特許第6262957号(P6262957)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ゲーエー ジェンバッハー ゲーエムベーハー アンド コー オーゲーの特許一覧

<>
  • 特許6262957-内燃機関の運用方法 図000004
  • 特許6262957-内燃機関の運用方法 図000005
  • 特許6262957-内燃機関の運用方法 図000006
  • 特許6262957-内燃機関の運用方法 図000007
  • 特許6262957-内燃機関の運用方法 図000008
  • 特許6262957-内燃機関の運用方法 図000009
  • 特許6262957-内燃機関の運用方法 図000010
  • 特許6262957-内燃機関の運用方法 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6262957
(24)【登録日】2017年12月22日
(45)【発行日】2018年1月17日
(54)【発明の名称】内燃機関の運用方法
(51)【国際特許分類】
   F02D 43/00 20060101AFI20180104BHJP
   F02D 19/02 20060101ALI20180104BHJP
   F02D 45/00 20060101ALI20180104BHJP
【FI】
   F02D43/00 301B
   F02D43/00 301H
   F02D19/02 D
   F02D45/00 301C
   F02D45/00 301M
   F02D45/00 368S
   F02D45/00 372Z
【請求項の数】20
【外国語出願】
【全頁数】21
(21)【出願番号】特願2013-168082(P2013-168082)
(22)【出願日】2013年8月13日
(65)【公開番号】特開2014-37834(P2014-37834A)
(43)【公開日】2014年2月27日
【審査請求日】2014年11月20日
【審判番号】不服2017-3782(P2017-3782/J1)
【審判請求日】2017年3月15日
(31)【優先権主張番号】A 895/2012
(32)【優先日】2012年8月17日
(33)【優先権主張国】AT
(73)【特許権者】
【識別番号】504344576
【氏名又は名称】ゲーエー ジェンバッハー ゲーエムベーハー アンド コー オーゲー
(74)【代理人】
【識別番号】100137545
【弁理士】
【氏名又は名称】荒川 聡志
(74)【代理人】
【識別番号】100105588
【弁理士】
【氏名又は名称】小倉 博
(74)【代理人】
【識別番号】100129779
【弁理士】
【氏名又は名称】黒川 俊久
(74)【代理人】
【識別番号】100113974
【弁理士】
【氏名又は名称】田中 拓人
(72)【発明者】
【氏名】クリスチャン バース
(72)【発明者】
【氏名】ヘルベルト コペセク
(72)【発明者】
【氏名】ニコラウス スパイラ
(72)【発明者】
【氏名】ミヒャエル バルトハート
【合議体】
【審判長】 金澤 俊郎
【審判官】 冨岡 和人
【審判官】 佐々木 芳枝
(56)【参考文献】
【文献】 特開2009−168027(JP,A)
【文献】 特開2009−74436(JP,A)
【文献】 特開2005−240712(JP,A)
【文献】 特開2010−84681(JP,A)
【文献】 特開2007−231883(JP,A)
【文献】 特開平4−101044(JP,A)
【文献】 特開2000−18075(JP,A)
【文献】 特開2010−112334(JP,A)
【文献】 特開2002−61524(JP,A)
【文献】 特開2001−329875(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F02D 19/02
F02D 43/00
F02D 45/00
(57)【特許請求の範囲】
【請求項1】
少なくとも2つのシリンダ(2)を有した内燃機関(1)の運用方法であって、シリンダ特有第1シリンダ信号(pmax、E)がそれぞれのシリンダ(2)から取得され、対応するシリンダ(2)の少なくとも1つの燃焼パラメータ(Q、Z)が前記シリンダ特有第1シリンダ信号(pmax、E)の関数として制御される運用方法において、各シリンダのNOx排出物量およびシリンダ効率が所定の範囲内に存在するか、または、略同一であるよう、シリンダ特有基準シリンダ値(pmax’、E’)がそれぞれのシリンダ(2)に対して前記シリンダ特有第1シリンダ信号(pmax、E)のために設定され、前記シリンダ(2)の前記少なくとも1つの燃焼パラメータ(Q、Z)が、前記シリンダ特有基準シリンダ値(pmax’、E’)からの、前記シリンダ特有第1シリンダ信号(pmax、E)の偏差の関数として調整され、前記シリンダ特有第1シリンダ信号(pmax、E)は前記シリンダ特有基準シリンダ値(pmax’、E’)に追従することを特徴とする方法。
【請求項2】
シリンダ特有第1シリンダ信号である、シリンダ内圧(pcyl)、シリンダ排出物温度(TE)、窒素酸化排出物量(E)および空気の燃料に対する比である燃焼空気比のうちの少なくとも1つがそれぞれのシリンダ(2)から取得されることを特徴とする請求項1記載の方法。
【請求項3】
燃焼サイクルの最大シリンダ内圧(pmax)が前記シリンダ特有第1シリンダ信号として取得されることを特徴とする請求項2記載の方法。
【請求項4】
前記シリンダ特有基準シリンダ値(pmax’、E’)は、全シリンダ(2)の前記シリンダ特有第1シリンダ信号(pmax、E)の統計的変数、および、シリンダ特有オフセット(△m)を含み、前記シリンダ特有オフセット(△m)は、差値特徴マッピング(26)の手段によって決定され、該差値特徴マッピング(26)は、前記内燃機関(1)の出力パワーの少なくともパワー均等物(P)及び/又は前記内燃機関(1)の吸気圧(pA)を考慮することを特徴とする請求項1から3のいずれかに記載の方法。
【請求項5】
前記シリンダ特有オフセット(△m)は、点火前の圧縮相時のシリンダ圧、空気量均等物、燃焼中心、圧縮比、および点火遅延であるシリンダ特有シリンダパラメータのうちの少なくとも1つの関数として決定されることを特徴とする請求項4記載の方法。
【請求項6】
前記シリンダ特有オフセット(△m)は、全シリンダの前記シリンダ特有シリンダパラメータの平均からの、前記シリンダ特有シリンダパラメータの少なくとも1つの偏差(△pverd、△air、△MFB、△ε、△delay)の関数として決定されることを特徴とする請求項5記載の方法。
【請求項7】
前記シリンダ特有オフセット(△m)は、以下の式を使用して、前記シリンダ特有シリンダパラメータのそれぞれの偏差(△pverd、△air、△MFB、△ε、△delay)から決定され、
△m=a*△pverd+b*△air+c*△MFB+d*△ε+e*△delay
式中、△pverdは、点火前の圧縮相時のシリンダ圧の偏差であり、△airは空気量均等物の偏差であり、△MFBは燃焼中心の偏差であり、△εは圧縮比の偏差であり、△delayは点火遅延の偏差であることを特徴とする請求項6記載の方法。
【請求項8】
対応するシリンダ(2)の燃料量(Q)が燃焼パラメータとして使用されることを特徴とする請求項1から7のいずれかに記載の方法。
【請求項9】
前記シリンダ特有第1シリンダ信号(pmax、E)が前記シリンダ特有基準シリンダ値(pmax’、E’)より小さいなら、シリンダ(2)の燃料量(Q)は増加されることを特徴とする請求項8記載の方法。
