(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6267566
(24)【登録日】2018年1月5日
(45)【発行日】2018年1月24日
(54)【発明の名称】溝加工ツール並びにこの溝加工ツールを取り付けたスクライブ装置
(51)【国際特許分類】
H01L 21/304 20060101AFI20180115BHJP
H01L 31/0463 20140101ALI20180115BHJP
H01L 31/18 20060101ALI20180115BHJP
H01L 31/0749 20120101ALI20180115BHJP
【FI】
H01L21/304 601B
H01L31/04 532A
H01L31/04 400
H01L31/06 460
【請求項の数】2
【全頁数】8
(21)【出願番号】特願2014-70213(P2014-70213)
(22)【出願日】2014年3月28日
(65)【公開番号】特開2015-192114(P2015-192114A)
(43)【公開日】2015年11月2日
【審査請求日】2017年2月20日
(73)【特許権者】
【識別番号】390000608
【氏名又は名称】三星ダイヤモンド工業株式会社
(74)【代理人】
【識別番号】100114030
【弁理士】
【氏名又は名称】鹿島 義雄
(72)【発明者】
【氏名】山田 充
【審査官】
中田 剛史
(56)【参考文献】
【文献】
特開2004−115356(JP,A)
【文献】
米国特許出願公開第2005/0223570(US,A1)
【文献】
特開2013−071316(JP,A)
【文献】
特開2012−146954(JP,A)
【文献】
欧州特許出願公開第02469587(EP,A1)
【文献】
米国特許出願公開第2011/0318863(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/304
H01L 31/0463
H01L 31/0749
H01L 31/18
(57)【特許請求の範囲】
【請求項1】
薄膜太陽電池基板の薄膜を剥離させて溝を形成する溝加工ツールであって、
棒状のボディと、当該ボディの先端部に形成された先細り状の円錐台部と、前記円錐台部の先端に形成された水平な底面とからなり、当該底面と前記円錐台部の外周円錐面との角部が刃先を形成しており、
前記円錐台部の外周円錐面の中心角が10°〜30°の範囲内で形成されている溝加工ツール。
【請求項2】
前記請求項1に記載の溝加工ツールをホルダを介して保持するスクライブヘッドと、前記薄膜太陽電池基板を載置するテーブルを備え、前記スクライブヘッドを薄膜太陽電池基板に対して相対的に移動させることにより前記溝加工ツールの刃先で前記薄膜太陽電池基板の表面に溝を加工するようにしたスクライブ装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、カルコパイライト化合物やテルル化カドミウムなどを用いた化合物系等の集積型薄膜太陽電池を製造する際に用いられる溝加工ツール並びにこの溝加工ツールを取り付けたスクライブ装置に関する。
ここで、カルコパイライト化合物とは、CIGS(Cu(In,Ga)Se
2)の他に、CIGSS(Cu(In,Ga)(Se,S)
2)、CIS(CuInS
2)等が含まれる。
【背景技術】
【0002】
化合物半導体を光吸収層として用いる薄膜太陽電池においては、基板上に複数のユニットセルを直列接続した集積型構造が一般的である。
【0003】
従来のカルコパイライト化合物系集積型薄膜太陽電池の製造方法について説明する。
図6は、CIGS薄膜太陽電池の製造工程を示す模式図である。まず、
図6(a)に示すように、ソーダライムガラス(SLG)等からなる絶縁基板21上に、プラス側の下部電極となるMo電極層22をスパッタリング法によって形成した後、スクライブ加工により下部電極分離用の溝P1を形成する。
【0004】
