特許第6268189号(P6268189)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 北京納米能源与系統研究所の特許一覧

<>
  • 特許6268189-トランジスタアレイ及びその製造方法 図000002
  • 特許6268189-トランジスタアレイ及びその製造方法 図000003
  • 特許6268189-トランジスタアレイ及びその製造方法 図000004
  • 特許6268189-トランジスタアレイ及びその製造方法 図000005
  • 特許6268189-トランジスタアレイ及びその製造方法 図000006
  • 特許6268189-トランジスタアレイ及びその製造方法 図000007
  • 特許6268189-トランジスタアレイ及びその製造方法 図000008
  • 特許6268189-トランジスタアレイ及びその製造方法 図000009
  • 特許6268189-トランジスタアレイ及びその製造方法 図000010
  • 特許6268189-トランジスタアレイ及びその製造方法 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6268189
(24)【登録日】2018年1月5日
(45)【発行日】2018年1月24日
(54)【発明の名称】トランジスタアレイ及びその製造方法
(51)【国際特許分類】
   H01L 41/113 20060101AFI20180115BHJP
   H01L 41/193 20060101ALI20180115BHJP
   H01L 41/187 20060101ALI20180115BHJP
   H01L 41/23 20130101ALI20180115BHJP
【FI】
   H01L41/113
   H01L41/193
   H01L41/187
   H01L41/23
【請求項の数】19
【全頁数】13
(21)【出願番号】特願2015-551961(P2015-551961)
(86)(22)【出願日】2013年12月12日
(65)【公表番号】特表2016-503967(P2016-503967A)
(43)【公表日】2016年2月8日
(86)【国際出願番号】CN2013089184
(87)【国際公開番号】WO2014108012
(87)【国際公開日】20140717
【審査請求日】2015年9月9日
(31)【優先権主張番号】201310011220.X
(32)【優先日】2013年1月11日
(33)【優先権主張国】CN
(73)【特許権者】
【識別番号】516044129
【氏名又は名称】北京納米能源与系統研究所
(74)【代理人】
【識別番号】110001508
【氏名又は名称】特許業務法人 津国
(72)【発明者】
【氏名】王中林
(72)【発明者】
【氏名】武文倬
(72)【発明者】
【氏名】温肖楠
【審査官】 小山 満
(56)【参考文献】
【文献】 特表2007−513504(JP,A)
【文献】 特表2012−531036(JP,A)
【文献】 特開2012−186471(JP,A)
【文献】 米国特許出願公開第2012/0306319(US,A1)
【文献】 特開2011−211164(JP,A)
【文献】 米国特許出願公開第2005/0156362(US,A1)
【文献】 国際公開第2005/054148(WO,A2)
【文献】 米国特許出願公開第2011/0010904(US,A1)
【文献】 国際公開第2010/147675(WO,A1)
【文献】 米国特許出願公開第2012/0223617(US,A1)
【文献】 欧州特許出願公開第02495777(EP,A2)
【文献】 特開2010−135741(JP,A)
【文献】 米国特許出願公開第2011/0221306(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 41/00−41/47
(57)【特許請求の範囲】
【請求項1】
基板と、当該基板を共用する若干のトランジスタユニットとを含み、
前記トランジスタユニットは、
前記基板上に位置する下電極及び下電極の引き出し線と、
前記下電極上に位置する圧電材料である圧電体と、
前記圧電体上に位置する上電極と、を含み、
各トランジスタユニットは、個別の前記上電極及び前記下電極を有し、
前記圧電体の内部には、前記トランジスタユニットに直接に外部からの機械的作用である外力が印加されるか又は圧力駆動されて変形されることに対応して前記圧電体が変形することにより、一端が正で他端が負である圧電電界が発生し、
前記圧電電界により、前記トランジスタユニットにおける下電極又は上電極の電極材料とその近傍の圧電体との間の界面障壁が調整・制御され、
前記界面障壁が調整・制御されることにより、前記トランジスタユニットのキャリアの伝送が調整されて制御、又は、トリガーされて、前記トランジスタユニットの電気的性能が制御される、