【請求項10】
前記シリンダ特有第1シリンダ信号(pmax、E)が前記シリンダ特有基準シリンダ値(pmax’、E’)より大きいなら、シリンダ(2)の燃料量(Q)は減少されることを特徴とする請求項8記載の方法。
【請求項11】
燃料制御バルブ(3)がそれぞれのシリンダ(2)に設けられ、シリンダ(2)の燃料量(Q)を調整するために、対応する燃料制御バルブ(3)の開放時間(tcyl)が調整されることを特徴とする請求項8から10のいずれかに記載の方法。
【請求項12】
対応するシリンダ(2)の着火点(Z)が燃焼パラメータとして調整されることを特徴とする請求項1から11のいずれかに記載の方法。
【請求項13】
前記シリンダ特有第1シリンダ信号(pmax、E)が前記シリンダ特有基準シリンダ値(pmax’、E’)より小さいなら、シリンダ(2)の着火点(Z)は早目に設定されることを特徴とする請求項12記載の方法。
【請求項14】
前記シリンダ特有第1シリンダ信号(pmax、E)が前記シリンダ特有基準シリンダ値(pmax’、E’)より大きいなら、シリンダ(2)の着火点(Z)は遅目に設定されることを特徴とする請求項12記載の方法。
【請求項15】
点火装置(18)がそれぞれのシリンダ(2)に設けられ、該点火装置(18)の着火点(Z)はTDC前のクランク角度(tcyl)に設定されることを特徴とする請求項12から14のいずれかに記載の方法。
【請求項16】
前記少なくとも1つの燃焼パラメータ(Q、Z)を設定するためのパラメータ(tcyl)が決定され、該パラメータ(tcyl)は、全シリンダに対し同一である全体的エンジン目標値(tg)を含んでいることを特徴とする請求項1から15のいずれかに記載の方法。
【請求項17】
前記全体的エンジン目標値(tg)は燃料・空気混合比(λ)から決定され、該燃料・空気混合比(λ)は内燃機関(1)の出力パワーのパワー均等物(P)、内燃機関(1)に接続された発電機からの電力から決定され、及び/又は内燃機関(1)の吸気圧(pA)から、及び/又はエンジン速度(n)から決定されることを特徴とする請求項16記載の方法。
【請求項18】
前記全体的エンジン目標値(tg)は、標的パワー均等物(PS)からの、内燃機関(1)の出力パワーのパワー均等物(P)の偏差の関数として、及び/又は、内燃機関(1)の標的速度(nS)からの、内燃機関(1)のエンジン速度(n)の偏差の関数として決定されることを特徴とする請求項16記載の方法。
【請求項19】
それぞれのシリンダ(2)の燃焼状態がモニターされ、基準状態との比較により正常であるか異常であるかが評価され、シリンダ(2)の燃焼状態が正常であると評価されたら該シリンダ(2)の燃焼パラメータ(Q、Z)が調整されるだけであることを特徴とする請求項1から18のいずれかに記載の方法。
【請求項20】
燃焼状態としてノッキング及び/又は自己発火及び/又は燃焼妨害がモニターされ、燃焼状態にノッキング及び/又は自己発火及び/又は燃焼妨害が検知されなければ、シリンダ(2)の燃焼状態は正常であると評価されることを特徴とする請求項19記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、少なくとも2つのシリンダ(気筒)を有した内燃機関、特にガスエンジン(機関)を運用する方法に関する。ここでは特定シリンダの第1シリンダ信号がそれぞれのシリンダから取得され、対応シリンダの少なくとも1つの燃焼パラメータが第1シリンダ信号の関数として制御される。
【背景技術】
【0002】
内燃機関のそれらシリンダは、通常、燃焼状態に技術的な差異を生じさせる。すなわち、燃料量または着火点(点火点)のごとき燃焼パラメータが全体的に制御されていると、内燃機関によって実行される全仕事量に対する複数のシリンダによる個別の貢献度は異なってくる。本明細書で使用される燃焼パラメータの“全体的制御”または“全体的エンジン制御”とは、内燃機関の全シリンダが、対応する変動要素に対して同一値で運用されることを意味する。すなわち、例えば、燃料量に関する全体的制御とは、同一の開放時間が、各シリンダのガス(燃料)噴入バルブに適用されることである。あるいは着火点に関する全体的制御とは、シリンダのそれぞれの点火装置が、シリンダのそれぞれのピストンの同一ピストン位置にて活性化(点火)されることであり、これは通常において、TDC(シリンダ内のピストン上死点)のクランク角度で表される。
【0003】
往復動機関のシリンダの仕事は、シリンダの連結ロッドに接続されたクランクシャフトを介して内燃機関の出力シャフトに伝達される。そこでは、大抵、出力シャフトの機械エネルギーを電気エネルギーに変換するために発電機が出力シャフトに接続されている。シリンダバランス(均衡)のための様々な可能性の中で、構成部材に対して可能な限り均等な機械的ピーク(最大)荷重を付与するために個々のシリンダのピーク圧力をバランスさせることに焦点が合わせられている。主な代替バランス形態の例は、エンジン効率を最良化するか、汚染物質排出を最少化することである。
【0004】
シリンダバランス制御に関して、特許文献1には、内燃機関のそれぞれのシリンダに対する燃料導入量を削減し、それぞれのシリンダの最大シリンダ内圧またはピークシリンダ圧を、許容帯域と共通な目標値に設定することを解説する。この場合の目標値は、全てのピークシリンダ圧の算術平均から得られる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】アメリカ特許第7957889号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
以上説明したシステムは、ピークシリンダ圧等のシリンダ特有信号の算術平均を、シリンダバランス制御のための標的変動因子として利用する。しかし、これらシステムは、例えば、吸気、付着物および磨耗、燃焼中心あるいは機械的許容誤差、等々のシリンダパラメータに起因するシリンダ特有差を考慮しない。特にこれらは、排出物および燃焼特性の拡散を発生させ、効率を低下させかねない。この点で、低窒素酸化物または低NOx排出タイプのシリンダは、高NOx排出タイプのシリンダよりも効率が落ちることがある。全体的な、すなわち全体的内燃機関に関わる、特定のNOx制限が遵守されなければならないことが多く、シリンダパラメータのシリンダ特有差のために、個別のシリンダからのNOx排出物の広がりが、しばしば内燃機関の効率の全体的な低下を引き起こす。
【0007】
従って、本発明の目的は上述の弱点の回避および従来と比して改良された内燃機関の運用方法の提供である。特に、シリンダによって異なる排出物を排出し、あるいは異なる効率を招くことがあるシリンダパラメータのシリンダ特有差が考慮されるべきである。
【課題を解決するための手段】
【0008】
本発明は、この目的を請求項1の特徴によって達成する。本発明の有利な実施形態は従属請求項において開示されている。
【0009】
従って、本発明によれば、それぞれのシリンダの第1シリンダ信号のためにシリンダ特有基準シリンダ値が設定される。シリンダの少なくとも1つの燃焼パラメータが、基準シリンダ値からの第1シリンダ信号の偏差(逸脱度)の関数として調整され、第1シリンダ信号は基準シリンダ値に追従する。
【0010】
本発明の方法では、シリンダ特有第1シリンダ信号がそれぞれのシリンダ特有基準シリンダ値に追従するように、シリンダ特有差、すなわち例えば、吸気、付着物および磨耗、燃焼中心あるいは機械的許容誤差に関するシリンダ特有差が、シリンダ特有形態のシリンダの燃焼パラメータを調整することにより考慮される。よって、シリンダの第1シリンダ信号は共通の基準値に追従せず、適した基準シリンダ値がそれぞれのシリンダのために設定されるため、シリンダパラメータのシリンダ特有差の考慮が可能となる。よって、例えば、シリンダパラメータのシリンダ特有差が存在しようとも、内燃機関のシリンダは、類似した排出物を排出し、及び/又は類似した効率を発揮することができる。
