(58)【調査した分野】(Int.Cl.,DB名)
基板及びディスプレイモジュールを含むタッチ入力装置に付着されて使用され、前記タッチ入力装置に印加される圧力を検出するための、平面形態を有する電極シートであって、前記電極シートは、
第1電極及び第2電極、及び
前記第1電極及び前記第2電極を挟んで位置し、前記第1電極及び前記第2電極の上面及び下面で互いに重なって前記第1電極及び前記第2電極を覆うように平面形態を有する第1絶縁層と第2絶縁層、
を含み、
前記タッチ入力装置は、
前記電極シートと離隔して前記電極シートと垂直方向に重なるように位置する基準電位層と前記電極シートとの間の相対的な距離変化によって変わる、前記第1電極と前記第2電極との間の静電容量を検出し、
前記電極シートを前記静電容量の変化によって前記距離変化を引き起こす前記圧力の大きさを検出することができるように前記タッチ入力装置の互いに向かい合う前記基板の一面と前記ディスプレイモジュールの一面の何れか一方に付着させ、
前記ディスプレイモジュールは、ディスプレイパネルを含み、
前記基板は、前記ディスプレイモジュールの下部に前記ディスプレイモジュールと離隔して配置され、
前記基板は、バッテリー及び回路基板のうちの少なくとも一つの実装空間を前記ディスプレイモジュールから分離するか、又は前記ディスプレイモジュールから発生するノイズを遮蔽するように構成された部材であり、
前記圧力が印加されれば前記ディスプレイモジュールが撓み、
前記ディスプレイモジュールが撓むことによって前記電極シートと前記基準電位層との間の距離が変わり、
前記基板と前記ディスプレイモジュールのうち前記電極シートが付着されない残りの一つが前記基準電位層である、電極シート。
基板及びディスプレイモジュールを含むタッチ入力装置に付着されて使用され、前記タッチ入力装置に印加される圧力を検出するための、平面形態を有する電極シートであって、前記電極シートは、
電極、及び
前記電極を挟んで位置し、前記電極の上面及び下面で互いに重なって前記電極を覆うように平面形態を有する第1絶縁層と第2絶縁層、
を含み、
前記タッチ入力装置は、
前記電極シートと離隔して前記電極シートと垂直方向に重なるように位置する基準電位層と前記電極シートとの間の相対的な距離変化によって変わる、前記電極と前記基準電位層との間の静電容量を検出し、
前記電極シートを前記静電容量の変化によって前記距離変化を引き起こす前記圧力の大きさを検出することができるように前記タッチ入力装置の互いに向かい合う前記基板の一面と前記ディスプレイモジュールの一面の何れか一方に付着させ、
前記ディスプレイモジュールは、ディスプレイパネルを含み、
前記基板は、前記ディスプレイモジュールの下部に前記ディスプレイモジュールと離隔して配置され、
前記基板は、バッテリー及び回路基板のうちの少なくとも一つの実装空間を前記ディスプレイモジュールから分離するか、又は前記ディスプレイモジュールから発生するノイズを遮蔽するように構成された部材であり、
前記圧力が印加されれば前記ディスプレイモジュールが撓み、
前記ディスプレイモジュールが撓むことによって前記電極シートと前記基準電位層との間の距離が変わり、
前記基板と前記ディスプレイモジュールのうち前記電極シートが付着されない残りの一つが前記基準電位層である、電極シート。
【発明を実施するための形態】
【0013】
後述する本発明に対する詳細な説明は、本発明を実施することができる特定の実施形態を例示として図示する添付の図面を参照する。これらの実施形態は、当業者が本発明を実施するのに十分なように詳しく説明する。本発明の多様な実施形態は互いに異なるが、相互に排他的である必要はないことが理解されなければならない。例えば、ここに記載されている特定の形状、構造及び特性は、一実施形態に関連して本発明の精神及び範囲を外れないながらも、他の実施形態で具現されてもよい。また、それぞれの開示された実施形態内の個別構成要素の位置又は配置は、本発明の精神及び範囲を外れないながらも、変更されてもよいことが理解されなければならない。したがって、後述する詳細な説明は、限定的な意味として取ろうとするのではなく、本発明の範囲は、適切に説明されるならば、その請求項が主張するのと均等なすべての範囲とともに添付された請求項によってのみ限定される。図面において類似の参照符号は様々な側面にわたって同一もしくは類似の機能を指し示す。
【0014】
以下、添付される図面を参照して本発明の実施形態によるタッチ入力装置を説明する。以下では、静電容量方式のタッチセンサパネル100及び圧力検出モジュール400を例示するが、任意の方式でタッチ位置及び/又はタッチ圧力を検出できるタッチセンサパネル100及び圧力検出モジュール400が適用されてもよい。
【0015】
図1は、本発明の実施形態による静電容量方式のタッチセンサパネル100及びこの動作のための構成の概略図である。
図1を参照すると、本発明の実施形態によるタッチセンサパネル100は、複数の駆動電極TX1〜TXn及び複数の受信電極RX1〜RXmを含み、前記タッチセンサパネル100の動作のために複数の駆動電極TX1〜TXnに駆動信号を印加する駆動部120、及びタッチセンサパネル100のタッチ表面に対するタッチによって変化する静電容量の変化量に対する情報を含む感知信号を受信して、タッチ及びタッチ位置を検出する感知部100を含んでもよい。
【0016】
図1に示されたように、タッチセンサパネル100は、複数の駆動電極TX1〜TXnと複数の受信電極RX1〜RXmとを含んでもよい。
図1においては、タッチセンサパネル100の複数の駆動電極TX1〜TXnと複数の受信電極RX1〜RXmとが直交アレイを構成することが示されているが、本発明はこれに限定されず、複数の駆動電極TX1〜TXnと複数の受信電極RX1〜RXmが対角線、同心円、及び3次元ランダム配列などをはじめとする任意の数の次元、及びこの応用配列を有するようにすることができる。ここで、n及びmは、量の整数として互いに同じか、もしくは異なる値を有してもよく、実施形態により大きさが変わってもよい。
【0017】
図1に示されたように、複数の駆動電極TX1〜TXnと複数の受信電極RX1〜RXmとは、それぞれ互いに交差するように配列されてもよい。駆動電極TXは、第1軸方向に延びた複数の駆動電極TX1〜TXnを含み、受信電極RXは、第1軸方向と交差する第2軸方向に延びた複数の受信電極RX1〜RXmを含んでもよい。
【0018】
本発明の実施形態によるタッチセンサパネル100において、複数の駆動電極TX1〜TXnと複数の受信電極RX1〜RXmとは、互いに同一の層に形成されてもよい。例えば、複数の駆動電極TX1〜TXnと複数の受信電極RX1〜RXmとは、絶縁膜(図示せず)の同一の面に形成されてもよい。また、複数の駆動電極TX1〜TXnと複数の受信電極RX1〜RXmは、互いに異なる層に形成されてもよい。例えば、複数の駆動電極TX1〜TXnと複数の受信電極RX1〜RXmは、一つの絶縁膜(図示せず)の両面にそれぞれ形成されてもよく、又は、複数の駆動電極TX1〜TXnは、第1絶縁膜(図示せず)の一面に、そして複数の受信電極RX1〜RXmは、前記第1絶縁膜と異なる第2絶縁膜(図示せず)の一面上に形成されてもよい。