ことを特徴とするトランジスタアレイ。
【請求項2】
前記トランジスタユニットにおける前記圧電体は、分極配向を有する、
ことを特徴とする請求項1に記載のトランジスタアレイ。
【請求項3】
前記トランジスタユニットにおける前記圧電体の前記分極配向は、前記基板にほぼ垂直である、
ことを特徴とする請求項2に記載のトランジスタアレイ。
【請求項4】
前記トランジスタアレイにおいて、各前記トランジスタユニットにおける前記圧電体の前記分極方向は、ほぼ同じである、
ことを特徴とする請求項2又は3に記載のトランジスタアレイ。
【請求項5】
前記トランジスタアレイにおける前記トランジスタユニット間に、フレキシブル絶縁充填層が更に含まれ、
前記フレキシブル絶縁充填層の上面は、少なくとも、前記トランジスタユニットの上電極を露出させる、
ことを特徴とする請求項1乃至4のいずれか一項に記載のトランジスタアレイ。
【請求項6】
前記トランジスタユニットは、前記上電極を前記トランジスタアレイから引き出すための上電極の引き出し線を更に含む、
ことを特徴とする請求項5に記載のトランジスタアレイ。
【請求項7】
前記トランジスタアレイは、前記フレキシブル絶縁充填層上に位置し、前記トランジスタユニットのうち、前記フレキシブル絶縁充填層の上面から露出される部分を封止するための封止層を、更に含む、
ことを特徴とする請求項6に記載のトランジスタアレイ。
【請求項8】
前記トランジスタユニットにおける前記圧電体は、ZnO、GaN、CdS、InN、InGaN、CdTe、CdSe、ZnSn0、チタン酸ジルコン酸鉛のナノワイヤ、ナノロッドやフィルム、又はポリフッ化ビニリデンのナノファイバーである、
ことを特徴とする請求項1乃至7のいずれか一項に記載のトランジスタアレイ。
【請求項9】
前記圧電体は、ナノワイヤ、ナノロッド又はナノファイバーであり、
前記圧電体の軸線方向は、前記下電極又は前記基板の表面にほぼ垂直である、
ことを特徴とする請求項8に記載のトランジスタアレイ。
【請求項10】
前記トランジスタユニットの横断面積は、25μm又はこれより小さい、
ことを特徴とする請求項1乃至9のいずれか一項に記載のトランジスタアレイ。
【請求項11】
前記トランジスタユニット間の距離は、数μm〜数mmである、
ことを特徴とする請求項1乃至10のいずれか一項に記載のトランジスタアレイ。
【請求項12】
前記トランジスタユニットは、軸線が前記基板にほぼ垂直である円柱、四角柱、六角柱又は不規則の角柱形状である、
ことを特徴とする請求項1乃至11のいずれか一項に記載のトランジスタアレイ。
【請求項13】
各前記トランジスタユニットにおける前記圧電体は、同じ圧電材料で構成される、
ことを特徴とする請求項1乃至12のいずれか一項に記載のトランジスタアレイ。
【請求項14】
若干の同様な前記トランジスタユニットを含む、
ことを特徴とする請求項1乃至13のいずれか一項に記載のトランジスタアレイ。
【請求項15】
前記基板は、軟性基板又は硬性基板である、
ことを特徴とする請求項1乃至14のいずれか一項に記載のトランジスタアレイ。
【請求項16】
前記トランジスタユニットにおける前記上電極及び/又は前記下電極は、
導電酸化物、グラフェン又は銀ナノワイヤのコーティングから選択される1種を使用し、又は、
金、銀、ブラチナ、アルミニウム、ニッケル、銅、チタン、クロム、セレン又はこれらの合金から選択される1種を使用する、
ことを特徴とする請求項1乃至15のいずれか一項に記載のトランジスタアレイ。
【請求項17】
基板を準備するステップと、
前記基板上に、複数の下電極を含む下電極のアレイと、下電極の引き出し線を形成するステップと、
複数の圧電体が圧電体のアレイを構成するように、前記下電極上に前記圧電体を形成するステップと、
複数の上電極が上電極のアレイを構成するように、前記圧電体上に前記上電極を形成するステップと、を含み、
各トランジスタユニットは、個別の前記上電極及び前記下電極を有し、
前記圧電体の内部には、前記トランジスタユニットに直接に外部からの機械的作用である外力が印加されるか又は圧力駆動されて変形されることに対応して前記圧電体が変形することにより、一端が正で他端が負である圧電電界が発生し、
前記圧電電界により、前記トランジスタユニットにおける下電極又は上電極の電極材料とその近傍の圧電体との間の界面障壁が調整・制御され、
前記界面障壁が調整・制御されることにより、前記トランジスタユニットのキャリアの伝送が調整されて制御、又は、トリガーされて、前記トランジスタユニットの電気的性能が制御される、
ことを特徴とするトランジスタアレイの製造方法。
【請求項18】
前記下電極上に圧電体を形成するステップの後に、
前記圧電体の頂部がフレキシブル絶縁充填層から露出するように、前記圧電体間に前記フレキシブル絶縁充填層を形成するステップを更に含む、
ことを特徴とする請求項17に記載のトランジスタアレイの製造方法。