【0011】
好適には、以下のシリンダ特有信号の少なくとも1つがそれぞれのシリンダから取得される。すなわち、シリンダ内圧、シリンダ排出物温度、窒素酸化排出物、および燃焼空気比のうちの少なくとも1つが取得される。1特定実施形態では、取得されるシリンダ特有第1シリンダ信号は燃焼サイクルの最大シリンダ内圧である。
【0012】
さらに改善された信号品質および制御機能を取得するため、シリンダのシリンダ特有第1シリンダ信号は、好適には、10から1000燃焼サイクル、さらに好適には、40から100燃焼サイクルで取得され、時間的フィルター処理されたシリンダ特有第1シリンダ信号である。
【0013】
一般的に、基準値からの第1シリンダ信号の偏差が明記可能な(任意に規定可能な)許容誤差を超える場合には、シリンダの燃焼パラメータは調整される。このように、さらに滑らかな制御性が得られる。
【0014】
好適には、シリンダ特有基準シリンダ値は、全シリンダの第1シリンダ信号の統計変数、好適には算術平均、特に好適にはメジアンを含み、シリンダ特有オフセットを含む。よって、この統計変数は全シリンダからの第1シリンダ信号の統計評価の結果でよい。特に好適な実施例では、シリンダ特有基準シリンダ値は、全シリンダの第1シリンダ信号のメジアンと、シリンダ特有オフセットとを含んでいる。
【0015】
好適には、シリンダ特有オフセットは差値特徴マッピングの手段で決定され、この差値特徴マッピングは内燃機関の出力のパワー均等物及び/又は内燃機関の吸気圧を考慮し、好適には、さらに、内燃機関の吸気温度及び/又はエンジン速度を考慮する。
【0016】
所望の最良化目標のための差値特徴マッピングは、試験リグ上で、または内燃機関を運用状態にすることで設定が可能である。最良化目標の例は、シリンダのNOx排出物または内燃機関の機械的荷重制限または運用制限を考慮に入れて可能な限り最大化されるシリンダ効率に可能な限り類似したものである。シリンダ特有オフセットの決定は、適した計算方法を利用して、例えば、多項式形態の計算によって、あるいは内燃機関の効率点の知られた値間の補間処理によって特徴マッピングを設定することで実行できる。
【0017】
特に好適な実施形態によれば、シリンダ特有オフセットは、次のシリンダ特有パラメータの少なくとも1つの関数として決定される。すなわち、点火前の圧縮相中のシリンダ圧、空気量均等物、燃焼中心、圧縮比および点火(着火)遅延のうちの少なくとも1つの関数として決定される。
【0018】
一般的に、シリンダ特有オフセットは、少なくとも1つのシリンダ特有シリンダパラメータの関数として、および、試験リグ上の最良化目標の関数として決定でき、特徴マッピングに記録できる。
【0019】
前記のシリンダパラメータの決定自体は知られている。従って、例えば、点火前の圧縮相におけるシリンダ圧、空気量均等物および燃焼中心は、対応シリンダの燃焼サイクルにわたる内燃機関圧力プロフィールからのシリンダ圧センサーによって決定できる。圧縮比および点火遅延は、シリンダ圧プロフィールから、特定条件のもとで決定できる。
【0020】
適したシリンダ特有オフセットを決定するため、全シリンダのこのシリンダパラメータの平均(例えば、算術平均あるいはメジアン)からの、少なくとも1つのシリンダ特有シリンダパラメータのそれぞれの偏差が利用できる。
【0021】
このように、シリンダ特有オフセットは、加数の合計として表すことができ、これら加数は、正または負の係数が提供されたシリンダ特有シリンダパラメータの対応偏差に対応する。
【0022】
点火前の圧縮相時のシリンダのシリンダ圧の偏差は、全シリンダの対応するシリンダ圧の算術平均またはメジアンに対して、たとえば百分率で表すことができる。このように、点火前の圧縮相中の平均に対して増加したシリンダ圧は、シリンダ特有オフセットのための正加数とすることができる。
【0023】
シリンダの空気量の偏差は、全シリンダの空気量均等物の算術平均またはメジアンに対して、例えば百分率で表すことができる。よって、平均に対して増加した空気量は、シリンダ特有オフセットの正加数とすることができる。
【0024】
シリンダの燃焼中心の偏差は、全シリンダの燃焼中心の算術平均またはメジアンとのシリンダ特有燃焼中心の差異として、たとえばクランク角度で表すことができる。よって、シリンダの燃焼中心の負の偏差(すなわち、全シリンダの燃焼中心の平均と較べて早目の燃焼中心)は、シリンダ特有オフセットの正加数とすることができる。
【0025】
シリンダの圧縮比の偏差は、全シリンダの圧縮比の算術平均またはメジアンに対して、例えば百分率で表すことができる。よって、平均に対して増加した圧縮比は、シリンダ特有オフセットの正加数とすることができる。
【0026】
シリンダの点火遅延の偏差は、全シリンダの点火遅延の算術平均またはメジアンとのシリンダ特有点火遅延の差異として、例えばクランク角度で表すことができる。よって、シリンダの点火遅延の正偏差(すなわち、全シリンダの点火遅延の平均と比較して長目の点火遅延)は、シリンダ特有オフセットの負加数とすることができる。
【0027】
言い換えると、シリンダ特有オフセット△mは、以下の式を利用してシリンダパラメータのそれぞれの偏差から決定できる。

△m=a△pverd+b△air+c△MFB+d△ε+e△delay

ここで、△pverdは、点火前の圧縮相時のシリンダ圧の偏差であり、△airは空気量均等物の偏差であり、△MFBは燃焼中心の偏差であり、△εは圧縮比(例えば、部材許容誤差の結果)の偏差であり、△delayは点火遅延(例えば、スパークプラグ及び/又は予燃チャンバの磨耗に起因)の偏差である。シリンダパラメータの偏差に関連する係数a、b、c、d、eを使用して、それぞれのシリンダ特有オフセット△mの決定のために加数の加重が実施できる。1以上のこれら係数を0に設定することで、シリンダ特有オフセット△mを決定するための対応する偏差は無視できる。さらに、正または負の係数の選択は、シリンダ特有オフセット△mのために正偏差が正加数になるか、または負加数になるかを決定することが可能であることを意味する。
【0028】
係数a、b、c、d、eの微調整は、例えば、試験リグで可能であり、あるいは内燃機関を運用状態にしたときに可能である。よって、これら係数はそれぞれ特定値に設定できる。係数は、シミュレーションにより、または計測に基づいた分析的中断によって決定することもできる。内燃機関の運用中にシリンダパラメータおよび対応する偏差をオンラインで取得すること、並びに運用中に最良化の関数として係数を変更することも同様に可能である。このように、例えば、不着火の場合にシリンダに高オフセット△mを得させることで、あるいは、ノッキング及び/又は自己発火した場合にシリンダに低オフセット△mを得させることで燃焼状態に反応することができる。
【0029】