【0019】
複数の駆動電極TX1〜TXnと複数の受信電極RX1〜RXmとは、透明伝導性物質(例えば、酸化スズ(SnO
2)及び酸化インジウム(In
2O
3)等からなるITO(Indium Tin Oxide)又はATO(Antimony Tin Oxide))等から形成されてもよい。しかし、これは単に例示に過ぎず、駆動電極TX及び受信電極RXは、他の透明伝導性物質又は不透明伝導性物質から形成されてもよい。例えば、駆動電極TX及び受信電極RXは、銀インク(silver ink)、銅(copper)又は炭素ナノチューブ(CNT:Carbon Nanotube)のうち少なくとも何れか一つを含んで構成されてもよい。また、駆動電極TX及び受信電極RXは、メタルメッシュ(metal mesh)で具現されるか、もしくは銀ナノ(nano silver)物質から構成されてもよい。
【0020】
本発明の実施形態による駆動部120は、駆動信号を駆動電極TX1〜TXnに印加することができる。本発明の実施形態において、駆動信号は、第1駆動電極TX1から第n駆動電極TXnまで順次一度に一つの駆動電極に対して印加されてもよい。このような駆動信号の印加は、再度反復して成されてもよい。これは単に例示に過ぎず、実施形態により多数の駆動電極に駆動信号が同時に印加されてもよい。
【0021】
感知部110は、受信電極RX1〜RXmを通じて駆動信号が印加された駆動電極TX1〜TXnと受信電極RX1〜RXmとの間に生成された静電容量Cm:101に関する情報を含む感知信号を受信することによって、タッチの有無及びタッチ位置を検出することができる。例えば、感知信号は、駆動電極TXに印加された駆動信号が駆動電極TXと受信電極RXとの間に生成された静電容量CM:101によりカップリングされた信号であってもよい。このように、第1駆動電極TX1から第n駆動電極TXnまで印加された駆動信号を受信電極RX1〜RXmを通じて感知する過程は、タッチセンサパネル100をスキャン(scan)すると指称すことができる。
【0022】
例えば、感知部110は、それぞれの受信電極RX1〜RXmとスイッチを通じて連結された受信機(図示せず)を含んで構成されてもよい。前記スイッチは、該当受信電極RXの信号を感知する時間区間に、オン(on)になって受信電極RXから感知信号が受信機で感知され得るようにする。受信機は、増幅器(図示せず)及び増幅器の負(−)入力端と増幅器の出力端との間、すなわち帰還経路に結合した帰還キャパシタを含んで構成されてもよい。この時、増幅器の正(+)入力端は、グランド(ground)に接続されてもよい。また、受信機は、帰還キャパシタと並列に連結されるリセットスイッチをさらに含んでもよい。リセットスイッチは、受信機によって遂行される電流において電圧への変換をリセットすることができる。増幅器の負入力端は、該当受信電極RXと連結されて静電容量CM:101に対する情報を含む電流信号を受信した後、積分して電圧に変換することができる。感知部110は、受信機を通じて積分されたデータをデジタルデータに変換するADC(図示せず:analog to digital converter)をさらに含んでもよい。その後、デジタルデータはプロセッサ(図示せず)に入力され、タッチセンサパネル100に対するタッチ情報を取得するように処理されてもよい。感知部110は受信機とともに、ADC及びプロセッサを含んで構成されてもよい。
【0023】
制御部130は、駆動部120と感知部110の動作を制御する機能を遂行することができる。例えば、制御部130は、駆動制御信号を生成した後、駆動部120に伝達して駆動信号が所定の時間にあらかじめ設定された駆動電極TXに印加されるようにすることができる。また、制御部130は、感知制御信号を生成した後、感知部110に伝達して感知部110が所定の時間にあらかじめ設定された受信電極RXから感知信号の入力を受けて、あらかじめ設定された機能を遂行するようにすることができる。
【0024】
図1において駆動部120及び感知部110は、本発明の実施形態によるタッチセンサパネル100に対するタッチの有無及びタッチ位置を検出することができるタッチ検出装置(図示せず)を構成することができる。本発明の実施形態によるタッチ検出装置は、制御部130をさらに含んでもよい。本発明の実施形態によるタッチ検出装置は、タッチセンサパネル100を含むタッチ入力装置1000において、タッチセンシング回路であるタッチセンシングIC(touch sensing Integrated Circuit:
図10の150)上に集積されて具現されてもよい。タッチセンサパネル100に含まれた駆動電極TX及び受信電極RXは、例えば伝導性トレース(conductive trace)及び/又は回路基板上に印刷された伝導性パターン(conductive pattern)等を通じてタッチセンシングIC150に含まれた駆動部120及び感知部110に連結されてもよい。タッチセンシングIC150は、伝導性パターンが印刷された回路基板、例えば
図10において160で表示される第1印刷回路基板(以下で、第1PCBという)上に位置することができる。実施形態によりタッチセンシングIC150は、タッチ入力装置1000の作動のためのメインボード上に実装されていてもよい。
【0025】
以上で詳しく見たように、駆動電極TXと受信電極RXの交差地点ごとに所定値の静電容量Cが生成され、指のような客体がタッチセンサパネル100に近接する場合、このような静電容量の値が変更されてもよい。
図1において、前記静電容量は、相互静電容量Cmを表わしてもよい。このような電気的特性を感知部110で感知し、タッチセンサパネル100に対するタッチの有無及び/又はタッチ位置を感知することができる。例えば、第1軸と第2軸とからなる2次元平面からなるタッチセンサパネル100の表面に対するタッチの有無及び/又はその位置を感知することができる。
【0026】
より具体的に、タッチセンサパネル100に対するタッチが生じる時、駆動信号が印加された駆動電極TXを検出することによって、タッチの第2軸方向の位置を検出することができる。これと同様に、タッチセンサパネル100に対するタッチの際に受信電極RXを通じて受信された受信信号から静電容量の変化を検出することによって、タッチの第1軸方向の位置を検出することができる。
【0027】