【請求項19】
前記圧電体上に前記上電極を形成するステップにおいて、
前記上電極が前記圧電体上に形成され、前記上電極の引き出し線が前記上電極に電気的に接続されるように、前記圧電体及び前記フレキシブル絶縁充填層上に、前記上電極及び前記上電極の引き出し線を形成する、
ことであることを特徴とする請求項18に記載のトランジスタアレイの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体部品に関し、特に、圧力検知イメージングに適用されるトランジスタアレイ及びその製造方法に関する。
【背景技術】
【0002】
センサ、エネルギー採集、及び、HCI(Human−ComputerInteraction)などの分野において、透明なフレキシブル基板にマイクロ機能素子が多く集積されることは、非常に重要な意義を持っている。現在、フレキシブル電子工学に基づく圧力検知分野において、製造されたマイクロ・ナノ圧力センサの性能に対する基板材料の曲げ変形の影響をできるだけ低減させることに注目している。従来の圧力検知技術の大部分は、平面型の電界効果トランジスタによるものである。このような技術は、十分に発展されてきたが、電界効果トランジスタユニットが三端子構造を有するため、通常比較的に複雑な集積工程を必要とし、このような技術に基づくトランジスタアレイからなる圧力センサには、外部と圧力センサ自身が直接に互いに作用するメカニズムが欠けている。
【0003】
なお、従来の平面型の電界効果トランジスタからなるフレキシブル圧力センサ部品において、集積密度も各ユニットのサイズによって影響されている。通常、ユニットのサイズは、数百μm程度で、圧力センサの集積密度及び空間分解能を非常に影響している。
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明は、電気的性能が直接に外部の機械的作用によって制御されるトランジスタアレイを提供することにその目的がある。
【課題を解決するための手段】
【0005】
上記目的を実現するために、本発明は、
基板と、当該基板を共用する若干のトランジスタユニットとを含み、
前記トランジスタユニットは、
前記基板に位置する下電極及び下電極の引き出し線と、
前記下電極上に位置する圧電材料である圧電体と、
前記圧電体上に位置する上電極と、を含むトランジスタアレイを提供する。
【0006】
好ましくは、前記トランジスタユニットにおける圧電体は、分極配向を有する。
【0007】
好ましくは、前記トランジスタユニットにおける圧電体の前記分極配向は、前記基板にほぼ垂直である。
【0008】
好ましくは、前記トランジスタアレイにおいて、各前記トランジスタユニットにおける圧電体の前記分極方向は、ほぼ同じである。
【0009】
好ましくは、前記トランジスタアレイにおけるトランジスタユニット間に、フレキシブル絶縁充填層が更に含まれ、前記フレキシブル絶縁充填層の上面は、少なくとも、前記トランジスタユニットの上電極を露出させている。
【0010】
好ましくは、前記トランジスタユニットは、前記上電極を前記トランジスタアレイから引き出すための上電極の引き出し線を更に含む。
【0011】
好ましくは、前記トランジスタアレイは、前記フレキシブル絶縁充填層上に位置し、前記トランジスタユニットのうち、前記フレキシブル絶縁充填層の上面から露出される部分を封止するための封止層を、更に含む。
【0012】
好ましくは、前記トランジスタユニットにおける前記圧電体は、ZnO、GaN、CdS、InN、InGaN、CdTe、CdSe、ZnSn0又はチタン酸ジルコン酸鉛のナノワイヤ、ナノロッドやフィルム、又はポリフッ化ビニリデンのナノファイバーである。
【0013】
好ましくは、前記圧電体は、ナノワイヤ、ナノロッド又はナノファイバーであり、前記圧電体の軸線方向は、前記下電極又は前記基板の表面にほぼ垂直である。
【0014】
好ましくは、前記トランジスタユニットの横断面積は、25μm又はこれより小さい。
【0015】
好ましくは、前記トランジスタユニット間の距離は、数μm〜数mmである。
【0016】
好ましくは、前記トランジスタユニットは、軸線が前記基板にほぼ垂直である円柱、四角柱、六角柱又は不規則の角柱形状である。
【0017】
好ましくは、各前記トランジスタユニットにおける前記圧電体は、同じ圧電材料で構成される。
【0018】
好ましくは、若干の同様な前記トランジスタユニットを含む。
【0019】
好ましくは、前記基板は、軟性基板又は硬性基板である。
【0020】
好ましくは、前記トランジスタユニットにおける前記上電極及び/又は前記下電極は、導電酸化物、グラフェン又は銀ナノワイヤのコーティングから選択される1種を使用し、又は、金、銀、ブラチナ、アルミニウム、ニッケル、銅、チタン、クロム、セレン又はこれらの合金から選択される1種を使用する。
【0021】
なお、本発明は、