その後、
図6(b)に示すように、Mo電極層22上に、化合物半導体(CIGS)薄膜からなる光吸収層23を積層して、その上に、ヘテロ接合のためのZnS薄膜等からなるバッファ層24を形成し、さらにその上に、ZnO薄膜からなる絶縁層25を形成する。そして、下部電極分離用の溝P1から横方向に所定距離離隔した位置に、スクライブ加工によりMo電極層22にまで到達する電極間コンタクト用の溝P2を形成する。
【0005】
続いて、
図6(c)に示すように、絶縁層25の上からZnO:AI薄膜からなる上部電極としての透明電極層26を形成し、スクライブ加工により下部のMo電極層22にまで到達する電極分離用の溝P3を形成する。
【0006】
上述した集積型薄膜太陽電池を製造する工程において、電極分離用の溝P2およびP3をスクライブにより溝加工する技術として、レーザスクライブ法とメカニカルスクライブ法が用いられてきた。
【0007】
レーザスクライブ法は、例えば特許文献1で開示されているように、アークランプ等の連続放電ランプによって、Nd:YAG結晶を励起して発信したレーザ光を照射することにより電極分離用の溝を形成するものであるが、スクライブ時にレーザ光の熱によって光吸収層23の光電変換特性が劣化するおそれがあった。
【0008】
また、メカニカルスクライブ法は、例えば特許文献2および特許文献3で開示されているように、先端が先細り状となった溝加工ツールの刃先を、所定の圧力をかけて基板に押しつけながら移動させることによって、電極分離用の溝を加工する技術である。現在ではこのメカニカルスクライブ法が多く行われている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開平11−312815号公報
【特許文献2】特開2002−094089号公報
【特許文献3】特開2004−115356号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
メカニカルスクライブ法で用いられる溝加工ツールは、一般的には安いコストで、かつ高精度に仕上げることのできる旋盤を使用した丸断面形状のものが多い。このような丸断面形状の溝加工ツールとして、
図7(a)に示すような、棒状のボディ27の下方を先細り状の円錐台部28としてその先端を水平にカットし、水平な底面29の角部30を刃先としたものが特許文献2、3で開示されている。なお、底面29の直径は、加工される溝幅に相応して40〜50μmとなっている。
【0011】
しかし、上記
図7(a)で示した従来の溝加工ツールでは、刃先の強度を維持するため円錐台部28の外周円錐面の中心角α’が概ね60°以上の大きな角度で形成されており、これにより加工される溝の左右縁部が斜めに削られることになって膜剥がれの大きな原因となるとともに、垂直に掘り下げたきれいな溝を加工することができないといった問題点があった。
【0012】
そこで、加工される溝の左右側壁の平行度を精密に仕上げるために、
図7(b)に示すような、円錐台部28の下部に上下均等な直径の正円柱体からなる円柱部31を形成し、その先端角部32を刃先としたものが提案されている。円柱部31の底面32の直径は、加工される溝幅に相応して40〜50μmとなっており、刃先角部32が使用により摩耗や破損した際に、底面33を研磨して対応できるように所定の長さ、例えば、50μm程度の長さで形成されている。
この溝加工ツールを、薄膜太陽電池基板から離れないように一定の圧力で押しつけながら、スクライブ予定ラインに沿って相対的に移動させて溝加工を行うのであるが、被加工面の凹凸で溝加工ツールは慣性力による上下方向の力を受けてバウンドするため、それを抑えるためには一定の押圧力、例えば0.5N以上の力が必要となる。
しかし、溝加工ツールの刃先を上記の押圧力で太陽電池基板に押しつけながら連続使用していると、細い円柱部31がその中間部から折れることがある。この現象は、円柱部31の底面が一度も研磨されていない初期長さを有する新品時に発生する確率が高く、平均使用寿命が短くなるという欠点となっていた。