以上で、タッチセンサパネル100として相互静電容量方式のタッチセンサパネルが詳しく説明されたが、本発明の実施形態によるタッチ入力装置1000において、タッチの有無及びタッチ位置を検出するためのタッチセンサパネル100は、前述した方法以外の自己静電容量方式、表面静電容量方式、プロジェクテッド(projected)静電容量方式、抵抗膜方式、表面弾性波方式(SAW:surface acoustic wave)、赤外線(infrared)方式、光学的イメージング方式(optical imaging)、分散信号方式(dispersive signal technology)、及び音声パルス認識(acoustic pulse recognition)方式など、任意のタッチセンシング方式を用いて具現されてもよい。
【0028】
本発明の実施形態によるタッチ入力装置1000においてタッチ位置を検出するためのタッチセンサパネル100は、ディスプレイモジュール200の外部又は内部に位置してもよい。
【0029】
本発明の実施形態によるタッチ入力装置1000のディスプレイモジュール200は、液晶表示装置(LCD:Liquid Crystal Display)、PDP(Plasma Display Panel)、有機発光表示装置(Organic Light Emitting Diode:OLED)などに含まれたディスプレイパネルであってもよい。これにより、使用者はディスプレイパネルに表示された画面を視覚的に確認しながら、タッチ表面にタッチを遂行して入力行為を行うことができる。この時、ディスプレイモジュール200は、タッチ入力装置1000の作動のためのメインボード(main board)上の中央処理ユニットであるCPU(central processing unit)又はAP(application processor)などから入力を受けて、ディスプレイパネルに所望する内容をディスプレイするようにする制御回路を含んでもよい。このような制御回路は、
図8aないし9cにおいて第2印刷回路基板210(以下、第2PCBという)に実装されてもよい。この時、ディスプレイパネル200の作動のための制御回路は、ディスプレイパネル制御IC、グラフィック制御IC(graphic controller IC)、及びその他のディスプレイパネル200の作動に必要な回路を含んでもよい。
【0030】
図2a、
図2b及び
図2cは、本発明の実施形態によるタッチ入力装置において、ディスプレイモジュールに対するタッチセンサパネルの相対的な位置を例示する概念図である。
図2aないし
図2cにおいては、ディスプレイパネルとしてLCDパネルが示されているが、これは例示に過ぎず、任意のディスプレイパネルが本発明の実施形態によるタッチ入力装置1000に適用されてもよい。
【0031】
本願明細書において、図面符号200はディスプレイモジュールを指し示すが、
図2及びこれに対する説明において、図面符合200は、ディスプレイモジュールだけでなくディスプレイパネルを指し示してもよい。
図2に示されたように、LCDパネルは、液晶セル(liquid crystal cell)を含む液晶層250、液晶層250の両端に電極を含む第1ガラス層261と第2ガラス層262、そして前記液晶層250と対向する方向として前記第1ガラス層261の一面に第1偏光層271及び前記第2ガラス層262の一面に第2偏光層272を含んでもよい。該当技術分野の当業者には、LCDパネルがディスプレイ機能を遂行するために他の構成をさらに含んでもよく、変形が可能なことは自明であろう。
【0032】
図2aは、タッチ入力装置1000において、タッチセンサパネル100がディスプレイモジュール200の外部に配置されたことを示す。タッチ入力装置1000に対するタッチ表面は、タッチセンサパネル100の表面であってもよい。
図2aにおいて、タッチ表面になり得るタッチセンサパネル100の面は、タッチセンサパネル100の上部面になってもよい。また、実施形態によりタッチ入力装置1000に対するタッチ表面は、ディスプレイモジュール200の外面になってもよい。
図2aにおいて、タッチ表面になり得るディスプレイモジュール200の外面は、ディスプレイモジュール200の第2偏光層272の下部面になってもよい。この時、ディスプレイモジュール200を保護するために、ディスプレイモジュール200の下部面はガラスのようなカバー層(図示せず)で覆われていてもよい。
【0033】
図2b及び2cは、タッチ入力装置1000において、タッチセンサパネル100がディスプレイパネル200の内部に配置されたことを示す。この時、
図2bにおいては、タッチ位置を検出するためのタッチセンサパネル100が、第1ガラス層261と第1偏光層271との間に配置されている。この時、タッチ入力装置1000に対するタッチ表面は、ディスプレイモジュール200の外面として
図2bで上部面又は下部面になってもよい。
図2cにおいては、タッチ位置を検出するためのタッチセンサパネル100が、液晶層250に含まれて具現される場合を例示する。この時、タッチ入力装置1000に対するタッチ表面は、ディスプレイモジュール200の外面として
図2cで上部面又は下部面になってもよい。
図2b及び
図2cにおいて、タッチ表面になり得るディスプレイモジュール200の上部面又は下部面は、ガラスのようなカバー層(図示せず)で覆われていてもよい。
【0034】
以上においては、本発明の実施形態によるタッチセンサパネル100に対するタッチの有無及び/又はタッチの位置を検出することを説明したが、本発明の実施形態によるタッチセンサパネル100を用いてタッチの有無及び/又は位置と共にタッチの圧力の大きさを検出することができる。また、タッチセンサパネル100と別個にタッチ圧力を検出する圧力検出モジュールをさらに含んで、タッチの圧力の大きさを検出することも可能である。
【0035】
図3は、本発明の第1実施形態により、タッチ位置及びタッチ圧力を検出できるように構成されたタッチ入力装置の断面図である。
【0036】
ディスプレイモジュール200を含むタッチ入力装置1000において、タッチ位置を検出するためのタッチセンサパネル100及び圧力検出モジュール400は、ディスプレイモジュール200の前面に付着されてもよい。これにより、ディスプレイモジュール200のディスプレイスクリーンを保護して、タッチセンサパネル100のタッチ検出の感度を高めることができる。
【0037】
この時、圧力検出モジュール400は、タッチ位置を検出するためのタッチセンサパネル100と別個に動作することもできるので、例えば、圧力検出モジュール400は、タッチ位置を検出するためのタッチセンサパネル100と独立して圧力だけを検出するように構成されてもよい。また、圧力検出モジュール400は、タッチ位置を検出するためのタッチセンサパネル100と結合してタッチ圧力を検出するように構成されてもよい。例えば、タッチ位置を検出するためのタッチセンサパネル100に含まれた駆動電極TXと受信電極RXのうち少なくとも一つの電極は、タッチ圧力を検出するのに用いられてもよい。
【0038】
図3において、圧力検出モジュール400は、タッチセンサパネル100と結合してタッチ圧力を検出できる場合を例示する。