特に好適な実施形態では、燃焼パラメータは対応するシリンダのための燃料量でよい。予燃チャンバ点火型内燃機関では、それはシリンダのそれぞれの主燃焼チャンバのための燃料量でよい。シリンダ特有第1シリンダ信号が、シリンダ特有基準シリンダ値よりも小さい場合には、シリンダの燃料量は増加させることができ、シリンダ特有第1シリンダ信号がシリンダ特有基準シリンダ値よりも大きい場合には、シリンダの燃料量は減少させることができる。好適には、燃料制御(計測)バルブがそれぞれのシリンダに提供でき、シリンダの燃料量を調節するために、対応する燃料制御バルブの開放時間が調整される。このような燃料制御バルブは、好適にはシリンダの吸気管領域に配置されるポート噴入バルブである。ポート噴入バルブは、例えば、完全に開いた位置または完全に閉じた位置のみを有している場合にも使用できる。このように、開放時間はバルブが完全に開いた位置にある時間として定義できる。しかし、一般的には、シリンダの燃料量を調節するためにストローク制御バルブが使用可能であり、バルブの開放時間及び/又は開放ストロークが調節される。
【0030】
それぞれのシリンダ特有第1シリンダ信号が、シリンダ特有第1シリンダ信号の関数として、それぞれのシリンダ特有基準シリンダ値を追従するよう、燃料量燃焼パラメータの制御は下の表1に従って実行できる。表1の欄1は、それぞれのシリンダ特有第1シリンダ信号およびそれぞれの第1シリンダ信号を取得するための好適なシナリオを掲載する。表1の欄2によれば、それぞれの第1シリンダ信号が対応するシリンダ特有基準シリンダ値よりも小さい場合にはシリンダの燃料量は増加する。表1の欄3によれば、それぞれの第1シリンダ信号が対応するシリンダ特有基準シリンダ値よりも大きい場合にはシリンダの燃料量は減少する。例えば、シリンダに関連する燃料制御バルブの開放時間を増加させることでそのシリンダのための燃料量を増加させることができる。一方、シリンダに関連する燃料制御バルブの開放時間を減少させることでそのシリンダのための燃料量を減少できる。
【表1】
【0031】
さらに別な好適実施形態では、対応シリンダの着火点が燃焼パラメータとして設定できる。好適には、点火装置はそれぞれのシリンダに提供され、点火装置の着火点は、TDC(シリンダ内のピストン上死点)のクランク角度で設定される。
【0032】
通常において着火点はTDC(シリンダ内のピストン上死点)のクランク角度で表され、シリンダ内または燃焼チャンバ内で燃料または燃料・空気混合物に点火するために適した点火装置の発火時点を示す。この場合、点火装置はスパークプラグ(例えば、電極スパークプラグあるいはレーザスパークプラグ)または、例えばジーゼル燃料のパイロット噴入を実行するためのパイロット噴入装置でよい。点火装置は予燃チャンバであってもよい。通常では、内燃機関のそれぞれのシリンダの着火点は、TDCのクランク角度で表される同一の全体的な設定値(全体的デフォルト値)に設定される。1例として、この値はTDCのクランク角20°から30°であり、この値は、内燃機関のエンジン速度から決定でき、及び/又は使用される点火装置の関数として決定できる。この全体的デフォルト値は、内燃機関のパワー及び/又は吸気圧及び/又は吸気温度及び/又はエンジン速度の関数として着火点のために適した値を設定する着火点に特徴的な特徴マッピングから推定することができる。
【0033】
本発明の1好適実施形態では、それぞれのシリンダ特有第1シリンダ信号が対応するシリンダ特有基準シリンダ値よりも小さいなら、シリンダの着火点は(全体的デフォルト値に対して)早目に設定され、それぞれのシリンダ特有第1シリンダ信号が対応するシリンダ特有基準シリンダ値よりも大きいなら、シリンダの着火点は(全体的デフォルト値に対して)遅目に設定される。
【0034】
それぞれのシリンダ特有第1シリンダ信号が、シリンダ特有第1シリンダ信号の関数として、それぞれのシリンダ特有基準シリンダ値に追従するよう、着火点燃焼パラメータに関する制御が以下の表2に従って実行できる。表2では、欄1はそれぞれのシリンダ特有第1シリンダ信号と、それぞれの第1シリンダ信号を取得するための適したシナリオとを掲載する。表2の欄2では、シリンダのそれぞれの第1シリンダ信号がそれぞれのシリンダ特有基準シリンダ値よりも小さいならシリンダの着火点を早目に設定している。表2の欄3では、それぞれの第1シリンダ信号が対応するシリンダ特有基準シリンダ値よりも大きいなら着火点を遅目に設定している。
【表2】
【0035】
好適な実施形態では、その少なくとも1つの燃焼パラメータを設定するため、好適にはパラメータの値が所定の全体的エンジン目標値およびシリンダ特有差値を含むようにパラメータを決定させることができる。
【0036】
着火点燃焼パラメータを設定する場合には、シリンダ特有差値はTDCのクランク角±4°、好適には±2°の範囲でよい。
【0037】
明記可能な目標値は内燃機関の全シリンダに対して同一である全体的値でよい。
【0038】
燃焼パラメータとして着火点を設定する場合には、明記可能な目標値は、固定ガスエンジンのシリンダの着火点の全体的デフォルト値でよい。この点に関して、明記可能な目標値は着火点の特徴マッピングから推定できる。着火点の特徴マッピングは、パワー及び/又は吸気圧及び/又は吸気温度及び/又は内燃機関のエンジン速度の関数として着火点の適した値を設定できる。着火点の特徴マッピングで設定される値は試験リグで決定できる。
【0039】
燃焼パラメータとして燃料量を設定する場合には、明記可能な目標値は、固定ガスエンジンのシリンダの燃料制御バルブまたはガス噴入バルブの開放時間のための全体的エンジン基礎値でよい。
【0040】
基本的には、内燃機関の燃焼プロセスは、空気導入燃焼プロセスと燃料導入燃焼プロセスに分類できる。空気導入燃焼プロセスでは、特定排出レベルまたは特定吸気圧を得るために、計測される燃料量は、例えば、内燃機関の効率点および燃料・空気混合比の明記可能な目標値の関数として決定される。それによって実行されるエンジン制御は排出コントローラを利用する。燃料導入燃焼プロセスまたはガス導入燃焼プロセスでは、計測される燃料量は、内燃機関の効率点および内燃機関のパワー及び/又はエンジン速度の明記可能な目標値の関数として決定される。燃料導入燃焼プロセスは、内燃機関の可変速運用中の隔絶された運用時には、エンジンスタート中または内燃機関のアイドリング中における特定の形態である。従って利用されるエンジン制御は大抵の場合にはパワーコントローラ及び/又は速度コントローラを含んでいる。
【0041】
排出コントローラが使用される空気導入燃焼プロセスの場合には、例えば好適には明記可能な目標値は、明記可能な燃料・空気混合比(好適には、この明記可能な燃料・空気混合比は、内燃機関の出力のパワー均等物、好適には、内燃機関に連結された発電機からの電力)から、及び/又は内燃機関の吸気圧から、及び/又はエンジン速度から決定される。
【0042】
本発明に関して使用される“パワー均等物”とは、内燃機関の実際の機械パワーまたは機械パワーに対応する代替可変物を意味すると理解されるべきである。この1例は、発電機の出力から計測される内燃機関に連結された発電機からの電力である。また、エンジン速度およびトルクあるいは発電機の電力および発電機の効率から計算される内燃機関のために算出される機械パワーであってもよい。もし消費パワー量がエンジン速度から正確に計算されるならエンジン速度であってもよい。さらにパワー均等物は、シリンダ内圧から従来方法で決定可能な表示される平均圧であっても、出力トルクから、または電力あるいは機械パワーから計算できる実効平均圧であってもよい。この点において、内燃機関のパワー均等物は、実効平均圧、シリンダキャパシティ、およびパワーストロークから得られる仕事量の間の知られた関係から決定することができる。
【0043】
明記可能な燃料・空気混合比は、内燃機関の吸気圧およびパワーから従来方法によって決定できる。よって、ガスエンジンとして構築されている内燃機関の明記可能な燃料・空気混合比は、例えば、EP0259382B1に従って決定できる。
【0044】
