性の低下を抑えることを解決すべき技術的課題とする。
【課題を解決するための手段】
【0011】
前記課題を解決するためになされた本発明は、外方部材と、外方部材の内周に配された焼結金属からなる内方部材と、内方部材の外周面と外方部材の内周面との間に形成されるラジアル軸受隙間と、内方部材の軸方向一方の端面とこれに軸方向で対向する外方部材の内側面との間、及び、内方部材の軸方向他方の端面とこれに軸方向で対向する外方部材の内側面との間にそれぞれ形成されるスラスト軸受隙間と、ラジアル軸受隙間及びスラスト軸受隙間に満たされた潤滑油と、内方部材の外周面に転造加工で形成されたラジアル動圧発生部とを備えた流体動圧軸受装置であって、内方部材の気孔率を20%以上としたものである。
【0012】
また、前記課題を解決するためになされた本発明は、外周面に設けられたラジアル軸受面と、軸方向両端面に設けられたスラスト軸受面と、ラジアル軸受面に形成されたラジアル動圧発生部とを有し、焼結金属で形成された流体動圧軸受装置の内方部材の製造方法であって、混合金属粉末を圧縮成形して圧粉体を形成する圧縮成形工程と、圧粉体を所定の焼結温度で焼成して焼結体を形成する焼結工程と、焼結体を所定寸法に整形するサイジング工程と、サイジング工程の後、焼結体を軸方向両側から拘束しない状態で、焼結体の外周面にラジアル動圧発生部を転造加工により形成する転造工程とを有し、気孔率が20%以上となるように各工程の条件を設定するものである。
【0013】
上記のように、焼結金属製の内方部材の気孔率を20%以上とすることにより、内方部材の両端面を拘束することなく外周面にラジアル動圧発生部を型成形した場合であっても、内方部材の軸方向両端面の盛り上がりをスラスト軸受隙間に影響しない高さ(例えば5μm以下)に抑えることができる。これにより、内方部材の軸方向両端面の面精度を、高精度に維持することができるため、スラスト軸受隙間を高精度に設定し、優れたスラスト方向の軸受剛性を得ることができる。この場合、ラジアル動圧発生部形成後にサイジングを施す必要がないため、ラジアル動圧発生部の精度低下によるラジアル方向の軸受剛性の低下を回避できる。尚、気孔率とは、焼結金属の体積に対する気孔体積の比率のことであり、例えば、焼結金属の切断面における開口率でおおよそ推定することができる。
【0014】
また、前記課題を解決するためになされた本発明は、外方部材と、外方部材の内周に配された焼結金属からなる内方部材と、内方部材の外周面と外方部材の内周面との間に形成されるラジアル軸受隙間と、内方部材の軸方向一方の端面とこれに軸方向で対向する外方部材の内側面との間、及び、内方部材の軸方向他方の端面とこれに軸方向で対向する外方部材の内側面との間にそれぞれ形成されるスラスト軸受隙間と、ラジアル軸受隙間及びスラスト軸受隙間に満たされた潤滑油と、内方部材の外周面に転造加工で形成されたラジアル動圧発生部とを備えた流体動圧軸受装置であって、内方部材の軸方向両端面の外周領域を、予め内周領域よりも軸方向内側に後退させ、上記転造加工による塑性流動で外周領域を軸方向外側に移動させたものである。
【0015】
また、前記課題を解決するためになされた本発明は、外周面に設けられたラジアル軸受面と、軸方向両端面に設けられたスラスト軸受面と、ラジアル軸受面に形成されたラジアル動圧発生部とを有し、焼結金属で形成された流体動圧軸受装置の内方部材の製造方法であって、混合金属粉末を圧縮成形して圧粉体を形成する圧縮成形工程と、圧粉体を所定の焼結温度で焼成して焼結体を形成する焼結工程と、焼結体を所定寸法に整形することにより、焼結体にラジアル軸受面及びスラスト軸受面を成形するサイジング工程と、サイジング工程の後、焼結体を軸方向両側から拘束しない状態で、焼結体の外周面にラジアル動圧発生部を転造加工により形成する転造工程とを有し、予め、焼結体の軸方向両端面の外周領域を内周領域よりも軸方向内側に後退させて形成し、上記転造加工による塑性流動で焼結体の軸方向両端面の外周領域を軸方向外側に移動させるものである。
【0016】