基板を準備するステップと、
前記基板上に、複数の下電極を含む下電極のアレイと、下電極の引き出し線を形成するステップと、
複数の圧電体が圧電体のアレイを構成するように、前記下電極上に前記圧電体を形成するステップと、
複数の上電極が上電極のアレイを構成するように、前記圧電体上に前記上電極を形成するステップと、を含むトランジスタアレイの製造方法を提供する。
【0022】
好ましくは、前記下電極上に圧電体を形成するステップの後に、前記圧電体の頂部がフレキシブル絶縁充填層から露出するように、前記圧電体間に前記フレキシブル絶縁充填層を形成するステップを更に含む。
【0023】
好ましくは、前記圧電体上に前記上電極を形成するステップにおいて、前記上電極が前記圧電体上に形成され、前記上電極の引き出し線が前記上電極に電気的に接続されるように、前記圧電体及び前記フレキシブル絶縁充填層上に、前記上電極及び前記上電極の引き出し線を形成する。
【発明の効果】
【0024】
従来技術に比べて、本発明の利点は、以下の通りである。本発明に提供されるトランジスタアレイは、基板と、当該基板を共用する若干のトランジスタユニットとを含み、前記トランジスタユニットは、前記基板に位置する下電極及び下電極の引き出し線と、前記下電極上に位置する圧電材料である圧電体と、前記圧電体上に位置する上電極と、を含む。電界効果トランジスタを使用する従来の圧電検知トランジスタアレイとは異なり、本発明のトランジスタアレイにおけるトランジスタユニットは、二端子部材であり、電界効果トランジスタのゲート電圧ではなく、印加される外力によって、トランジスタユニットの上電極と下電極間の伝送性質を制御する。トランジスタアレイに、外力を印加し又は圧力駆動して、トランジスタユニットを変形させた場合、圧電材料で構成された圧電体も対応的に変形し、さらに、圧電体内部に、一端(下部)が正で且つ他端(上部)が負である圧電電界を発生する。発生された圧電電界は、トランジスタユニットの下電極(ソース)又は上電極(ドレイン)近傍の圧電体と電極材料間の界面障壁を効果的に制御することで、電界効果トランジスタのゲートに印加されるゲート電圧に類似する機能を持つ。トランジスタユニットに印加される外力によって、部品のキャリアの伝送を効果的に制御したりトリガーしたりすることができる。各トランジスタユニットに印加される外力が異なる場合、圧電体の変形も異なるので、トランジスタユニットの伝送性質が異なることになる。各トランジスタユニットの伝送性質の変化を記録することによって、外力の強度および外力の空間配置を記録することができる。
【0025】
トランジスタアレイの圧電体内部に圧電起電力を発生させる機械的な駆動は、空気や水の流れ、機器のエンジンの運転や回転、人間の動き、筋肉の収縮・弛緩、呼吸、心拍動又は血液の流れなどによって発生される機械的な振動信号であってもよい。したがって、本発明のトランジスタアレイは、圧力検知装置として広く適用されることができる。
【0026】
本発明のトランジスタアレイにおいて、トランジスタユニットは、構造が簡単で、個別にアクセスされることができる。そして、トランジスタユニットのサイズは、25μm又はこれより小さくてもよく、トランジスタユニット間の距離は、50μm又はこれより小さくてもよい。圧力検知イメージング部品として、その空間分解能は、従来の電界効果トランジスタアレイより顕著に高くなる。なお、トランジスタユニットにおける圧電体は、圧電のナノワイヤ、ナノロッド、フィルム又はナノファイバーを使用するので、圧力に対する感度が高い。圧力に対するトランジスタユニットの分解能は、1kPa又はこれよりも小さい。
【図面の簡単な説明】
【0027】
図面によって、本発明の上記及び他の目的、特徴及び利点は、一層明らかになろう。図面において、同じ符号は同じ部品を示す。図面は、実際サイズ等の割合によって描かれたものではなく、本発明の主旨を示すことにその目的がある。
図1】トランジスタアレイの実施例1の平面図である。
図2】トランジスタアレイの実施例1の断面構造を示す概略図である。
図3】トランジスタアレイの実施例2の構造を示す概略図である。
図4】トランジスタアレイの実施例2の構造を示す概略図である。
図5】トランジスタアレイの製造方法のフローチャートである。
図6】トランジスタアレイの製造工程を示す概略図である。
図7】トランジスタアレイの製造工程を示す概略図である。
図8】トランジスタアレイの製造工程を示す概略図である。
図9】トランジスタアレイの製造工程を示す概略図である。
図10】トランジスタアレイの製造工程を示す概略図である。
【発明を実施するための形態】
【0028】
以下、図面に基づいて、本発明の実施例の技術案を完全及び明らかに説明する。もちろん、これらの実施例は、本発明の一部の実施例に過ぎず、全ての実施例ではない。本発明の実施例に基づいて、当業者が進歩性に値する労働なしに取得された実施例は、いずれも本発明の保護範囲に属する。そして、概略図を組み合わせて本発明を詳細に説明する。本発明の実施例を詳細に説明する時使用する前記概略図は、説明の便宜上ための例示に過ぎず、本発明の保護範囲を限定するものではない。