図3において、圧力検出モジュール400は、前記タッチセンサパネル100とディスプレイモジュール200との間を離隔させるスペーサ層420を含む。圧力検出モジュール400は、スペーサ層420を通じてタッチセンサパネル100と離隔した基準電位層を含んでもよい。この時、ディスプレイモジュール200は、基準電位層として機能することができる。
【0039】
基準電位層は、駆動電極TXと受信電極RXとの間に生成された静電容量101に変化を引き起こさせるようにする任意の電位を有してもよい。例えば、基準電位層は、グランド(ground)電位を有するグランド層であってもよい。基準電位層は、ディスプレイモジュール200のグランド(ground)層であってもよい。この時、基準電位層は、タッチセンサパネル100の2次元平面と平行した平面を有してもよい。
【0040】
図3に示されたように、タッチセンサパネル100と基準電位層であるディスプレイモジュール200とは、離隔して位置する。この時、タッチセンサパネル100とディスプレイモジュール200の接着方法の差によって、タッチセンサパネル100とディスプレイモジュール200との間のスペーサ層420は、エアギャップ(air gap)で具現されてもよい。
【0041】
この時、タッチセンサパネル100とディスプレイモジュール200とを固定するために、両面接着テープ430(DAT:Double Adhesive Tape)が用いられてもよい。例えば、タッチセンサパネル100とディスプレイモジュール200は、それぞれの面積が重ねられた形態であり、タッチセンサパネル100とディスプレイモジュール200それぞれの端領域において両面接着テープ430を介して二つの層が接着されるが、残りの領域においてタッチセンサパネル100とディスプレイモジュール200とが所定の距離dに離隔されてもよい。
【0042】
一般的に、タッチセンサパネル100の撓みなしにタッチ表面をタッチする場合でも、駆動電極TXと受信電極RXとの間の静電容量101:Cmが変化する。すなわち、タッチセンサパネル100に対するタッチの際に、相互静電容量Cm:101が基本相互静電容量に比べて減少する。これは指のような導体である客体がタッチセンサパネル100に近接した場合、客体がグランドGNDの役割をして相互静電容量Cm:101のフリンジング静電容量(fringing capacitance)が客体に吸収されるためである。基本相互静電容量は、タッチセンサパネル100に対するタッチがない場合に、駆動電極TXと受信電極RXとの間の相互静電容量の値である。
【0043】
タッチセンサパネル100のタッチ表面である上部表面を客体でタッチする際に圧力が加えられた場合、タッチセンサパネル100が撓む。この時、駆動電極TXと受信電極RXとの間の相互静電容量101:Cmの値はさらに減少する。これは、タッチセンサパネル100が撓んでタッチセンサパネル100と基準電位層との間の距離がdからd’に減少することによって、前記相互静電容量101:Cmのフリンジング静電容量が客体だけでなく基準電位層にも吸収されるためである。タッチの客体が不導体である場合には、相互静電容量Cmの変化は、単にタッチセンサパネル100と基準電位層との間の距離変化d−d’のみに起因してもよい。
【0044】
以上で詳しく見たように、ディスプレイモジュール200上にタッチセンサパネル100及び圧力検出モジュール400を含んでタッチ入力装置1000を構成することによって、タッチ位置だけでなくタッチ圧力を同時に検出することができる。
【0045】
しかし、
図3に示されたように、タッチセンサパネル100だけでなく圧力検出モジュール400までディスプレイモジュール200の上部に配置させる場合、ディスプレイモジュールのディスプレイ特性が低下する問題点が発生する。特に、ディスプレイモジュール200の上部にエアギャップ420を含む場合に、ディスプレイモジュールの視認性及び光透過率が低下することがある。
【0046】
したがって、このような問題点が発生することを防止するために、タッチ位置を検出するためのタッチセンサパネル100とディスプレイモジュール200との間にエアギャップを配置せずに、OCA(Optically Clear Adhesive)のような接着剤でタッチセンサパネル100とディスプレイモジュール200とが完全ラミネーション(lamination)されてもよい。
【0047】
図4は、本発明の第2実施形態によるタッチ入力装置の断面図である。本発明の第2実施形態によるタッチ入力装置1000において、タッチ位置を検出するためのタッチセンサパネル100とディスプレイモジュール200との間が接着剤で完全ラミネーションされる。これによりタッチセンサパネル100のタッチ表面を通じて確認できるディスプレイモジュール200のディスプレイの色の鮮明度、視認性、及び光透過性が向上してもよい。
【0048】
図4及び
図5、そしてこれを参照した説明において、本発明の第2実施形態によるタッチ入力装置1000として、タッチセンサパネル100がディスプレイモジュール200上に接着剤でラミネーションされて付着したものを例示するが、本発明の第2実施形態によるタッチ入力装置1000は、タッチセンサパネル100が
図2b及び
図2cなどに示されたように、ディスプレイモジュール200の内部に配置される場合も含んでいてもよい。より具体的に、
図4及び
図5において、タッチセンサパネル100がディスプレイモジュール200を覆うことが示されているが、タッチセンサパネル100はディスプレイモジュール200の内部に位置して、ディスプレイモジュール200がガラスのようなカバー層で覆われたタッチ入力装置1000が、本発明の第2実施形態に用いられてもよい。
【0049】
本発明の実施形態によるタッチ入力装置1000は、携帯電話(cell phone)、PDA(Personal Data Assistant)、スマートフォン(smartphone)、タブレットPC(taplet Personal Computer)、MP3プレーヤー、ノートブック(notebook)などのようなタッチスクリーンを含む電子装置を含んでもよい。
【0050】
本発明の実施形態によるタッチ入力装置1000において、基板300は、例えばタッチ入力装置1000の最外郭をなす機構であるカバー320と共にタッチ入力装置1000の作動のための回路基板及び/又はバッテリーが位置することができる実装空間310などを覆うハウジング(housing)の機能を遂行することができる。この時、タッチ入力装置1000の作動のための回路基板には、メインボード(main board)として中央処理ユニットであるCPU(central processing unit)又はAP(application processor)などが実装されていてもよい。基板300を通じてディスプレイモジュール200とタッチ入力装置1000の作動のための回路基板及び/又はバッテリーが分離し、ディスプレイモジュール200で発生する電気的ノイズが遮断されてもよい。
【0051】