上記のように、転造加工による盛り上がりを考慮して、内方部材の軸方向両端面の外周領域を軸方向内側に予め後退させておくことで、転造加工後の内方部材の軸方向両端面を優れた面精度で形成することができる。これにより、スラスト軸受隙間を高精度に設定することができるため、優れたスラスト方向の軸受剛性を得ることができる。この場合、ラジアル動圧発生部形成後にサイジングを施す必要がないため、ラジアル動圧発生部の精度低下によるラジアル方向の軸受剛性の低下を回避できる。
【0017】
また、前記課題を解決するためになされた本発明は、外方部材と、外方部材の内周に配された焼結金属からなる内方部材と、内方部材の外周面と前記外方部材の内周面との間に形成されるラジアル軸受隙間と、内方部材の軸方向一方の端面とこれに軸方向で対向する外方部材の内側面との間、及び、内方部材の軸方向他方の端面とこれに軸方向で対向する外方部材の内側面との間にそれぞれ形成されるスラスト軸受隙間と、ラジアル軸受隙間及びスラスト軸受隙間に満たされた潤滑油と、内方部材の外周面に転造加工で形成されたラジアル動圧発生部とを備えた流体動圧軸受装置であって、外方部材の内側面が、平坦部と、平坦部の外径側に設けられ、平坦部よりも軸方向外側に後退した逃げ部とを有するものである。
【0018】
このように、外方部材の内側面の平坦部の外径側に、平坦部より軸方向外側に後退した逃げ部を設けることで、この逃げ部を、転造加工により内方部材の軸方向両端面の外周領域に形成される盛り上がり部と軸方向で対向させることができる。このように、盛り上がり部を逃げ部と対向させることで、盛り上がり部によりスラスト軸受隙間の精度が低下することが回避され、優れたスラスト方向の軸受剛性を維持することができる。この場合、ラジアル動圧発生部形成後にサイジングを施す必要がないため、ラジアル動圧発生部の精度低下によるラジアル方向の軸受剛性の低下を回避できる。
【0019】
以上のような流体動圧軸受装置では、内方部材のうち、少なくともラジアル軸受隙間及びスラスト軸受隙間を形成する領域(ラジアル軸受面及びスラスト軸受面)の表面開孔率が20%以下であることが好ましい。ラジアル軸受面及びスラスト軸受面の表面開孔率が20%より大きいと、各軸受隙間に満たされた潤滑油が内方部材の表面開孔から内部に進入しやすくなるため、軸受隙間の潤滑油の圧力が十分に高まらず、軸受剛性不足を招く恐れがあるためである。
【0020】
また、以上のような流体動圧軸受装置は、外方部材が、内方部材の軸方向一方の端面と対向する内側面を有する第1外方部材と、内方部材の軸方向他方の端面と対向する内側面を有する第2外方部材とを有し、第1外方部材と第2外方部材とを軸方向で相対移動させることによりスラスト軸受隙間を設定する場合に特に有効である。
【発明の効果】
【0021】
以上のように、本発明によれば、転造加工により外周面にラジアル動圧発生部が形成される焼結金属製の内方部材において、ラジアル方向及びスラスト方向の軸受剛性の低下を抑えることができる。
【図面の簡単な説明】
【0022】
図1】換気扇モータ用の軸受ユニットの縦断面図である。
図2】本発明の実施形態に係る流体動圧軸受装置の縦断面図である。
図3】(a)は内方部材を図2のA方向から見た側面図、(b)は同B方向からみた側面図、(c)は同C方向から見た側面図である。
図4】内方部材の圧縮成形工程を示す断面図である。
図5】内方部材のサイジング工程を示す断面図である。
図6】内方部材の転造工程を示す断面図である。
図7】流体動圧軸受装置の組立工程を示す断面図である。
図8】他の実施形態に係る流体動圧軸受装置の内方部材の拡大断面図である。
図9】他の実施形態に係る流体動圧軸受装置の拡大断面図である。
図10】他の実施形態に係る流体動圧軸受装置の拡大断面図である。
図11】従来の流体動圧軸受装置の拡大断面図である。
【発明を実施するための形態】
【0023】
以下に本発明の実施の形態を図面に基づいて説明する。
【0024】