【0029】
従来の圧力検知技術の大部分は、平面型の電界効果トランジスタによるものである。電界効果トランジスタユニットが三端子構造を有するため、比較的に複雑な集積工程を必要とし、このような技術に基づくトランジスタアレイの圧力センサには、外部と圧力センサ自身が直接に互いに作用するメカニズムが欠けている。なお、従来の平面型の電界効果トランジスタに基づくフレキシブル圧力センサ部品において、集積密度も各素子のサイズによって影響されている。素子のサイズは、通常、数百μmレベルであり、これは圧力センサの集積密度及び空間分解能に大きな影響を与えている。従来技術の欠点を克服するために、本発明は、同一の基板を共用すると共に個別に動作可能な複数のトランジスタユニットからなるトランジスタアレイを提供する。前記トランジスタユニットは、金属、圧電体、金属の構造を持つ。また、本発明は、垂直成長された圧電体又は配置される圧電体(ナノ圧電材料)によって大規模の3次元の圧電気電子工学(piezotronics)トランジスタアレイを提供することに目的がある。圧電気電子工学トランジスタにおいて、圧電体が外力を受けて発生する圧電起電力によって、キャリアの伝送を効果的に制御することで、圧電起電力をゲート電圧としてトランジスタの導通を制御することができる。さらに、本発明は、外力又は圧力によって駆動制御される電子部品、微小電気機械(MEMS・NEMS)ディバイス及びセンサを提供する新しい方法を実現することができる。
【0030】
本発明の技術案をより明らかにするため、以下、図面を組み合わせて、本発明の実施例を詳細に説明する。
<実施例1>
【0031】
図1及び図2を参照すると、図1は、本実施例のトランジスタアレイの平面図であり、図2は、トランジスタアレイの断面構造を示す概略図である。本実施例のトランジスタアレイは、基板100と、基板100を共用する若干(m×n個、m及びnは、1以上の任意の自然数である)のトランジスタユニット200を含む。トランジスタユニットは、基板100上に位置する下電極201及び下電極の引き出し線(図示せず)と、下電極201上の圧電体202と、圧電体202上の上電極203と、を含む。圧電体202は、圧電材料として、ZnO、GaN、CdS、InN、InGaN、CdTe、CdSe、ZnSnO、又は、チタン酸ジルコン酸鉛(PZT)などの材料のナノワイヤ、ナノロッド、フィルム、又は、ポリフッ化ビニリデン(PVDF,poly(vinylidenefluoride))のナノファイバーを選択することができる。各トランジスタユニットにおける圧電体の材料は、同様である。すなわち、トランジスタアレイにおいて、トランジスタユニットにおける圧電体全体は、同一圧電材料で構成されることが好ましい。圧電体は、圧電性を有するナノワイヤ、ナノロッド、又は、ナノファイバーで構成されることが好ましい。圧電体と下電極又は基板との配向は、圧電体の軸線方向が下電極又は基板にほぼ垂直であるように設置することが好ましい。
【0032】
トランジスタユニットにおける圧電体は、分極配向を有することが好ましい。成長法によって単結晶の材料を取得し、堆積法によって多結晶の材料を取得することができる。従来の製造方法は、分極配向が一致する材料を取得することができる。例えば、気相法又は液相法によって堆積させて取得されるc軸配向のZnOナノワイヤを圧電体とすることができる。c軸がZnOの分極方向であるため、トランジスタアレイが外力を受ける場合、又は、トランジスタアレイに歪みが発生する場合、トランジスタユニットにおける圧電体であるZnOも対応的に変形し、さらに、ZnOの内部に、c軸方向に沿う一端が正で他端が負である圧電電界を発生する。
【0033】
本発明のトランジスタアレイにおいて、トランジスタユニットにおける圧電体は、分極配向を有し、前記圧電体の分極配向が基板の表面にほぼ垂直であるように構成されることが好ましい。例えば、トランジスタアレイにおいて、トランジスタユニットにおける圧電体は、c軸の分極配向を有するZnOナノワイヤであり、ZnOナノワイヤのc軸は基板に垂直である。トランジスタアレイにおいて、各トランジスタユニットにおける圧電体の分極方向がほぼ同じであることがより好ましい。このような構造により、各トランジスタユニットにおける圧電体の分極方向は、同じ又はほぼ同じになる。各トランジスタユニットを構成する材料が同様である場合、外力又は歪みに対する応答能力がほぼ同じであるため、各トランジスタユニットの性能もほぼ同じになる。
【0034】
本実施例において、基板100は、軟性又は硬性の基板である。ポリイミド(polyimide)又はポリエチレンテレフタラート(PET)等の軟性材料を使用してもよく、シリコンシート又はセラミックス等の非軟性(硬性)材料を使用してもよい。