ガス噴入時間のための明記可能な目標値はガス噴入バルブの流動作およびガス噴入バルブを支配する境界条件(例:燃焼ガスの圧力および温度、吸引マニフォールド圧または吸気圧)から決定できる。ガスエンジンの空気量均等物(空気量の対応値)は、ガスエンジンの吸込マニフォールドの状態、特に吸気圧および吸気温度から決定できる。明記可能な燃料・空気混合比を使用して、燃焼ガス量の基準値が決定できる。前もって決定された燃焼ガス量をガスエンジンに導入するため、要求されるガス噴入バルブの全体的開放時間またはガス噴入時間は、ガス噴入バルブの流動作およびガス噴入バルブでの境界条件から決定できる。この例では全体的ガス噴入時間は明記可能な目標値に対応する。
【0045】
例えば、パワーコントローラ及び/又は速度コントローラを採用するガス導入燃焼プロセスにおいては、明記可能な目標値は、明記可能な標的パワー均等物からの内燃機関の出力のパワー均等物の偏差の関数として決定され、及び/又は内燃機関の明記可能なエンジン速度からの内燃機関のエンジン速度の偏差の関数として決定される。
【0046】
よって、内燃機関の明記可能な標的パワー均等物(基準パワー)からの、内燃機関の出力(実際パワー)の実際パワー均等物(例:内燃機関に接続された発電機のために計測される電力)の偏差の関数として、燃料量流の全体的エンジンデフォルト値を決定できるパワーコントローラが利用できる。あるいは、または追加的に、内燃機関の明記可能な標的速度(基準速度)からの内燃機関の実際エンジン速度(実際速度)の偏差の関数として、燃料量流の全体的エンジンデフォルト値を決定する速度コントローラが利用できる。燃料量流の決定された目標値から、明記可能な目標値、例えば、燃料制御バルブの全体的エンジン開放時間、または点火装置の着火点のための全体的エンジンデフォルト値の明記可能な目標値が決定できる。
【0047】
特定実施形態の場合には、シリンダ特有差値はシリンダ特有パイロット値を含んでおり、好適には、シリンダ特有パイロット値は吸気圧から決定され、好適には、さらに内燃機関の吸気温度から決定される。よって、内燃機関を運用させる際にシリンダ特有パイロット値は計測値から導出可能であり、例えば、シリンダ特有信号を取得するセンサーが全く作動しないか正常に作動しない場合に代替値として使用できる。
【0048】
シリンダ特有パイロット値は、例えば、吸込マニフォールド及び/又はガスエンジンのガスレールの気体運動力学および適した部品許容誤差を考慮することができる。ここで気体運動力学および部品許容誤差の作用は、特に吸気圧、エンジン速度および吸気温度によって影響を受ける。この点で、適したシリンダ特有パイロット値を、異なる吸気圧および吸気温度に対応する値を含んだ特徴マッピングから導き出すことが有利である。よって、ガスエンジンを運用するときに適した計測データが取得できるか、適した特徴マッピングが試験または模擬実験によって決定できる。ガスエンジンの運用時にオンライン計測によって適応性の特徴マッピングを発生させることも可能である。
【0049】
特に有利には、シリンダ特有差値には均等値が補充される。均等値はシリンダ特有差値の算術平均に該当する。これは、今までシリンダバランス処理なく運用され、あるいは汎用コントローラだけで運用されていた内燃機関に設置あるいは後付けするときに特に有利である。このようにシリンダ特有差値を補正することで、全体的な計測燃料量は本発明によって影響を受けず、内燃機関の全体的排出制御の調整は不要である。それぞれの着火点の値も全体的エンジン制御に導入できるので、シリンダ特有差値の補正によって、着火点の設定に関する全体的エンジン制御に対する不都合な作用も回避できる。
【0050】
本発明の1好適実施形態では、それぞれのシリンダに対して燃焼状態がモニター可能であり、明記可能な基準状態に関して正常または異常であると評価することが可能である。シリンダの燃焼状態が正常であると判断されれば、シリンダの燃焼パラメータは単に調節されるだけである。よって、燃焼状態としてノッキング及び/又は自己発火及び/又は燃焼妨害がモニター可能であり、ノッキング及び/又は自己発火及び/又は燃焼妨害が燃焼中に感知されなければ、シリンダの燃焼状態は正常であると判断される。燃焼時に異常な燃焼状態を示すか、あるいは熱機械的制限を超えるシリンダの場合、異常な燃焼状態に対抗するか、問題のシリンダを、熱機械的制限からさらに離脱した効率点にまで導くように、シリンダ特有基準シリンダ値を設定することも可能である。よって、例えば、異常燃焼(例えば、ノッキング、自己発火、ピーク圧制限超過)のシリンダでは、燃料制御バルブの噴入時間または開放時間は延長されず、必要ならば短縮される。よって、例えば、断続的燃焼示すシリンダでは、噴入時間は短縮されず、延長もあり得る。
【0051】
また一般的に、第1燃焼パラメータを調節することでシリンダ特有第1シリンダ信号を制御するのと同時的に、別なシリンダ特有シリンダ信号の制御が別な燃焼パラメータの調節によって実行できる。よって、例えば、本発明の方法は、シリンダ特有第1シリンダ信号として最大シリンダ内圧を使用し、燃焼パラメータとして燃料量を使用して実行でき、同時的に、燃焼着火点のシリンダ特有制御は、シリンダ特有燃焼中心の関数として実行される。よって、それぞれの着火点は明記可能な中央値からの、シリンダ特有燃焼中心の偏差の関数として調節される。明記可能な中央値は全体的中央値であることができる。すなわち、内燃機関の全シリンダに対して有効である。
【0052】
(項目1)
少なくとも2つのシリンダ(2)を有した内燃機関(1)、特にガスエンジンである内燃機関の運用方法であって、シリンダ特有第1シリンダ信号(pmax、E)がそれぞれのシリンダ(2)から取得され、対応するシリンダ(2)の少なくとも1つの燃焼パラメータ(Q、Z)が前記第1シリンダ信号(pmax、E)の関数として制御され、シリンダ特有規準シリンダ値(pmax’、E’)がそれぞれのシリンダ(2)に対して前記第1シリンダ信号(pmax、E)のために設定され、前記シリンダ(2)の前記少なくとも1つの燃焼パラメータ(Q、Z)が、前記規準シリンダ値(pmax’、E’)からの、前記第1シリンダ信号(pmax、E)の偏差の関数として調整され、前記第1シリンダ信号(pmax、E)は前記規準シリンダ値(pmax’、E’)に追従することを特徴とする方法。
(項目2)
シリンダ特有第1シリンダ信号である、シリンダ内圧(pcyl)、シリンダ排出物温度(T)、窒素酸化排出物(E)および燃焼空気比のうちの少なくとも1つがそれぞれのシリンダ(2)から取得されることを特徴とする項目1記載の方法。
(項目3)
燃焼サイクルの最大シリンダ内圧(pmax)が前記シリンダ特有第1シリンダ信号として取得されることを特徴とする項目2記載の方法。
(項目4)
前記シリンダ特有規準シリンダ値(pmax’、E’)は、全シリンダ(2)の前記第1シリンダ信号(pmax、E)の統計的変数、好適には算術平均(pmean)、特に好適にはメジアン(Emedian)である統計的変数を含んでおり、およびシリンダ特有オフセット(△m)を含んでいることを特徴とする項目1から3のいずれかに記載の方法。
(項目5)
前記シリンダ特有オフセット(△m)は、差値特徴マッピング(26)の手段によって決定され、該差値特徴マッピング(26)は、前記内燃機関(1)の出力パワーの少なくともパワー均等物(P)及び/又は前記内燃機関(1)の吸気圧(p)を考慮し、好適には追加的に、前記内燃機関(1)の吸気温度(T)及び/又はエンジン速度(n)を考慮することを特徴とする項目4記載の方法。
(項目6)