図1は、本発明の一実施形態に係る流体動圧軸受装置4を組み込んだ軸受ユニット1の軸方向断面図である。この軸受ユニット1は、例えば、住宅の居室に設置される24時間換気システムの小型換気扇用モータ(より厳密に言えば、換気扇用インナーロータ型モータ)に組み込まれて使用されるものである。軸受ユニット1は、回転軸2と、回転軸2の外周面に固定されたモータロータ3、回転軸2の端部に設けられたファン6とからなる回転体を回転自在に支持するために、モータロータ3の軸方向両側に設けられ、回転軸2とハウジング5の間に配置された一対の流体動圧軸受装置4、4から構成される。軸方向一方(図中右側)の流体動圧軸受装置4とハウジング5との間には、スプリング7が圧縮状態で配置されている。尚、ステータは図示を省略している。
【0025】
流体動圧軸受装置4は、図2に示すように、内方部材10と、内周に内方部材10が配され、内方部材10を回転自在に支持する外方部材20とを備える。内方部材10の内周面13は回転軸2の外周面に圧入や接着により固定される(図1参照)。外方部材20の外周面22a2はハウジング5の内周面に嵌合し、軸方向に摺動可能な状態で取り付けられる(図1参照)。軸方向および半径方向で互いに対向する内方部材10と外方部材20の各面間(ラジアル軸受隙間Rおよびスラスト軸受隙間T)には潤滑油が介在している(図2参照)。尚、図1中の流体動圧軸受装置4、4は、同一構造である。
【0026】
内方部材10は環状をなし、断面略矩形状をなした略円筒状の軸受部10aと、軸受部10aの内周に設けられ、回転軸2の外周面に固定される略円筒状の固定部10bとを有する。本実施形態では、軸受部10aと固定部10bとが一体に形成される。尚、図2では、軸受部10aと固定部10bとの概念的な境界を点線で示している。
【0027】
内方部材10は、焼結金属、例えば銅系、鉄系、あるいは銅鉄系の焼結金属で形成される。本実施形態では、銅の配合比率が20〜80%の銅鉄系の焼結金属で形成される。銅の配合比率が20%未満になると動圧溝の成形性や潤滑性で問題となり、一方、銅の配合比率が80%を超えると鉄の割合が過小となって耐摩耗性が不足する恐れがあるためである。内方部材10の気孔率は、20%以上、好ましくは25%以上とする。後述する外周面11の動圧溝11aの転造加工による端面12の盛り上がりを抑えるためである。一方、内方部材10の気孔率が大きすぎると、強度不足を招く恐れがあるため、40%以下とすることが好ましい。また、内方部材10のうち、少なくともラジアル軸受面を形成する外周面11は、焼結部材の表面開孔率を2〜20%とする。表面開孔率が2%未満では潤滑油の循環が十分でなく、表面開孔率が20%を超えると潤滑油の圧力が低下するためである。
【0028】
内方部材10の軸受部10aの外周面11は円筒面状を成し、この面がラジアル軸受面として機能する。軸受部10aの外周面11には、ラジアル動圧発生部として動圧溝11aが形成される。本実施形態では、例えば図3(b)に示すようなヘリングボーン形状の動圧溝11aが、外周面11の全面に形成される。内方部材10の軸受部10aの軸方向両側の端面12は、軸方向と直交する方向に延在し、この面がスラスト軸受面として機能する。軸受部10aの軸方向両側の端面12には、スラスト動圧発生部として動圧溝12aが形成される。本実施形態では、例えば図3(a)及び(c)に示すように、ヘリングボーン形状の動圧溝12aが、端面12の全面に形成される。尚、図3では、動圧溝11a間及び動圧溝12a間に形成される丘部を、それぞれクロスハッチングで示している。
【0029】
固定部10bは、軸受部10aの軸方向両側の端面12よりも軸方向外側に突出し、その突出した部分の外周面14が、外方部材20の内径端と半径方向に対向している。固定部10bの内周面13は、回転軸2の外周面に固定される。
【0030】