タッチ入力装置1000において、タッチセンサパネル100又は前面カバー層が、ディスプレイモジュール200、基板300、及び実装空間310より広く形成されてもよく、これによりカバー320がタッチセンサパネル100と共にディスプレイモジュール200、基板300及び回路基板310を覆うように、カバー320が形成されてもよい。
【0052】
本発明の第2実施形態によるタッチ入力装置1000は、タッチセンサパネル100を通じてタッチ位置を検出し、ディスプレイモジュール200と基板300との間に圧力検出モジュール400を配置してタッチ圧力を検出することができる。この時、タッチセンサパネル100は、ディスプレイモジュール200の内部又は外部に位置することができる。圧力検出モジュール400は、例えば、エアギャップ(air gap)からなったスペーサ層420を含んで構成され、これに対しては
図5ないし
図7bを参照して詳しく見てみる。スペーサ層420は、実施形態により衝撃吸収物質からなってもよい。スペーサ層420は、実施形態により誘電物質(dielectric material)で満たされてもよい。
【0053】
図5は、本発明の第2実施形態によるタッチ入力装置の斜視図である。
図5に示されたように、本発明の実施形態によるタッチ入力装置1000において、圧力検出モジュール400は、ディスプレイモジュール200と基板300を離隔させるスペーサ層420、及びスペーサ層420内に位置する電極450及び460を含んでもよい。以下で、タッチセンサパネル100に含まれた電極と区分が明確なように、圧力を検出するための電極450及び460を圧力電極450及び460と指称する。この時、圧力電極450及び460は、ディスプレイパネルの前面でない後面に含まれるので、透明物質だけでなく不透明物質で構成されることも可能である。
【0054】
この時、スペーサ層420を維持するために、基板300の上部の縁に沿って所定の厚さを有する接着テープ440が形成されてもよい。
図5において、接着テープ440は基板300のすべての縁(例えば、四角形の4辺)に形成されたものが図示されているが、接着テープ440は基板の縁のうち少なくとも一部(例えば、四角形の3辺)にのみ形成されてもよい。実施形態により、接着テープ440は、基板300の上部面又はディスプレイモジュール200の下部面に形成されてもよい。接着テープ440は、基板300とディスプレイモジュール200を同一の電位に作るために伝導性テープであってもよい。また、接着テープ440は、両面接着テープであってもよい。本発明の実施形態において、接着テープ440は、弾性のない物質で構成されてもよい。本発明の実施形態において、ディスプレイモジュール200に圧力が印加される場合、ディスプレイモジュール200が撓み得るので、接着テープ440が圧力によって形体の変形がなくても、タッチ圧力の大きさを検出することができる。
【0055】
図6aは、本発明の第1実施形態による圧力電極パターンを含むタッチ入力装置の断面図である。
図6aに示されたように、本発明の第1実施形態による圧力電極450、460は、スペーサ層420内として基板300上に形成されてもよい。
【0056】
圧力検出のための圧力電極は、第1電極450と第2電極460とを含んでもよい。この時、第1電極450と第2電極460のうち、いずれか一つは駆動電極であってもよく、残りの一つは受信電極であってもよい。駆動電極に駆動信号を印加して受信電極を通じて感知信号を獲得することができる。電圧が印加されると、第1電極450と第2電極460との間に相互静電容量が生成されてもよい。
【0057】
図6bは、
図6aに示されたタッチ入力装置1000に圧力が印加された場合の断面図である。ディスプレイモジュール200の下部面は、ノイズ遮蔽のためにグランド(ground)電位を有してもよい。客体500を通じてタッチセンサパネル100の表面に圧力を印加する場合、タッチセンサパネル100及びディスプレイモジュール200は撓み得る。これによりグランド電位面と圧力電極パターン450、460との間の距離dがd’に減少する。このような場合、前記距離dの減少によりディスプレイモジュール200の下部面にフリンジング静電容量が吸収されるので、第1電極450と第2電極460との間の相互静電容量は減少する。したがって、受信電極を通じて取得される感知信号において、相互静電容量の減少量を取得してタッチ圧力の大きさを算出することができる。
【0058】
本発明の実施形態によるタッチ入力装置1000において、ディスプレイモジュール200は、圧力を印加するタッチによって撓み得る。ディスプレイモジュール200は、タッチの位置で最も大きい変形を示すように撓み得る。実施形態によりディスプレイモジュール200が撓むとき、最も大きい変形を示す位置は、前記タッチ位置と一致しないこともあるが、ディスプレイモジュール200は、少なくとも前記タッチ位置で撓みを示すことができる。例えば、タッチ位置がディスプレイモジュール200の縁や端などに近接する場合、ディスプレイモジュール200が撓む程度が最も大きい位置はタッチ位置と異なることもあるが、ディスプレイモジュール200は、少なくとも前記タッチ位置で撓みを示すことができる。
【0059】
この時、基板300の上部面もまたノイズ遮蔽のためにグランド電位を有してもよい。したがって、基板300と圧力電極450、460が短絡(short circuit)することを防止するために、圧力電極450、460は絶縁層470上に形成されてもよい。
図8は、本発明の実施形態による圧力電極の付着構造を例示する。
図8(a)を参照して説明すると、圧力電極450、460は、基板300上に第1絶縁層470を位置させた後、圧力電極450、460を形成して構成されてもよい。また、実施形態により圧力電極450、460が形成された第1絶縁層470を基板300上に付着して形成することができる。また、実施形態により圧力電極は、基板300又は基板300上の第1絶縁層470上に圧力電極パターンに相応する貫通孔を有するマスク(mask)を位置させた後、伝導性スプレー(spray)を噴射することによって形成されてもよい。
【0060】
また、ディスプレイモジュール200の下部面がグランド電位を有する場合、基板300上に位置した圧力電極450、460とディスプレイモジュール300とが短絡するのを防止するために、圧力電極450、460は追加の第2絶縁層471で圧力電極450、460を覆うことができる。また、第1絶縁層470上に形成された圧力電極450、460を追加の第2絶縁層471で覆った後、一体型で基板300上に付着して圧力検出モジュール400を形成することができる。
【0061】
図8(a)を参照して説明された圧力電極450、460の付着構造及び方法は、圧力電極450、460がディスプレイモジュール200に付着する場合にも適用されてもよい。圧力電極450、460がディスプレイモジュール200に付着する場合は、