前記シリンダ特有オフセット(△m)は、点火前の圧縮相時のシリンダ圧、空気量均等物、燃焼中心、圧縮比、および点火遅延であるシリンダ特有シリンダパラメータのうちの少なくとも1つの関数として決定されることを特徴とする項目4または5記載の方法。
(項目7)
前記シリンダ特有オフセット(△m)は、全シリンダのシリンダパラメータの平均からの、シリンダパラメータの少なくとも1つの偏差(△pverd、△air、△MFB、△ε、△delay)の関数として決定されることを特徴とする項目6記載の方法。
(項目8)
前記シリンダ特有オフセット(△m)は、以下の式を使用して、シリンダパラメータのそれぞれの偏差(△pverd、△air、△MFB、△ε、△delay)から決定され、
△m=a△pverd+b△air+c△MFB+d△ε+e△delay
式中、△pverdは、点火前の圧縮相時のシリンダ圧の偏差であり、△airは空気量均等物の偏差であり、△MFBは燃焼中心の偏差であり、△εは圧縮比の偏差であり、△delayは点火遅延の偏差であることを特徴とする項目7記載の方法。
(項目9)
対応するシリンダ(2)の燃料量(Q)が燃焼パラメータとして使用されることを特徴とする項目1から8のいずれかに記載の方法。
(項目10)
前記シリンダ特有第1シリンダ信号(pmax、E)が前記シリンダ特有規準シリンダ値(pmax’、E’)より小さいなら、シリンダ(2)の燃料量(Q)は増加されることを特徴とする項目9記載の方法。
(項目11
前記シリンダ特有第1シリンダ信号(pmax、E)が前記シリンダ特有規準シリンダ値(pmax’、E’)より大きいなら、シリンダ(2)の燃料量(Q)は減少されることを特徴とする項目9記載の方法。
(項目12)
燃料制御バルブ(3)がそれぞれのシリンダ(2)に提供され、シリンダ(2)の燃料量(Q)を調整するために、対応する燃料制御バルブ(3)の開放時間(tcyl)が調整されることを特徴とする項目9から11のいずれかに記載の方法。
(項目13)
対応するシリンダ(2)の着火点(Z)が燃焼パラメータとして調整されることを特徴とする項目1から12のいずれかに記載の方法。
(項目14)
前記シリンダ特有第1シリンダ信号(pmax、E)が前記シリンダ特有規準シリンダ値(pmax’、E’)より小さいなら、シリンダ(2)の着火点(Z)は早目に設定されることを特徴とする項目13記載の方法。
(項目15)
前記シリンダ特有第1シリンダ信号(pmax、E)が前記シリンダ特有規準シリンダ値(pmax’、E’)より大きいなら、シリンダ(2)の着火点(Z)は遅目に設定されることを特徴とする項目13記載の方法。
(項目16)
点火装置(18)がそれぞれのシリンダ(2)に提供され、該点火装置(18)の着火点(Z)はTDC前方のクランク角度(tcyl)で設定されることを特徴とする項目13から15のいずれかに記載の方法。
(項目17)
前記少なくとも1つの燃焼パラメータ(Q、Z)を設定するため、パラメータ(tcyl)が決定され、好適には該パラメータ(tcyl)は、明記可能な全体的エンジン目標値(t)を含んでいることを特徴とする項目1から16のいずれかに記載の方法。
(項目18)
前記明記可能な目標値(t)は明記可能な燃料・空気混合比(λ)から決定され、好適には、該明記可能な燃料・空気混合比(λ)は内燃機関(1)の出力パワーのパワー均等物(P)、好適には内燃機関(1)に接続された発電機からの電力から決定され、及び/又は内燃機関(1)の吸気圧(p)から、及び/又はエンジン速度(n)から決定されることを特徴とする項目17記載の方法。
(項目19)
前記明記可能な目標値(t)は、明記可能な標的パワー均等物(P)からの、内燃機関(1)の出力パワーのパワー均等物(P)の偏差の関数として、及び/又は、内燃機関(1)の明記可能な標的速度(n)からの、内燃機関(1)のエンジン速度(n)の偏差の関数として決定されることを特徴とする項目17記載の方法。
(項目20)
それぞれのシリンダ(2)の燃焼状態がモニターされ、明記可能な規準状態との比較により正常であるか異常であるかが評価され、シリンダ(2)の燃焼状態が正常であると評価されたら該シリンダ(2)の燃焼パラメータ(Q、Z)が単に調整されるだけであることを特徴とする項目1から19のいずれかに記載の方法。
(項目21)
燃焼状態としてノッキング及び/又は自己発火及び/又は燃焼妨害がモニターされ、燃焼状態にノッキング及び/又は自己発火及び/又は燃焼妨害が検知されなければ、シリンダ(2)の燃焼状態は正常であると評価されることを特徴とする項目20記載の方法。
本発明のさらなる詳細および利点は、添付図面の説明の助けを借りて以下において解説されている。
【図面の簡単な説明】
【0053】
図1】内燃機関のシリンダからのNOx排出物に対するシリンダ効率の依存性を例示的に示すグラフである。
図2】シリンダ特有基準シリンダ値に対するシリンダ特有第1シリンダ信号の追随を例示的に示すグラフである。
図3】本発明の方法に従って内燃機関を運用するための複数のシリンダおよび制御装置を備えた内燃機関を示す概略図である。
図4】本発明の方法に従って内燃機関を運用するための内燃機関の3つのシリンダおよび制御装置の概略図である。
図5】燃料導入燃焼プロセスを実行する内燃機関を備えた図4に類似した概略図である。
図6】本発明の制御装置の概略図である。
図7】本発明の別実施例を示す図4に類似した概略図である。
図8】本発明方法の別実施例の制御装置の概略図である。
【発明を実施するための形態】
【0054】
図1は、例示として、NOx排出物の関数としての内燃機関1の2つのシリンダ2(図3参照)のシリンダ効率ηcylおよび対応するシリンダ2のNOx排出物cyl’のために本発明の方法で得られる所望の目標値を示す。示されている異なるNOx排出物cylおよび関連するシリンダのそれぞれの異なるシリンダ効率ηcylは、特にシリンダ2の異なる吸気、付着物および磨耗、燃焼中心または機械的許容誤差のごときシリンダパラメータのシリンダ特有差によって引き起こされる。
【0055】
得られるシリンダ効率ηcylのプロフィールは、対応するシリンダ2のそれぞれのNOx排出物cylへの非直線的依存性を示す。示される異なるNOx排出物cylおよびシリンダの関連したそれぞれの異なるシリンダ効率ηcylは、特に、シリンダ2の異なる吸気、付着物および磨耗、燃焼中心あるいは機械的許容誤差のごときシリンダパラメータのシリンダ特有差によって引き起こされる。
【0056】
本発明の方法によって、これら異なるシリンダ特有シリンダパラメータが考慮できる。なぜなら、それぞれのシリンダ2に対して、基準シリンダ値pmax’からの第1シリンダ信号pmaxの偏差の関数として、第1シリンダ信号pmaxのためのシリンダ特有基準シリンダ値pmax’が設定され、シリンダ2のために燃焼パラメータQ(例えば、シリンダに供給される燃料量)が設定され、第1シリンダ信号pmaxは基準シリンダ値pmax’に追随する(図2参照)。特に、このようにシリンダ2のシリンダ特有基準シリンダ値pmax’は、全シリンダ2のために得られるシリンダ特有NOx排出物cyl’あるいはシリンダ効率ηcyl’が明記可能な範囲内に存在するか、または本質的に同一であるように調整される。要するに、シリンダパラメータのシリンダ特有差を考慮することで、それらが考慮されない場合に比して増加した一般的な効率が全シリンダに対して達成できる。
【0057】