外方部材20は、図2に示すように、内方部材10の外周面11と半径方向に対向する内周面20aと、内方部材10の軸方向両端面12とそれぞれ軸方向に対向する一対の内側面20bとを有する。本実施形態の外方部材20は、断面L字形状をなした環状の第1外方部材21及び第2外方部材22からなる。第1外方部材21は、円筒部21aと、円筒部21aの軸方向一端(図2の右端)から内径側に延在する平板部21bとを一体に有する。第2外方部材22は、円筒部22aと、円筒部22aの軸方向他端(図2の左端)から内径側に延在する平板部22bとを一体に有する。本実施形態では、例えば金属板をプレス加工して、第1外方部材21及び第2外方部材22が形成される。金属板は、ステンレス鋼板や冷間圧延鋼板等を用いることができ、その板厚は0.1〜1mm程度である。第1外方部材21の円筒部21aの外周面21a2と第2外方部材22の円筒部22aの内周面22a1とが、接着、圧入等により固定され、本実施形態では、両者を圧入することなく隙間嵌合させ、接着固定されている。
【0031】
図2に示すように、外方部材20の内周面20a(すなわち、第1外方部材21の円筒部21aの内周面21a1)は平滑な円筒面で形成され、ラジアル軸受面として機能する。外方部材20の軸方向側の内側面20b(すなわち、第1外方部材21の平板部21bの内側面21b1、及び、第2外方部材22の平板部22bの内側面22b1)は、平滑な平坦面で形成され、それぞれスラスト軸受面として機能する。外方部材20の内周面20a(ラジアル軸受面)と内方部材10の軸受部10aの外周面11(ラジアル軸受面)との間にはラジアル軸受隙間Rが形成され、外方部材20の軸方向両側の内側面20b(スラスト軸受面)と内方部材10の軸受部10aの軸方向両端面12(スラスト軸受面)との間には、それぞれスラスト軸受隙間Tが形成される。
【0032】
第1外方部材21の平板部21bの内径端、及び、第2外方部材22の平板部22bの内径端は、内方部材10の固定部10bの外周面14と適宜の半径方向隙間をもって対向している。図示例では、平板部21b,22bの内径端に、軸方向外側に向けて拡径したテーパ面21b2,22b2が形成され、このテーパ面21b2,22b2と固定部10bの外周面14との間に断面楔状のシール空間Sが形成される。このシール空間Sにより、潤滑油の漏れ出しが防止される。さらに、内方部材10の固定部10bの端面15や、外方部材20の外側端面(平板部21b,22bの外側端面)に撥油剤を塗布すれば、シール空間Sからの油漏れをより確実に防止できる。
【0033】
以上の構成からなる流体動圧軸受装置4の内部空間には焼結金属製の内方部材10の内部気孔を含めて、潤滑油が充填される。潤滑油は、図2に示すように、内方部材10と外方部材20との間の隙間に満たされ、スラスト軸受隙間T及びシール空間Sの毛細管力により外径側(ラジアル軸受隙間R側)に引き込まれる。潤滑油の油面は、スラスト軸受隙間Tあるいはシール空間Sに保持される。
【0034】
回転軸2が回転すると、各流体動圧軸受装置4のラジアル軸受隙間Rの油膜の圧力が動圧溝11aにより高められ、この油膜の動圧作用により回転軸2および内方部材10が外方部材20に対してラジアル方向に非接触支持される。これと同時に、各流体動圧軸受装置4のスラスト軸受隙間Tの油膜の圧力が動圧溝12aにより高められ、回転軸2および内方部材10が外方部材20に対して、両スラスト方向に非接触支持される(図2参照)。
【0035】
スラスト軸受隙間Tの潤滑油に動圧作用が生じると、図中左側の流体動圧軸受装置4の外方部材20が図中左側にスライドしてスプリング7を圧縮することにより、両流体動圧軸受装置4,4のスラスト軸受隙間Tが確保される。このように、外方部材20をハウジング5に対して軸方向移動可能な状態で嵌合することで、スラスト軸受隙間Tを高精度に設定することができる。これにより、外方部材20に対して内方部材10が確実に非接触支持され、接触摺動による騒音の発生をより確実に防止できる。
【0036】
次に、内方部材10の製造方法を説明する。
【0037】
内方部材10は、銅及び鉄を含む混合金属粉末Mを圧縮成形して圧粉体M’を形成する圧縮成形工程(図4参照)と、圧粉体M’を所定の焼結温度で焼成して焼結体M”を形成する焼結工程と、焼結体M”を所定寸法に整形するサイジング工程(図5参照)と、焼結体M”にラジアル動圧発生部(動圧溝11a)を転造加工により形成する転造工程(図6参照)とを順に経て製造される。本実施形態では、サイジング工程において、焼結体M”の整形と同時に、焼結体M”の端面にスラスト動圧発生部(動圧溝12a)が成形される。