【0035】
トランジスタユニット200における下電極201及び下電極の引き出し線は、導電酸化物、グラフェン又は銀ナノワイヤのコーティングから選択される1種を用いてもよく、金、銀、ブラチナ、アルミニウム、ニッケル、銅、チタン、クロム、セレン又はそれらの合金から選択される1種を用いてもよい。下電極の引き出し線は、下電極と同じ材料で構成されてもよい。下電極の引き出し線は、下電極をトランジスタアレイの外部に引き出して、トランジスタユニットの下電極にトランジスタユニットの動作電源や測定装置などの周辺回路を接続するためのものである。上電極203は、導電酸化物、グラフェン又は銀ナノワイヤのコーティングから選択される1種を用いてもよく、金、銀、ブラチナ、アルミニウム、ニッケル、銅、チタン、クロム、セレン又はそれらの合金から選択される1種を用いてもよい。上電極203の材料は、下電極201と同じでもよいし、異なってもよいので、ここでは限定しない。実用において、従来の公知方法によって、下電極及び上電極はトランジスタアレイから引き出され、各トランジスタユニットの上電極と下電極との間に周辺回路が接続される。
【0036】
図1に示すトランジスタアレイのトランジスタユニット200の形状は、図示された軸線が基板の表面に垂直である四角柱に限定されるものではなく、軸線が基板の表面にほぼ垂直する円柱又は六角柱などでもよいし、不規則型の角柱でもよい。トランジスタアレイにおいて、トランジスタユニットの横断面積は、25μm又はこれより小さく、トランジスタユニット間の距離は50μm又はこれより小さい。
【0037】
トランジスタアレイにおいて、各トランジスタユニットのサイズ、形状及び材料が同様であることが好ましい。
【0038】
電界効果トランジスタは、ソース、ドレイン及びゲートを含み、ゲートに印加されるゲート電圧によってソースとドレイン間のチャネルの幅を制御する。3次元の垂直ナノワイヤの圧電トランジスタアレイの構造において、リング型ゲートを形成する必要があるが、製造の技術上でこのような構造は非常に難しい。
【0039】
従来の圧電トランジスタアレイとは異なり、本発明のトランジスタアレイにおいて、トランジスタユニットは、二端子部材であり、上電極と下電極間の伝送性質に対する制御は、ゲート電圧の代わりに、印加される外力によって実現することができる。すなわち、従来のトランジスタの第3の端子に印加するゲート電圧の代わりに、印加される外力を使用する。トランジスタアレイに外力を印加し又は圧力駆動してトランジスタユニットを変形させる場合、圧電材料で構成される圧電体も対応的に変形し、さらに、圧電体の内部に、一端が正で他端が負である圧電電界が発生する。圧電体の内部に圧電起電力を発生させる機械的な駆動は、空気や水の流れ、機器のエンジンの運転回転、人間の動き、筋肉の収縮・弛緩、呼吸、心拍動又は血液の流れ等によって発生される機械的な振動信号である。発生された圧電電界は、トランジスタユニットの下電極(ソース)又は上電極(ドレイン)近傍の圧電体と電極材料との間の界面障壁を効果的に調整して制御するので、電界効果トランジスタのゲートに印加されるゲート電圧と類似する機能を有する。トランジスタユニットに印加される外力によって、部品のキャリア伝送の過程を効果的に調整して制御したりドリガーしたりすることができる。各トランジスタユニットに印加される外力が異なる場合、圧電体の変形も異なることになり、対応するトランジスタユニットの伝送性も異なることになる。各トランジスタユニットの伝送性を記録することによって、外力の強度や空間的配置を記録することができる。
【0040】
本実施例は、2つの端子のみを有する、基板に垂直であるトランジスタユニットで、トランジスタアレイを形成している。つまり、圧電電気トランジスタの一種である。このような構造は、機械的圧力と電子部品間の直接的な接触を実現することができる。そして、このような3次元の垂直圧電トランジスタアレイの構造は、従来の3次元の垂直ナノワイヤトランジスタでは実現しにくいリング型ゲート電極の構成を避けることができる。
【0041】
各トランジスタユニットは、個別の上電極及び下電極を有するため、周辺回路は、インターフェースを介して各トランジスタユニットを個別にアドレッシングアクセスすることができる。本実施例のトランジスタアレイにおいて、トランジスタユニットの水平基板の表面方向における横断面積は、25μm又はこれより小さく、トランジスタユニット間の距離は、50μm又はこれより小さい。圧力センサーとして、その空間分解能は、従来の電界効果トランジスタアレイの分解能より顕著に高くなっている。なお、トランジスタユニットにおける圧電体は、圧電ナノワイヤ、ナノロッド、フィルム又はナノファイバーを用いたため、圧力に対する感度が高く、圧力に対するトランジスタユニットの分解能は、1kPa又はこれより小さくなることができる。
<実施例2>
【0042】