図6cと関連してさらに詳しく説明される。
【0062】
また、タッチ入力装置1000の種類及び/又は具現方式により、圧力電極450、460が付着する基板300又はディスプレイモジュール200がグランド電位を示さないか、もしくは弱いグランド電位を示してもよい。このような場合、本発明の実施形態によるタッチ入力装置1000は、基板300又はディスプレイモジュール200と絶縁層470との間にグランド電極(ground electrode:図示せず)をさらに含んでもよい。実施形態により、グランド電極と基板300又はディスプレイモジュール200との間には、また別の絶縁層(図示せず)をさらに含んでもよい。この時、グランド電極(図示せず)は、圧力電極である第1電極450と第2電極460との間に生成される静電容量の大きさが非常に大きくなるのを防止することができる。
【0063】
以上で説明した圧力電極450、460の形成及び付着方法は、以下の実施形態にも同様に適用されてもよい。
【0064】
図6cは、本発明の第2実施形態による圧力電極を含むタッチ入力装置の断面図である。第1実施形態において、圧力電極450、460が基板300上に形成されたことが例示されているが、圧力電極450、460は、ディスプレイモジュール200の下部面上に形成されても構わない。この時、基板300はグランド電位を有してもよい。したがって、タッチセンサパネル100のタッチ表面をタッチすることにより、基板300と圧力電極450、460との間の距離dが減少して、結果的に第1電極450と第2電極460との間の相互静電容量の変化を引き起こすことができる。
【0065】
図6dは、本発明の第1実施形態による圧力電極パターンを例示する。
図6dでは、第1電極450と第2電極460とが基板300上に形成された場合を示す。第1電極450と第2電極460との間の静電容量は、ディスプレイモジュール200の下部面と圧力電極450、460との間の距離によって変わり得る。
【0066】
図6eは、本発明の第2実施形態による圧力電極パターンを例示する。
図6eにおいて、圧力電極450、460は、ディスプレイモジュール200の下部面上に形成された場合を示す。
【0067】
図6f及び
図6gは、本発明の実施形態に適用され得る圧力電極パターン450、460を例示する。第1電極450と第2電極460との間の相互静電容量が変化することによってタッチ圧力の大きさを検出する時、検出の正確度を高めるために必要な静電容量の範囲を生成するように、第1電極450と第2電極460のパターンを形成する必要がある。第1電極450と第2電極460とが互いに向かい合う面積が大きいか、もしくは長さが長いほど、生成される静電容量の大きさが大きくなってもよい。したがって、必要な静電容量の範囲により、第1電極450と第2電極460との間の向かい合う面積の大きさ、長さ及び形状などを調節して設計することができる。
図6f及び
図6gには、第1電極450と第2電極460とが同一の層に形成される場合として、第1電極450と第2電極460とが互いに向かい合う長さが相対的に長いように圧力電極が形成された場合を例示する。
【0068】
第1実施形態と第2実施形態において、第1電極450と第2電極460は、同一の層に形成されたもので示されているが、第1電極450と第2電極460は、実施形態により互いに異なる層に具現されても構わない。
図8(b)は、第1電極450と第2電極460とが互いに異なる層に具現された場合の付着構造を例示する。
図8(b)に例示されたように、第1電極450は第1絶縁層470上に形成され、第2電極460は第1電極450上に位置する第2絶縁層471上に形成されてもよい。実施形態により、第2電極460は第3絶縁層472で覆われてもよい。この時、第1電極450と第2電極460とは互いに異なる層に位置するので、互いにオーバーラップ(overlap)するように具現されてもよい。例えば、第1電極450と第2電極460とは、
図1を参照して説明されたタッチセンサパネル100に含まれたMXNの構造で配列された駆動電極TXと受信電極RXのパターンと類似するように形成されてもよい。この時、M及びNは、1以上の自然数であってもよい。
【0069】
第1実施形態において、タッチ圧力は、第1電極450と第2電極460との間の相互静電容量の変化から検出されることが例示される。しかし、圧力電極450、460が第1電極450と第2電極460の何れか一つの圧力電極のみを含むように構成されてもよく、このような場合、一つの圧力電極とグランド層(ディスプレイモジュール200又は基板300)との間の静電容量の変化を検出することによって、タッチ圧力の大きさを検出することもできる。
【0070】
例えば、
図6aにおいて、圧力電極は第1電極450のみを含んで構成されてもよく、この時、ディスプレイモジュール200と第1電極450との間の距離変化によって引き起こされる第1電極450とディスプレイモジュール200との間の静電容量の変化からタッチ圧力の大きさを検出することができる。タッチ圧力が大きくなることによって距離dが減少するので、ディスプレイモジュール200と第1電極450との間の静電容量は、タッチ圧力が増加するほど大きくなり得る。これは、
図6cと関連した実施形態にも同様に適用されてもよい。この時、圧力電極は、相互静電容量の変化量の検出精度を高めるために必要な、くし形状又はフォーク形状を有する必要はなく、
図7bに例示されたように、板(例えば、四角板)形状を有してもよい。
【0071】
図8(c)は、圧力電極が第1電極450のみを含んで具現された場合の付着構造を例示する。
図8(c)に例示されたように、第1電極450は、基板300又はディスプレイモジュール200上に位置した第1絶縁層470上に形成されてもよい。また、実施形態により第1電極450は第2絶縁層471で覆われてもよい。
【0072】
図7aは、本発明の第3実施形態による圧力電極を含むタッチ入力装置の断面図である。本発明の第3実施形態による圧力電極450、460は、スペーサ層420内として基板300の上部面及びディスプレイモジュール200の下部面上に形成されてもよい。
【0073】
圧力検出のための圧力電極パターンは、第1電極450と第2電極460を含んでもよい。この時、第1電極450と第2電極460の何れか一つは基板300上に形成され、残りの一つはディスプレイモジュール200の下部面上に形成されてもよい。
図7aにおいては、第1電極450が基板300上に形成され、第2電極460がディスプレイモジュール200の下部面上に形成されたことを例示する。
【0074】
客体500を通じてタッチセンサパネル100の表面に圧力を印加する場合、タッチセンサパネル100及びディスプレイモジュール200は撓み得る。これにより第1電極450及び第2電極460との間の距離dが減少する。このような場合、前記距離dの減少により、第1電極450と第2電極460との間の相互静電容量は増加する。したがって、受信電極を通じて取得される感知信号において、相互静電容量の減少量を取得してタッチ圧力の大きさを算出することができる。