【0038】
圧縮成形工程では、ダイ41、コアピン42、及び下パンチ43で形成されるキャビティに混合金属粉末Mを充填し(図4(a)参照)、この混合金属粉末Mを上パンチ44で上方から圧縮することで、内方部材10とほぼ同じ形状の圧粉体M’が形成される(図4(b)参照)。このとき、後述する焼結体M”の気孔率が20%以上となるように、圧粉体M’の気孔率を調整する。具体的には、混合金属粉末Mの充填量を調整することにより、圧粉体M’の気孔率を調整する。こうして形成した圧粉体M’を、焼結工程において焼成し、焼結体M”を得る。
【0039】
サイジング工程では、焼結体M”をサイジング金型で所定寸法に整形する。具体的には、焼結体M”の内周にコアピン51を挿入すると共に、上下パンチ52,53で焼結体M”の上下両側から拘束する(図5(a)参照)。この状態で、焼結体M”、コアピン51、上下パンチ52,53を一体に降下させ、焼結体M”をダイ54の内周に圧入する(図5(b)参照)。これにより、ダイ54の内周面、コアピン51の外周面、及び上下パンチ52,53の端面で、焼結体M”の外周面11(ラジアル軸受面)、内周面13、及び軸方向両端面12(スラスト軸受面)が成形される。このとき、上下パンチ52,53の端面に、動圧溝12aに対応した成形部(図示省略)を設け、この成形部を焼結体M”の軸方向両端面12に押し付けることにより、動圧溝12aが成形される。尚、上述のように、内方部材10の軸方向両端面12の表面開孔率は20%以下とすることが好ましいため、サイジング工程後の焼結体M”の軸方向両端面12の表面開孔率が20%を超えている場合は、バニシ仕上げ等による封孔処理を施すことが好ましい。
【0040】
転造工程では、焼結体M”の外周面11に転造加工により動圧溝11aが形成される。具体的には、図6(a)及び(b)に示すように、焼結体M”を軸方向両側から拘束しない状態で、焼結体M”の外周面11を成形型61に押し付けながら前方(図中右側)に転がすことで、成形型61の形状を焼結体M”の外周面11に転写して動圧溝11aが形成される。このとき、転造加工の圧迫による焼結体M”の塑性流動を焼結金属の内部気孔で吸収できる。これにより、塑性流動による焼結体M”の外周面11の盛り上がりが抑えられ、動圧溝11aを精度良く形成することができる。また、上記のように焼結体M”の軸方向両端面12を拘束せずに外周面11に転造加工を施した場合、塑性流動により外周面11だけでなく軸方向両端面12も盛り上がることが懸念されるが、焼結体M”の気孔率が20%以上であることで、塑性流動による軸方向両端面12の盛り上がりを抑えることができる。尚、上述のように、内方部材10の外周面11の表面開孔率は20%以下とすることが好ましい。通常、転造加工により焼結体M”の外周面11の表面開孔が潰されることで表面開孔率は20%以下となるが、転造工程後の焼結体M”の外周面11の表面開孔率が20%を超えている場合は、封孔処理を施してもよい。以上により、内方部材10が完成する。
【0041】
次に、上記の流体動圧軸受装置4の組立方法について説明する。
【0042】
まず、図7(a)に示すように、内方部材10の軸受部10aの下側端面12を第2外方部材22の平板部22bの内側面22b1に当接させる。次に、図7(b)に示すように、第1外方部材21を第2外方部材22に組み付ける。具体的には、第1外方部材21の円筒部21aの外周面21a2を、第2外方部材22の円筒部22aの内周面22a1に圧入することなく半径方向隙間を介して嵌合させ、平板部21bの下側端面21b1を内方部材10の軸受部10aの上側端面12に当接させる。
【0043】
その後、図7(c)に示すように、内方部材10及び第1外方部材21を第2外方部材22に対して上昇させて、内方部材10の軸受部10aの下側端面12と第2外方部材22の平板部22bの内側面22b1とを離隔させ、これらの間に両スラスト軸受隙間Tの合計量の分の軸方向隙間Δを形成する。この状態で、第1外方部材21の円筒部21aと第2外方部材22の円筒部22aとの間の半径方向隙間に瞬間接着剤を注入し、これを硬化させることで、第1外方部材21と第2外方部材22とが仮固定され、スラスト軸受隙間Tの設定が完了する。