図3を参照すると、本実施例において、トランジスタユニット200間にフレキシブル絶縁充填層300が充填される点で実施例1と異なっている。図3に示すように、フレキシブル絶縁充填層300の充填高さは、トランジスタユニットにおける圧電体202より少し低くなってもよいし、フレキシブル絶縁充填層300の上面には、少なくともトランジスタユニット200の上電極203が露出されている。本実施例において、トランジスタアレイのこれ以外の構成は、実施例1と同様なので、ここでは説明を略する。
【0043】
フレキシブル絶縁充填層の材料は、ポリジメチルシロキサン(PDMS)、SU−8エポキシ樹脂又は他のフレキシブル絶縁材料を採用することができる。フレキシブル絶縁充填層は、トランジスタアレイの機械的強度を向上し、寿命を延長することができる。
【0044】
なお、トランジスタアレイを保護するために、本実施例のトランジスタアレイは、その上電極を封止する封止層を含んでもよい。図4を参照すると、トランジスタユニットの上電極は、それに電気的に接続される上電極の引き出し線(即ち電気通路である。図示せず)が引き出された後、封止層400によって封止される。封止層400は、フレキシブル絶縁充填層300の上に位置する。つまり、トランジスタアレイにおいて、トランジスタユニットのうち、フレキシブル絶縁充填層300の上面から露出する部分は、封止層400内に封止される。ここで、トランジスタユニットのうち、フレキシブル絶縁充填層の上面から露出する部分は、少なくとも、トランジスタユニットの上電極203及び上電極の引き出し線(図示せず)、並びにフレキシブル絶縁充填層に覆われていないトランジスタユニットにおける圧電体の頂部を含む。このように、トランジスタアレイにおいて、トランジスタユニット全体は、フレキシブル絶縁充填層300及び封止層400に封止されている。封止層400の材料は、ポリジメチルシロキサン(PDMS)等の通常の半導体封止材料であればよい。封止層は、トランジスタアレイの機械的強度を向上し、トランジスタアレイを外部の湿度などの要因から保護する。
【0045】
本実施例において、上電極の引き出し線は、導電酸化物、グラフェン又は銀ナノワイヤのコーティングから選択される1種を使用してもよいし、金、銀、ブラチナ、アルミニウム、ニッケル、銅、チタン、クロム、セレン又はそれらの合金から選択される1種を使用してもよい。上電極203と上電極の引き出し線は、同じ材料で構成されてもよいし、異なる材料で構成されてもよい。ここで、特に限定しない。各トランジスタユニットにおける上電極の引き出し線及び下電極の引き出し線は、当該トランジスタユニットに周辺回路を接続するためのものである。
【0046】
本発明のトランジスタアレイにおいて、トランジスタユニットの上電極、上電極の引き出し線、下電極又は下電極の引き出し線としての導電酸化物は、インジウムスズ酸化物(ITO)、アルミニウム添加酸化亜鉛(AZO)、ガリウム添加酸化亜鉛(GZO)、インジウムとガリウムと亜鉛を酸化させた酸化物半導体(IGZO)等の導電酸化物材料であってもよい。
<実施例3>
【0047】
本実施例は、トランジスタアレイの製造方法に関する。図5は、トランジスタアレイの製造方法のフローチャートで、基板を準備するステップS10と、前記基板上に、複数の下電極を含む下電極のアレイと各下電極の引き出し線を形成するステップS20と、複数の圧電体が圧電体のアレイを構成するように、前記下電極の上に圧電体を形成するステップS30と、複数の前記上電極が上電極アレイを構成するように、前記圧電体の上に上電極を形成するステップS40と、を含む。
【0048】
以下、図面を参照しながらトランジスタアレイの製造過程を具体的に説明する。まず、基板を準備する。基板の材料は、ポリイミド(polyimide)やポリエチレンテレフタラート(PET)等の軟性材料であってもよいし、シリコンシートやセラミックス等の非軟性材料であってもよい。
【0049】
基板に、複数の下電極を含む下電極のアレイと、各下電極の引き出し線を形成する。図6を参照すると、基板10に、半導体の加工工程であるフォトリソグラフィ及び金属堆積等の方法によって、下電極アレイ20と各下電極の引き出し線(図示せず)を、設計されたパターンに応じて選択的に堆積させる。下電極のアレイにおいて、各下電極のサイズ、形状及び下電極間の距離は、トランジスタアレイの設計要求に応じて決定される。下電極の引き出し線は、集積回路の配線方式によって配線することができるが、ここでは特に限定しない。下電極の引き出し線は、トランジスタユニットの下電極をトランジスタアレイの外部に電気的に接続させて、他の駆動装置や測定装置などの周辺回路に接続させる機能を持つ。
【0050】