【0075】
図7bは、本発明の第3実施形態による圧力電極パターンを例示する。
図7bでは、第1電極450が基板300の上部面上に形成され、第2電極460がディスプレイモジュール200の下部面に形成されたことが示される。
図7bに示されたように、第1電極450と第2電極460とが互いに異なる層に形成されるので、第1実施形態と第2実施形態とは異なり、第1電極450及び第2電極460は、くし形状又はフォーク形状を有する必要はなく、板形状(例えば、四角板形状)を有してもよい。
【0076】
図8(d)は、第1電極450が基板300上に付着し、第2電極460がディスプレイモジュール200に付着した場合の付着構造を例示する。
図8(d)に例示されたように、第1電極450は、基板300上に形成された第1絶縁層470−2上に位置し、第1電極450は第2絶縁層471−2によって覆われていてもよい。また、第2電極460はディスプレイモジュール200の下部面上に形成された第1絶縁層470−1上に位置し、第2電極460は第2絶縁層471−1によって覆われていてもよい。
【0077】
図8(a)と関連して説明されたことと同様に、圧力電極450、460が付着する基板300又はディスプレイモジュール200がグランド電位を示さないか、もしくは弱いグランド電位を示す場合、
図8(a)ないし
図8(d)において第1絶縁層470、470−1、470−2の間にグランド電極(図示せず)をさらに含んでもよい。この時、グランド電極(図示せず)と圧力電極450、460が付着する基板300又はディスプレイモジュール200の間には、追加の絶縁層(図示せず)をさらに含んでもよい。
【0078】
以上で詳しく見たように、本発明の実施形態によるタッチ入力装置1000は、圧力電極450、460で発生する静電容量の変化を感知する。したがって、第1電極450と第2電極460のうち駆動電極には駆動信号が印加される必要があり、受信電極から感知信号を取得して静電容量の変化量からタッチ圧力を算出しなければならない。実施形態により、圧力検出モジュール400の動作のためのタッチセンシングICを追加で含むことも可能である。このような場合、
図1に示されたように、駆動部120、感知部110、及び制御部130と類似した構成を重複して含むようになるので、タッチ入力装置1000の面積及び体積が大きくなる問題点が発生し得る。
【0079】
実施形態により、圧力検出モジュール400は、タッチセンサパネル100の作動のためのタッチ検出装置を通じて駆動信号が印加され、感知信号の入力を受けてタッチ圧力を検出することができる。以下では、第1電極450が駆動電極であり、第2電極460が受信電極である場合を仮定して説明する。
【0080】
このために、本発明の実施形態によるタッチ入力装置1000において、第1電極450は駆動部120から駆動信号の印加を受け、第2電極460は感知信号を感知部110に伝達することができる。制御部130は、タッチセンサパネル100のスキャニングを遂行すると共に圧力検出モジュール400のスキャニングを遂行するようにしたり、又は、制御部130は時分割して第1時間区間にはタッチセンサパネル100のスキャニングを遂行するようにし、第1時間区間とは異なる第2時間区間には圧力検出モジュール400のスキャニングを遂行するように制御信号を生成することができる。
【0081】
したがって、本発明の実施形態において、第1電極450と第2電極460は、電気的に駆動部120及び/又は感知部110に連結されなければならない。この時、タッチセンサパネル100のためのタッチ検出装置は、タッチセンシングIC150としてタッチセンサパネル100の一端、又は、タッチセンサパネル100と同一の平面上に形成されることが一般的である。圧力電極パターン450、460は、任意の方法でタッチセンサパネル100のタッチ検出装置と電気的に連結されてもよい。例えば、圧力電極パターン450、460は、ディスプレイモジュール200に含まれた第2PCB210を用いてコネクタ(connector)を通じてタッチ検出装置に連結されてもよい。例えば、
図5に示されたように、第1電極450と第2電極460からそれぞれ電気的に延びる伝導性トレース451及び461は、第2PCB210などを通じてタッチセンシングIC150まで電気的に連結されてもよい。
【0082】
図9a及び
図9bは、本発明の第2実施形態による圧力電極の付着方法を例示する。
図9a及び
図9bでは、本発明の実施形態による圧力電極450、460がディスプレイモジュール200の下部面に付着される場合を示す。
図9a及び
図9bにおいて、ディスプレイモジュール200は、下部面の一部にディスプレイパネルの作動のための回路が実装された第2PCB210が示される。
【0083】
図9aは、第1電極450と第2電極460がディスプレイモジュール200の第2PCB210の一端に連結されるように、圧力電極450、460をディスプレイモジュール200の下部面に付着する場合を例示する。この時、
図9aにおいては、第1電極450と第2電極460が絶縁層470上に製作された場合を例示する。圧力電極450、460は絶縁層470上に形成され、一体型シート(sheet)としてディスプレイモジュール200の下部面に付着されてもよい。第2PCB210上には、圧力電極パターン450、460をタッチセンシングIC150などの必要な構成まで電気的に連結できるように導電性パターンが印刷されていてもよい。これに対する詳細な説明は、
図10aないし
図10cを参照して説明する。
【0084】
図9bは、第1電極450と第2電極460がディスプレイモジュール200の第2PCB210に一体型で形成された場合を例示する。例えば、ディスプレイモジュール200の第2PCB210の製作時に、第2PCBに一定の面積211を割愛して予めディスプレイパネルの作動のための回路だけでなく、第1電極450と第2電極460に該当するパターンまで印刷することができる。第2PCB210には、第1電極450及び第2電極460をタッチセンシングIC150などの必要な構成まで電気的に連結する導電性パターンが印刷されてもよい。
【0085】
図10aないし
図10cは、本発明の第2実施形態による圧力電極をタッチセンシングIC150に連結する方法を例示する。
図10aないし
図10cにおいて、タッチセンサパネル100がディスプレイモジュール200の外部に含まれた場合として、タッチセンサパネル100のタッチ検出装置がタッチセンサパネル100のための第1PCB160に実装されたタッチセンシングIC150に集積された場合を例示する。
【0086】
図10aにおいて、ディスプレイモジュール200に付着された圧力電極450、460が、第1コネクタ121を通じてタッチセンシングIC150まで連結される場合を例示する。