図2は、例えば、内燃機関1(図3参照)の3つのシリンダ2の時間tに対するそれぞれのシリンダ特有シリンダ信号pmaxのプロフィールを示す。このシリンダ特有第1シリンダ信号pmaxは、対応するシリンダ2の燃焼サイクルにわたってそれぞれ取得される対応するシリンダ2のそれぞれの最大シリンダ内圧pmaxである。吸気または燃焼特性のごときシリンダパラメータのシリンダ特有差は、第1シリンダ信号pmaxの異なるプロフィールをもたらす。本発明の方法は、それぞれのシリンダ2のシリンダ特有基準シリンダ値pmax’を提供するか、あるいは設定する。それぞれの第1シリンダ信号pmaxは対応する基準シリンダ値pmax’に追従する。このように、例えば、異なるシリンダ特性あるいはシリンダパラメータにもかかわらず、シリンダ2のそれぞれのNOx排出物cylまたはシリンダ2のシリンダ効率ηcylは同一または類似した値を示す。すなわち、個別のシリンダ2の異なるシリンダパラメータが考慮されないときよりも増加した全体的効率を全シリンダに対して示すことができる。図示したように、時間tから、個々の第1シリンダ信号pmaxは、本発明に従って、そこから時間tが制御するそれぞれのシリンダ特有基準シリンダ値pmax’に追従する。
【0058】
この実施例のそれぞれの基準シリンダ値pmax’は全シリンダ2の最大シリンダ内圧pmaxの算術平均pmeanと、シリンダ特有オフセット△mとで構成される。この場合、それぞれのオフセット△mは、シリンダパラメータ(例えば、空気量均等物、燃焼中心、圧縮比および点火遅延)のシリンダ特有差を考慮する。
【0059】
図3は、3つのシリンダ2を有した内燃機関1を図示する。シリンダ特有第1シリンダ信号を取得するため、シリンダ圧センサー4がそれぞれのシリンダ2と関連付けられる。シリンダ特有第1シリンダ信号は、燃焼サイクルにわたるシリンダ内圧または最大シリンダ内圧pmaxの継時的なプロフィールでよい。シリンダ特有第1シリンダ信号は、複数の燃焼サイクル、たとえば10から1000燃焼サイクル、好適には40から100燃焼サイクルにわたる最大シリンダ内圧pmaxの時間的にフィルター処理された信号でもよい。シリンダ2から取得されるシリンダ特有第1シリンダ信号pmaxは信号ライン14経由で制御装置7に送られる。制御装置7は燃焼サイクルにわたる最大シリンダ内圧pmaxの決定、あるいは複数の燃焼サイクルにわたる最大シリンダ内圧pmaxの時間フィルター処理を実行することができる。
【0060】
以下で説明するように、本発明の方法に従って制御装置7は、制御ライン15を介して対応する燃料制御バルブ3に送られるシリンダ2のための燃焼パラメータとして計測されるそれぞれのシリンダ特有燃料量Qを決定する。本発明の方法に従って、燃料制御バルブ3は対応するシリンダ特有燃料量Qをシリンダ2内に送り込み、シリンダ特有第1シリンダ信号pmaxは、制御装置7によって発生されるシリンダ特有基準信号値pmax’に追従する。
【0061】
図4は、空気導入燃焼プロセスを実行する内燃機関1の3つのシリンダ2の概略ブロック図である。燃料制御バルブ3はそれぞれのシリンダ2と関連付けられており、対応するシリンダ2に供給される燃料量Qは、それぞれの燃料制御バルブ3によって調節できる。よって、制御装置7は燃料制御バルブ3を制御し、制御装置7は燃料制御バルブ3のために、それぞれのシリンダ特有開放時間をシリンダ特有パラメータtcylの形態で出力する。
【0062】
この実施例の燃料制御バルブ3は、完全に開き、完全に閉じる位置のみを有したポート噴入バルブである。燃料制御バルブ3が完全に開いた位置では、推進ガスの形態の燃料が、燃料制御バルブ3に関連付けられたシリンダ2の吸気管内に噴入される。燃料制御バルブ3の開放時間は、それぞれのシリンダ2に対して燃料量Qを設定するのに使用できる。
【0063】
シリンダ特有第1シリンダ信号pmaxはそれぞれのシリンダ2から取得され、制御装置7に供給される。この点で、“シリンダ特有第1シリンダ信号pmax”は燃焼サイクル中に対応するシリンダ2の最大シリンダ内圧に対応する。この実施例では、シリンダ特有第1シリンダ信号pmaxは制御装置7の差値プロセッサー8に供給される。差値プロセッサー8は、それぞれのシリンダ2のための、あるいはそれぞれの燃料制御バルブ3のための差値△tcylを決定する。この値はそれぞれ明記可能な目標値に加えられ、シリンダ特有開放時間がパラメータtcylとしてそれぞれの燃料制御バルブ3のために発生される。
【0064】
この実施例の明記可能な全体的エンジン目標値は、明記可能な燃料・空気混合比λから決定され、明記可能な燃料・空気混合比λは、内燃機関1の出力(例えば、内燃機関1に接続された発電機のために計測される電力)のパワー均等物Pから、及び/又は、内燃機関1の吸気圧p及び/又はエンジン速度nから排出コントローラ5aによって決定される。燃料・空気混合比λに加えて、目標値プロセッサー6では、内燃機関1の吸気圧pおよび吸気温度T並びに供給燃料の圧力pおよび温度T並びにエンジン速度nも入力できる。さらに、燃料制御バルブ3の別な流体パラメータ(例:ポリトロープ出流体均等物またはKv値に従った流体の有効径)並びに燃料または燃焼ガス特性(例:ガス密度、ポリトロープ指数または熱量)が目標値プロセッサー6に入力可能である。目標値プロセッサー6は、明記可能な目標値を決定する。これは、全部の燃料制御バルブ3の開放時間のための全体的エンジン開放時間基礎値に対応する。
【0065】
差値プロセッサー8によって、シリンダ特有開放時間オフセットまたは差値△tcylは、それぞれの個別燃料制御バルブ3のために決定される。これらシリンダ特有差値△tcylは、それぞれシリンダ特有基準シリンダ値pmax’からの、それぞれのシリンダ2のピークシリンダ圧pmaxの偏差に基づく。全エンジン開放時間基礎値tと、シリンダ特有開放時間オフセット△tcylのそれぞれの合計は、駆動電子機器によって制御されるそれぞれの燃料制御バルブ3のための標的開放時間tcylを発生させる。
【0066】
シリンダ特有第1シリンダ信号としての最大シリンダ内圧pmaxの利用に代わって、あるいは加えて、それぞれのシリンダ特有シリンダ排出物温度Tの利用は破線で示されている。
【0067】
よって、それぞれのシリンダ特有基準シリンダ値からのシリンダ特有シリンダ排出物温度Tの偏差は、対応するシリンダ特有開放時間オフセット△tcylの計算に使用できる。シリンダ特有シリンダ排出物温度Tは、例えば、シリンダ内圧センサー4が設置されていない場合、あるいはシリンダ圧信号が不調である場合、あるいはシリンダ圧センサーが不調である場合に、内燃機関1の利用性を増加させるための代替物としても利用が可能である。
【0068】
図5図4に類似したブロック図であり、内燃機関1はガス導入燃焼プロセスによって駆動される。この実施例の場合、明記可能な全体的エンジン目標値は、パワーコントローラ及び/又は速度コントローラを含むことができるコントローラ5bで決定される。パワーコントローラに関しては、内燃機関1(実際パワー)の出力のためのパワー均等物Pに加えて、内燃機関1の明示可能な標的パワー均等物P(基準パワー)は入力変数として機能でき、速度コントローラに関しては、内燃機関1のそれぞれの実際エンジン速度n(実際速度)に加えて、内燃機関1の明記可能な標的速度n(基準速度)は入力変数として機能することができる。コントローラ5bでは、燃料流mに関する全体的エンジンデフォルト値が決定され、その後にそこから、目標値プロセッサー6において、例えば、燃料制御バルブの全体的エンジン開放時間のために、あるいは、点火装置の着火点の全体的エンジンデフォルト値のために、明記可能な全体的エンジン目標値が決定される。
【0069】
図6図4に類似したブロック図であり、制御装置7および差値プロセッサー8がさらに詳細に示されている。この図は内燃機関1の1つのシリンダ2の制御手順の詳細を示す。内燃機関1の他のシリンダ2は破線で示されている。
【0070】