【0044】
そして、第1外方部材21の円筒部21aの外周面21a2と第2外方部材22の円筒部22aの内周面22a1との間の半径方向隙間に熱硬化性接着剤(例えばエポキシ系接着剤)を注入することにより、半径方向隙間を完全に封止する。このとき、第2外方部材22の円筒部22aの端部にテーパ面22a3を設けることで、熱硬化性接着剤の注入が容易化される。その後、内方部材10及び外方部材20からなるサブアッシごと焼成して熱硬化性接着剤を固化する。
【0045】
以上のように組み立てられた内方部材10と外方部材20との間に、焼結金属製の内方部材10の内部気孔を含めて、潤滑油が注入される。その後、流体動圧軸受装置4の使用環境で想定される最高温度(上限)を超える設定温度まで加熱し、このときの熱膨張によりシール空間Sから溢れ出した潤滑油を拭き取る。その後、常温まで冷却することにより潤滑油が収縮し、油面が軸受内部側(外径側)に後退してスラスト軸受隙間Tの内径側端部近傍、あるいは、シール空間Sに保持される。これにより、想定される温度範囲内であれば、熱膨張により潤滑油が漏れ出すことはない。以上により、流体動圧軸受装置4が完成する。
【0046】
本発明は上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と同様の機能を有する箇所には、同一の符号を付して重複説明を省略する。
【0047】
上記の実施形態では、内方部材10の気孔率を20%以上とすることで、内方部材10の外周面11への転造加工による軸方向両端面12の盛り上がりを防止しているが、これに限られない。例えば、図8に示す実施形態では、サイジング工程後の焼結体M”の軸方向両端面12の外周領域12bを、内周領域12cよりも軸方向内側に後退させている(図8の点線参照)。このとき、外周領域12bの内周領域12cに対する軸方向の後退量β(最も後退させた部分の後退量)は5〜10μm程度に設定される。また、軸方向両端面12の外周領域12bの全周を連続的に後退させ、後退させた外周領域12bの面積は端面12全体の1/3〜1/2程度とされる。この焼結体M”の外周面11に転造加工を施して動圧溝11aを形成すると、塑性流動により軸方向両端面12の外周領域12bが軸方向外側に移動する。これにより、内方部材10の軸方向両端面12の外周領域12bが内周領域12cとほぼ同じ軸方向位置に配される(図8の実線参照)。例えば、外周領域12bを内周領域12cに対して±5μm以下、好ましくは±3μm以下とすれば、端面12全体(外周領域12b及び内周領域12c)をスラスト軸受面として機能させることができる。
【0048】
以上の実施形態は、転造加工による内方部材10の軸方向両端面12の盛り上がりを可及的に抑えるようにしたものである。これに対し、図9及び図10に示す実施形態は、内方部材10の軸方向両端面12が盛り上がった場合でも、スラスト方向の支持力低下を抑えるものである。図9に示す実施形態では、内方部材10の軸方向両端面12と軸方向で対向する外方部材20の内側面20b(図9では、第1外方部材21の内側面20bのみを示す)の内周領域に平坦部20b1を設けると共に、外周領域に平坦部20b1よりも軸方向外側に後退した逃げ部20b2を設ける。図示例では、逃げ部20b2は軸方向と直交する平坦面であり、内側面20bの外周領域の全周に形成される。内方部材10の軸方向両端面12(図9では、軸方向一方の端面12のみを示す)の外周領域には盛り上がり部12dが形成され、内周領域12cには平坦面が形成される。端面12には、内周領域12c及び盛り上がり部12dに跨って動圧溝12aが形成される。尚、盛り上がり部12dの大きさは誇張して示している。
【0049】