図10aに例示されたように、スマートフォンのような移動通信装置においてタッチセンシングIC150は、第1コネクタ(connector)121を通じてディスプレイモジュール200のための第2PCB210に連結される。第2PCB210は、第2コネクタ221を通じてメインボードに電気的に連結されてもよい。したがって、タッチセンシングIC150は、第1コネクタ121及び第2コネクタ221を通じてタッチ入力装置1000の作動のためにCPU又はAPと信号をやり取りすることができる。
【0087】
この時、
図10aにおいては、圧力電極450が
図9bに例示されたような方式でディスプレイモジュール200に付着されたことが例示されているが、
図9aに例示されたような方式で付着した場合にも適用されてもよい。第2PCB210には、圧力電極450、460が第1コネクタ121を通じてタッチセンシングIC150まで電気的に連結され得るように導電性パターンが印刷されていてもよい。
【0088】
図10bにおいて、ディスプレイモジュール200に付着された圧力電極450、460が、第3コネクタ471を通じてタッチセンシングIC150まで連結される場合が例示される。
図10bにおいて、圧力電極450、460は、第3コネクタ471を通じてタッチ入力装置1000の作動のためのメインボードまで連結され、その後、第2コネクタ221及び第1コネクタ121を通じてタッチセンシングIC150まで連結されてもよい。この時、圧力電極450、460は、第2PCB210と分離した追加のPCB211上に印刷されてもよい。または、実施形態により圧力電極パターン450、460は絶縁層470上に形成され、圧力電極450、460から伝導性トレースなどを延長させてコネクタ471を通じてメインボードまで連結されてもよい。
【0089】
図10cにおいて、圧力電極450、460が第4コネクタ472を通じて直接タッチセンシングIC150に連結される場合が例示される。
図10cにおいて、圧力電極450、460は、第4コネクタ472を通じて第1PCB160まで連結されてもよい。第1PCB160には、第4コネクタ472からタッチセンシングIC150まで電気的に連結する導電性パターンが印刷されていてもよい。これにより、圧力電極450、460は、第4コネクタ472を通じてタッチセンシングIC150まで連結されてもよい。この時、圧力電極450、460は、第2PCB210と分離した追加のPCB211上に印刷されてもよい。第2PCB210と追加のPCB211は、互いに短絡しないように絶縁されていてもよい。または、実施形態により圧力電極450、460は絶縁層470上に形成され、圧力電極450、460から伝導性トレースなどを延長させてコネクタ472を通じて第1PCB160まで連結されてもよい。
【0090】
図10b及び
図10cの連結方法は、圧力電極450、460がディスプレイモジュール200の下部面だけでなく、基板300上に形成された場合にも適用されてもよい。
【0091】
図10aないし
図10cにおいては、タッチセンシングIC150が第1PCB160上に形成されたCOF(chip on film)構造を仮定して説明された。しかし、これは単に例示に過ぎず、本発明は、タッチセンシングIC150がタッチ入力装置1000の実装空間310内のメインボード上に実装されるCOB(chip on board)構造の場合にも適用されてもよい。
図10aないし
図10cに対する説明から、当該技術分野の当業者に、他の実施形態の場合に圧力電極450、460のコネクタを通じた連結は自明であろう。
【0092】
以上においては、駆動電極として第1電極450が一つのチャネルを構成し、受信電極として第2電極460が一つのチャネルを構成する圧力電極450、460に対して詳しく見てみた。しかし、これは単に例示に過ぎず、実施形態により駆動電極及び受信電極は、それぞれ複数個のチャネルを構成して多重タッチ(multi touch)によって多重の圧力検出が可能であり得る。
【0093】
図11aないし
図11cは、本発明の実施形態による圧力電極が複数のチャネルを構成する場合を例示する。
図11aでは、第1電極450−1、450−2と第2電極460−1、460−2それぞれが2個のチャネルを構成する場合が例示される。
図11bでは、第1電極450は2個のチャネル450−1、450−2を構成するが、第2電極460は1個のチャネルを構成する場合が例示される。
図11cでは、第1電極450−1ないし450−5と第2電極460−1、460−5それぞれが5個のチャネルを構成する場合が例示される。
【0094】
図11aないし
図11cは、圧力電極が単数又は複数のチャネルを構成する場合を例示して、多様な方法で圧力電極が単数又は複数のチャネルで構成されてもよい。
図11aないし
図11cにおいて、圧力電極450、460がタッチセンシングIC150に電気的に連結される場合が例示されなかったが、
図10aないし
図10c及びその他の方法で圧力電極450、460がタッチセンシングIC150に連結されてもよい。
【0095】
図12は、本発明の実施形態によるタッチ入力装置1000のタッチ表面中心部を非伝導性客体で加圧する実験を遂行し、客体のグラム重量(gram force)に伴う静電容量の変化量を表示するグラフである。
図12から分かるように、本発明の実施形態によるタッチ入力装置1000のタッチ表面中心部を加圧する力が大きくなるほど、圧力検出モジュール400に含まれた圧力電極パターン450、460の静電容量の変化量が大きくなることが分かる。
【0096】
以上においては、圧力検出モジュール400として静電容量方式の検出モジュールが説明されたが、本発明の実施形態によるタッチ入力装置1000は、圧力検出モジュール400としてスペーサ層420及び圧力電極450、460を用いる場合であれば、任意の方式の圧力検出モジュールを用いることができる。
【0097】
以上において実施形態に説明された特徴、構造、効果などは、本発明の一つの実施形態に含まれ、必ずしも一つの実施形態にのみ限定される訳ではなく、さらに、各実施形態において例示された特徴、構造、効果などは、実施形態が属する分野における通常の知識を有する者によって他の実施形態に対しても組み合わせ、又は変形されて実施可能である。したがって、このような組み合わせと変形に関係した内容は、本発明の範囲に含まれるものと解釈されなければならないだろう。
【0098】
また、以上において、実施形態を中心に説明したが、これは単に例示に過ぎず、本発明を限定する訳ではなく、本発明が属する分野における通常の知識を有する者であれば、本実施形態の本質的な特徴を外れない範囲で、以上に例示されない様々な変形と応用が可能であることが分かるはずである。例えば、実施形態に具体的に示された各構成要素は、変形して実施することができるものである。そして、このような変形と応用に係る相違点は、添付の特許請求の範囲において規定する本発明の範囲に含まれるものと解釈されるべきである。