【0013】
そこで本発明は上記の課題に鑑み、刃先の形状に工夫を加えることによって、溝加工時の膜剥がれ等の現象を抑制するとともに、使用寿命を延ばすことができる溝加工ツール並びにこれを取り付けたスクライブ装置を提供することを目的とする。
【課題を解決するための手段】
【0014】
上記課題を解決するためになされた本発明の薄膜太陽電池用の溝加工ツールは、薄膜太陽電池基板の薄膜を剥離させて溝を形成する溝加工ツールであって、棒状のボディと、当該ボディの先端部に形成された先細り状の円錐台部と、前記円錐台部の先端に形成された水平な底面とからなり、当該底面と前記円錐台部の外周円錐面との角部が刃先を形成しており、前記円錐台部の外周円錐面の中心角が(20°を中心とした)10°〜30°の範囲内で形成されている構成とした。
なお、上記外周円周面の中心角は、20°に近い角度とするのが好ましい。
【発明の効果】
【0015】
本発明の溝加工ツールは、スクライブ装置に組み込まれているスクライブヘッドのホルダに取り付けて使用される。スクライブ加工の際、本発明に係る溝加工ツールでは、円錐台部の外周円錐面の中心角が、発明者等の実験により得られた好ましい数値である20°を中心とした10°〜30°の範囲内で形成されているので、ツールにかかる振動(衝撃)を小さく抑えることができるとともに、中心角を小さくすることで加工される溝の左右側壁面の平行度を維持することができ、きれいな溝を精密に加工することができる。また、外周円錐面の中心角が鈍角で形成された従来のツールのように、加工される溝の左右のエッジが斜めに削られるようなことがなくなって膜剥がれの発生を抑制することができる。さらに、円錐台部は、角度は小さいものの底面から上方にかけての直径が太くなっているので、正円柱体の従来ツールに比べて強度を高めることができ、スクライブ中に折れる等の不具合の発生を抑制することができるといった効果がある。
【図面の簡単な説明】
【0016】
【
図1】本発明の溝加工ツールを用いたスクライブ装置の一実施形態を示す概略的正面図。
【
図3】本発明に係る溝加工ツールの刃先部分の拡大正面図。
【
図4】先端角度が異なる3種のツールを用いて3000m溝加工したときの刃先にかかる振動と膜剥がれ幅を示す表。
【
図5】
図4の実験に使用した3種の溝加工ツールを示す図。
【
図6】一般的なCIGS系の薄膜太陽電池の製造工程を示す模式図。
【発明を実施するための形態】
【0017】
以下において、本発明の詳細を、その実施の形態を示す図面に基づいて詳細に説明する。
図1は本発明に係る溝加工ツールを用いた集積型薄膜太陽電池用スクライブ装置の実施形態を示す概略的な正面図である。
スクライブ装置Aは、太陽電池基板Wを載置して保持するテーブル1を備えている。テーブル1は、水平なレール2に沿ってY方向(
図1の前後方向)に移動できるようになっており、モータ(図示略)によって回転するネジ軸3により駆動される。さらに、テーブル1はモータを内蔵する回転駆動部4により水平面内で回動できるようになっている。
【0018】
テーブル1を挟んで設けてある両側の支持柱5、5と、X方向に水平に延びるビーム(横桟)6とを備えたブリッジ7が、テーブル1上を跨ぐようにして設けられている。
ビーム6には、X方向に水平に延びるガイド9が設けられ、このガイド9にはスクライブヘッド10がモータMによってX方向に移動できるように取り付けられている。
【0019】
スクライブヘッド10の下部には、テーブル1上に載置される太陽電池基板Wの薄膜表面をスクライブ加工する溝加工ツール8を保持するホルダ11が設けられている。ホルダ11は、流体シリンダ12によって溝加工ツール8と共に昇降できるように形成されている。
【0020】
図2は、本発明に係る溝加工ツール8の全体形状を示す斜視図であり、
図3は刃先部分の拡大正面図である。この溝加工ツール8は、鋼材や超硬合金等の工具特性に優れた材料で作製される。