内方部材10の端面12の内周領域12cと外方部材20の内側面20bの平坦部20b1との間にスラスト軸受隙間Tが形成される。内方部材10の端面12の盛り上がり部12dと外方部材20の内側面20bの逃げ部20b2とが軸方向で対向する。外方部材20の逃げ部20b2の平坦部20b1に対する後退量δ1は、内方部材10の盛り上がり部12dの内周領域12cに対する盛り上がり量δ2よりも大きく設定される。これにより、図7に示す方法でスラスト軸受隙間Tを設定する場合に、内方部材10の端面12の盛り上がり部12dと外方部材20の内側面20bとが当接せず、内周領域12cと平坦部20b1とを当接させることができるため、スラスト軸受隙間Tを精度良く設定することができる。
【0050】
図10に示す実施形態は、外方部材20の内側面20bに形成される逃げ部20b2が外径側に向けて軸方向外側に傾斜させたテーパ面である点で、図9に示す実施形態と異なる。この場合も、スラスト軸受隙間Tの設定にあたり内周領域12cと平坦部20b1とを当接させたときに、内方部材10の盛り上がり部12dと外方部材20の逃げ部20b2とが当接しないように、逃げ部20b2の平坦部20b1からの後退量が設定される。
【0051】
また、上記の実施形態では、内方部材10の軸受部10aと固定部10bとが一体に形成されているが、これに限らず、軸受部10aと固定部10bとを別体に形成してもよい。軸受部10aの内周面と固定部10bの外周面とは、圧入、隙間接着、圧入接着(接着剤介在下での圧入)等の適宜の方法で固定される。このとき、軸受部10aと固定部10bとを別材料で形成してもよい。例えば、軸受部10aは外方部材20と摺動し得るため、耐摩耗性を重視して銅鉄系の焼結金属で形成する一方で、固定部10bは外方部材20と摺動しないため、強度を重視して鉄系の焼結金属や溶製材で形成することができる。尚、軸受部10aと固定部10bとは必ずしも別材料で形成する必要はなく、同一の材料で別体に形成してもよい。
【0052】
また、図3に示すように動圧溝11a,12aが一方向回転用である場合、回転方向を識別するために、第1外方部材21と第2外方部材22とを異なる色相の表面にすることで、誤組みを防止することができる。異なる色相の表面を形成するためには、例えば異なる色相の材質を用いたり、表面処理を施したりすればよい。
【0053】
また、上記の実施形態では、内方部材10の軸方向両端面12に動圧溝12aを形成した場合を示したが、これに限らず、外方部材20の内側面20bに動圧溝を形成してもよい。この場合、第1外方部材21及び第2外方部材22のプレス加工と同時に動圧溝を形成することができる。
【0054】
また、上記の実施形態では、動圧溝11a、12aが何れもヘリングボーン形状である場合を示したが、これに限らず、スパイラル形状やステップ形状など、他の形状であってもよい。特に、スラスト軸受面に形成される動圧溝12aは、潤滑油を外径側に押し込むポンプアウト型であることが好ましい(図示省略)。これにより、ラジアル軸受隙間Rに積極的に潤滑油が供給されるため、負圧の発生を防止できる。
【0055】
また、上記の実施形態では、内方部材10が回転側であり、外方部材20が固定側である場合を示したが、これとは逆に、内方部材10を固定側、外方部材20を回転側としてもよい。
【0056】
また、以上に示した実施形態の構成は適宜組み合せることができ、例えば、内方部材10の気孔率を20%以下とする構成、焼結体M”の軸方向両端面12の外周領域12bを内周領域12cよりも軸方向内側に後退させておく構成(図8参照)、及び、外方部材20の内側面20bの外周領域に逃げ部20b2を設ける構成(図9参照)のうち、何れか二つあるいは全てを備えてもよい。
【符号の説明】
【0057】
1 軸受ユニット
2 回転軸
3 モータロータ
4 流体動圧軸受装置
5 ハウジング
6 ファン
7 スプリング
10 内方部材
11 外周面
11a 動圧溝
12 端面
12a 動圧溝
12b 外周領域
12c 内周領域
12d 盛り上がり部
20 外方部材
20a 内周面
20b 内側面
20b1 平坦部
20b2 逃げ部
R ラジアル軸受隙間
T スラスト軸受隙間
S シール空間
M 混合金属粉末
M’ 圧粉体
M” 焼結体
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11