シリンダ内圧センサー4はそれぞれのシリンダ2に関連している。よってシリンダ内圧センサー4は燃焼サイクルにわたってシリンダ内圧pcylのプロフィールを取得することができる。従って、最大取得値プロセッサー9は最大シリンダ内圧pmaxを決定でき、あるいは先行する燃焼サイクルにおけるそれぞれのシリンダ2のピーク圧を決定できる。
【0071】
全シリンダ2の最大圧はシリンダ特有信号pmaxとして基準値プロセッサー10に供給される。図示の実施例では、これは、計算プロセッサー10がシリンダ特有第1シリンダ信号pmaxから算術平均pmeanを発生させ、それを出力することを意味する。さらに、シリンダ特有オフセット△mはオフセットプロセッサー18で計算され、出力される。全シリンダ2からのシリンダ特有第1シリンダ信号pmaxの算術平均pmeanと、例示されたシリンダ特有オフセット△mの合計は、シリンダ特有基準シリンダ値pmax’を発生させ、基準値コントローラ11に供給される。
【0072】
この実施例では、シリンダ特有オフセット△mは、点火pcyl’前(圧縮ストローク中にシリンダ2と関係する吸気バルブの閉鎖後)に対応するシリンダ2のシリンダ内圧から、およびシリンダ2の燃焼中心から、オフセット計算プロセッサー18で計算される。よって、点火pcyl’前のシリンダ内圧は、対応する圧力計算プロセッサー19を介してシリンダ信号pcylの時間プロフィールから直接的に決定されるか、荷重依存圧力決定特徴マッピング20から直接的に決定される。この圧力決定特徴マッピング20は、内燃機関1の荷重、及び/又は吸気圧p、及び/又は吸気温度T及び/又はエンジン速度nに依存する点火pcyl’前のシリンダ内圧の適した値を含むことができる。点火pcyl’前のシリンダ内圧の値のための圧力源の選択は、圧力源スイッチ22で行う。それぞれのシリンダ2の燃焼中心の決定は、シリンダ内圧信号pcylの時間プロフィールから知られた方法により燃焼計算プロセッサー21の中心で実行される。
【0073】
一般的に、シリンダ特有オフセット△mは、次のシリンダ特有シリンダパラメータの少なくとも1つの関数として決定できる。すなわち、空気量均等物、燃焼中心、圧縮比、および点火遅延のうちの少なくとも1つの関数として決定できる。よって、シリンダ特有オフセット△mの決定は、全シリンダ2にわたるこのシリンダパラメータの平均からの、それぞれのシリンダパラメータのうちの少なくとも1つの偏差に基づくことができる。
【0074】
基準値コントローラ11では、対応する基準シリンダ値pmax’からの、シリンダ2の第1シリンダ信号pmaxの偏差は、シリンダ2に関係する燃料制御バルブ3のために決定される。
【0075】
それぞれのシリンダ2に関係する燃料制御バルブ3のためのそれぞれの差値△tcylは全体的エンジン明記可能な目標値に加えられ、燃料制御バルブ3の開放時間はパラメータtcylとして発生される。明記可能な目標値図4で説明するように内燃機関1の排出物コントローラから決定される。基本的には、それは内燃機関1のパワーコントローラ及び/又は速度コントローラからも(図5で説明するように)決定できる。
【0076】
この実施例では、それぞれの差値△tcylは、内燃機関1の吸気圧p及び/又は吸気温度T及び/又はエンジン速度nから、パイロット値計算手段12によって決定されるシリンダ特有パイロット値tを含む。このそれぞれのパイロット値tは、例えば、内燃機関の運用状態中の計測によって決定でき、特徴マッピングの実行において利用される。
【0077】
一般的に、基準値コントローラ11は、例えば、P−、PI−またはPIDコントローラでよい。しかし、他のコントローラ概念およびコントローラタイプである、例えばLQコントローラ、ロバストコントローラまたはファジーコントローラであっても使用できる。
【0078】
全体的エンジン制御の目的で不都合な結果を回避するため、および特に排出物コントローラ5aでは、それぞれの差値△tcylには、均等値プロセッサー13からの均等値tがさらに提供される。全差値△tcylにとっては同じであるこの均等値tは、全シリンダの差値△tcylの算術平均に対応しており、正値または負値でよい。よって、本発明の方法を、今まではシリンダバランス処理されずに運用されていたか、あるいは汎用コントローラで運用されてきた内燃機関1において、全体的エンジン制御に影響するような追加制御なく適用することが可能である。
【0079】
図7図4に類似した概略ブロック図であるが、この実施例では、シリンダ2のための燃料量Qではなく、シリンダ2に提供された点火装置23から着火点Zが設定される。この場合、着火点Zの明記可能な全体的目標値t(全体的デフォルト値)が、着火点の特徴マッピング16から決定され、着火点特徴マッピング16の適した値は、パワーまたはパワー均等値P及び/又は内燃機関1の吸気圧p及び/又は吸気温度T及び/又はエンジン速度nの関数として全体的デフォルト値tのために提供される。TDCのクランク角度で表される制御装置7で決定されるそれぞれのパラメータtcylは、点火コントローラ17に送られる。点火コントローラ17は所定の着火点Zでそれぞれの点火装置23を起動させる。このように、この実施例では、シリンダ2の着火点Zは、もしシリンダ2のピークシリンダ圧pmax(第1シリンダ信号)が基準シリンダ値pmax’よりも小さければ、シリンダ2の着火点Zは全体的デフォルト値tよりも早目に設定され、もしシリンダ2のピークシリンダ圧pmaxが基準シリンダ値pmax’よりも大きければ、シリンダ2の着火点Zは全体的欠陥値tに対して遅目に設定される。
【0080】
図8図6に類似した本発明の別実施例の概略ブロック図であるが、シリンダ2の燃料量Qではなくシリンダ2の点火装置23の着火点Zが設定されている。この実施例では、シリンダ2の窒素酸化排出物cylが燃焼サイクルにわたってNOxプローブ24から取得され、分析装置25に送られる。燃焼サイクルにわたる窒素酸化排出物cylの時間プロフィールから、分析装置25は、シリンダ特有信号Eとして基準値プロセッサー10に送られるフィルター処理された排出物値を決定する。基準値プロセッサー10は、全シリンダ2からのシリンダ特有信号EからメジアンEmedianを発生させ、それを出力する。さらに、オフセットプロセッサー18では、シリンダオフセット△mが計算されて出力される。この実施例では、メジアンEmedianとシリンダ特有オフセット△mの合計がシリンダ特有基準シリンダ値E’を発生させ、それを基準値コントローラ11に送る。
【0081】
本実施例のシリンダ特有オフセット△mは、差値特徴マッピング26を読み出すことによってオフセットプロセッサー18で決定され、対応するシリンダ2のオフセット△mの適した値が、内燃機関1のパワーP及び/又は吸気圧p及び/又は吸気圧温度T及び/又はエンジン速度nの関数として記録される。ここで、シリンダ2のシリンダ特有オフセット△mの差値特徴マッピング26に付着物された値は試験リグで決定された。
【0082】
基準値コントローラ11では、基準シリンダ値E’からの、シリンダ特有信号Eの偏差が決定され、その関数として、対応するシリンダ2に関連する点火装置23の着火点Zのために差値△tcylが決定される。それぞれの差値△tcylは明記可能な全体的エンジン目標値に加えられ、着火点ZはTDCのクランク角度でパラメータtcylとして発生されて点火コントローラ17に送られ、点火コントローラ17は所定の着火点Zで点火装置23(例:スパークプラグ)を活性化させる。この点で明記可能な目標値は、図7に関して説明したように、着火点の特徴マッピング16から決定される。
図1
図2
図3
図4
図5
図6
図7
図8