溝加工ツール8は、実質的にホルダ11への取付部となる断面円形の棒状のボディ81と、このボディ81の先端部に一体的に形成された先細り状の円錐台部82と、この円錐台部82の細くなった先端部に形成された水平な底面83とを備えており、この底面83と円錐台部82の外周円錐面84との角部が刃先85として形成されている。ボディ81並びに円錐台部82は、それぞれの軸心が同軸となるように形成するのがよい。これにより、ボディ81を旋盤などの加工機械のチャックで掴んで回転させ、バイトでボディ81の先端部分を研削することにより、容易かつ精密に円錐台部82並びに刃先85を加工することができる。
【0021】
図4は、発明者等が刃先の角度がそれぞれ異なる超硬合金製の3種の溝加工ツールを用いて、太陽電池基板の溝を3000m加工したときのツールにかかる振動と加工溝の膜剥がれ幅を検証した結果を示す表である。表中、ツール種欄における角度は、実験に用いた3種のツールの外周円錐面の中心角αを示すものである。また、
図5は上記実験に用いた溝加工ツールを示すものであって、
図5(b)は中心角αが20°のものであり、
図5(c)は45°のものである。また
図5(a)は刃先を形成する角部を直角にしたものであり、ここでは中心角αを0°とした。
これらの実験から、中心角20°のものが、角度の大きな45°のものに比べて膜剥がれ幅が半分程度と小さいことがわかる。また、刃先先端にかかる荷重の変位量(振動)についても、中心角20°のものが他に比べて小さく、ツールにかかる衝撃が少ないことが判明した。
そして、上記実施例で示した溝加工ツール8では、水平な底面83と外周円錐面84との角度、すなわち、外周円錐面84の中心角αを20°を中心とした±10°の範囲とすれば、膜剥がれ幅をほぼ同程度に抑えられることが判明した。
【0022】
上述した溝加工ツール8を用いてスクライブ加工を行う場合は、ツール先端を下方に向けた姿勢で溝加工ツール8をスクライブヘッド10のホルダ11に取り付ける。そして、テーブル1をY方向に移動させて太陽電池基板Wのスクライブ予定ラインが溝加工ツール8の直下になるよう位置決めをした後に、溝加工ツール8を下動させてその先端を流体シリンダ12により太陽電池基板Wの表面に押しつけた状態でX方向に移動させてX方向のスクライブ加工を行う。また、太陽電池基板Wの表面にY方向のスクライブ加工を行う場合には、テーブル1を90度回転させて、上記と同様の動作を行う。
【0023】
上記のスクライブ加工の際、本実施例の溝加工ツールでは、円錐台部82の外周円錐面84の中心角αが20°を中心とした±10°の範囲で設定されているので、上記実験値で示された通り、ツールにかかる振動を小さく抑えることができるとともに、中心角αを小さくすることで加工される溝の左右側壁面の平行度を維持することができ、きれいな溝を精密に加工することができる。
また、外周円錐面84の中心角αが鈍角で形成された従来のツールのように、加工される溝の左右のエッジが斜めに削られるようなことがなくなって、膜剥がれの発生を抑制することができる。しかも、円錐台部82は、角度は小さいものの底面から上方にかけて直径が太くなっているので、従来の正円柱体のツールに比べて強度を高めることができ、スクライブ中に折れる等の不具合の発生を抑制することができる。
【0024】
以上、本発明の代表的な実施例について説明したが、本発明は必ずしも上記の実施例構造のみに特定されるものでなく、その目的を達成し、請求の範囲を逸脱しない範囲内で適宜修正、変更することが可能である。
【産業上の利用可能性】
【0025】
本発明は、カルコパイライト化合物やテルル化カドミウムなどの化合物系半導体膜を用いた集積型薄膜太陽電池の製造に用いることのできる溝加工ツールに適用することができる。
【符号の説明】
【0026】
A スクライブ装置
W 太陽電池基板
P1、P2、P3 スクライブ溝
8 溝加工ツール
81 ボディ
82 円錐台部
83 底面
84 外周円錐面
85 刃先
10 スクライブヘッド
11 ホルダ