複数の圧電体が圧電体のアレイを構成するように、下電極の上に圧電体を形成する。図7を参照すると、まず、半導体の加工工程であるフォトリソグラフィ及びフィルム堆積によって、圧電体の種結晶を、設計されたパターンに応じて上記のように形成された前記下電極20に選択的に堆積させる。例えば、圧電体としてZnOナノワイヤを選択した場合、種結晶もZnOを選択する。そして、気相法又は液相法によって、種結晶の層が堆積された前記下電極20に、分極配向が一致する圧電材料を垂直方向に沿って成長させて圧電体30を形成する。これらの圧電体30は、圧電体のアレイを構成する。例えば、通常の水熱合成法によって、下電極20上のZnO種結晶層にc軸配向のZnOナノワイヤの圧電体を成長させる。圧電体の直径は、数百nm〜数μmであり、長さは、数百nm〜数十μmである。シングル圧電体は、1本又は数本のナノワイヤ又はナノロッドを含むことができる。
【0051】
下電極20上に圧電体30を形成するステップは、マイクロ加工によって、予め準備したナノ材料を下電極に置いてもよい。
【0052】
トランジスタアレイの機械的強度を向上し、寿命を延長するために、下電極の上に圧電体を形成するステップの後に、圧電体間にフレキシブル絶縁充填層を形成し、前記圧電体の頂部をフレキシブル絶縁充填層の外部に露出させるステップを更に含んでもよい。具体的には、図8を参照すると、半導体の加工工程のスピンコート法によって、形成された部品に所定の厚さの充填材料を均一にスピンコートすることができる。充填材料の厚さは、少なくとも充填材料で下電極20及び圧電体30を覆うように設定する。充填材料は、例えば、ポリジメチルシロキサン(PDMS)やSU−8エポキシ樹脂などのフレキシブル絶縁充填材料であることが好ましい。充填材料を加熱又は露光するような処理を行ってその機械的強度を要求の範囲に達成させた後、プラズマドライエッチングによって、充填材料の頂部の一部(適宜な厚さ)を均一に除去する。そして、上記のように形成された圧電体30の頂部を適宜な高さで露出させることで、残りの充填材料はフレキシブル絶縁充填層40を構成する。
【0053】
そして、複数の上電極が上電極のアレイを構成するように、圧電体の上に上電極を形成するステップを行う。当該ステップにおいて、上電極を形成する時、上電極をトランジスタアレイから引き出す上電極の引き出し線を同時に形成してもよい。図9を参照すると、半導体の加工工程であるフォトリソグラフィ及び金属堆積によって、上電極50及び上電極の引き出し線(図示せず)を、上記のように形成された圧電体のアレイの頂部と絶縁フレキシブル充填層に、設計されたパターンに応じて選択的に堆積させて、圧電体の上に上電極50を形成する。そして、前記フレキシブル絶縁充填層に、上電極の引き出し線を形成する。上電極と、圧電材料からなる圧電体の頂部との間に、電気的接触が形成される。複数の上電極50は、上電極のアレイを構成する。これによって、トランジスタアレイの製造を完成する。
【0054】
なお、上電極の引き出し線を形成するステップは、上電極を形成するステップの後に個別に行われてもよい。
【0055】
トランジスタアレイの機械的強度を向上させるために、上記のように形成されたトランジスタアレイの表面にポリジメチルシロキサン(PDMS)等の封止層60を覆うことで、図10に示すように、フレキシブル絶縁充填層の上面から露出されたトランジスタユニットを封止する。これによって、フレキシブル絶縁充填層40から露出されたトランジスタユニットの上電極50、上電極の引き出し線及び圧電体30が封止層60内に封止される。
【0056】
このように形成されたトランジスタアレイにおけるトランジスタユニットの上電極の引き出し線と下電極の引き出し線との間に電源をオンすると、複数チャネルの電気測定システムによって、トランジスタアレイ内の各トランジスタユニットの電気的性質を検査することができる。外部からの機械的信号(例えば、空気や水の流れ、機器のエンジンの運転回転、人間の動き、筋肉の収縮・弛緩、呼吸、心拍動又は血液の流れなどによって発生される機械的な振動信号)がトランジスタアレイに作用する場合、機械的な歪みによる圧電起電力を発生するため、外力を受けた各トランジスタユニットにおける圧電体の電気的性質は変化する。複数チャネルの電気測定システムは、このような変化を記録し、取得された電気パラメーターとトランジスタユニットを対応付け、Matlabなどのソフトウェアによって処理してその結果を描くと,外部からの機械的信号(例えば、外力)に対するセンシング及びイメージング情報を取得することができる。
【0057】
以上に記述された内容は、本発明の好適な実施例に過ぎず、本発明を限定するものではない。当業者は、本発明の主旨を逸脱しない限り、開示された方法及び技術内容によって本発明の技術案に対していろいろ可能な変更及び補正を行ったり、変化された等価実施例に補正したりすることができる。したがって、本発明の技術案の内容を逸脱しない限り、本発明の技術によって上記実施例に対して行ういずれの簡単な修正、等価変化及び補正は、いずれも本発明の技術案の保護範囲に属する。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10