【実施例】
【0050】
実施例1:RNA編集に関わるPPR蛋白質及びその標的配列の収集
図2に示した情報を参照し、これまでに解析されたシロイヌナズナのRNA編集に関わるPPR蛋白質(配列番号2〜24)をシロイヌナズナゲノム情報データベース(MATDB: http://mips.gsf.de/proj/thal/db/index.html)、標的となるRNA編集部位の周辺配列(配列番号48、50、53、55、57、59、60、61、62、63、64、65、68、69、70、71、73、74、76、78、80、122、206、228、232、252、284、316、338、339、358、430、433、455、552、563)をRNA編集データベース(http://biologia.unical.it/py_script/overview.html)より収集した。RNA配列は編集されるC(シトシン)残基を含む、その上流31塩基を収集した。収集した全ての蛋白質と、それぞれの蛋白質に対応するRNA編集部位を
図2に示した。
【0051】
蛋白質中のPPRモチーフ構造は、Uniprot データベース(http://www.uniprot.org/)の情報と共に、本発明で定義するアミノ酸番号を付与した。実験に用いたシロイヌナズナ24コ(配列番号2〜25)のPPR蛋白質に含まれるPPRモチーフとそのアミノ酸番号を、
図3に記す。
【0052】
実施例2:結合塩基選択性を付与するアミノ酸の同定
これまでの研究から、RNA編集に関わるPPR蛋白質はそのC末端側に特定の保存アミノ酸配列を持つモチーフ(E、E+及びDYWモチーフ、ただしDYWはしばしば存在しない)を持つことが分かっている。E+モチーフ中の十数アミノ酸は、RNAとの選択的な結合でなく、C(シトシン)からU(ウラシル)への変換に必要なことが示唆されている(参照文献3)。また、編集されるCの認識に必要な情報は、その上流20塩基及び下流5塩基に含まれていることが過去の非特許論文によって示唆されている。すなわち、PPR蛋白質中の複数個のPPRモチーフは、編集されるCの上流配列の「どこか」を認識し、E+モチーフが編集されるCの近傍に位置すると予想できる。さらに、PPRモチーフ中の特定のアミノ酸が結合する上流配列のRNA残基を認識する可能性が考えられる(
図4A)。
【0053】
この可能性を、実施例1で記したシロイヌナズナの24コのRNA編集PPR蛋白質とその標的RNA配列を用いて検証した。そこでまず、蛋白質中の最後のPPRモチーフを、編集されるCの一つ目の塩基に配置し、全てのPPRモチーフをRNA残基と、1対1の対応関係、かつ直線的な連続性、で整列させた(
図4A、整列P1)。次にRNA配列を1塩基ずつ右側にずらすことで、P2〜P6の整列を得た。この整列P1〜P6のデータセットにおいて、それぞれのPPRモチーフと対応するRNA残基の情報を収集した。
【0054】
1箇所のRNA編集部位に働くPPR蛋白質に対しては、出現したRNA残基(A、U、G or C)に1点を付与した。2箇所、又は3箇所のRNA編集に働くPPR蛋白質に対しては、出現したRNA残基にそれぞれ0.5点、又は0.3点を付与した。次にPPRモチーフ中のアミノ酸番号ごとにアミノ酸の種類で並べ替えを行った。通常、アミノ酸の種類と出現するRNA残基の種類は無作為(high-randomness or high-entropy)であると予測できる(例、
図4Aの右上図)。しかし、もし、特定の箇所のアミノ酸が結合RNA塩基選択能力を有するとすると、正しい整列(上記P1〜P6)において、対応するRNA塩基が一種類もしくは限定された種類に収束すると予測される(low randomness or low entropy;例、
図4Aの右下図)。
【0055】
上記で作成したP1〜P6の整列のデータセットを対象に、PPRモチーフの全てのアミノ酸番号において、上記のlow randomnessを算出した。Low randomnesは、理論値(全ての塩基出現頻度の平均値)に対するカイ二乗検定によって算出した(例、
図5)。
【0056】
その結果、P4の整列における1番、4番、及び“ii”(-2)番アミノ酸において、有意値P< 0.01(1 %以下の確率(probability))が算出された(
図4B)。すなわち、RNA編集PPR蛋白質中の最後のPPRモチーフが編集されるCの4コ前の塩基に配置され、3つのアミノ酸(1番、4番、及び“ii”番)が結合RNA塩基選択を司ることを示している。また、P3及びP5の整列において、有意なP値が算出されなかったことより、両脇のPPRモチーフからの干渉がない、すなわち、一つのPPRモチーフが一つのRNA残基を認識し、モチーフ構成に依存しないことを示している。整列P4の他のアミノ酸、及び他の整列の全てのアミノ酸において、有意なP値は得られなかった(
図6)。また、プリン(AとG)又はピリミジン(CとU)(RY)でRNA塩基を分類し、同様の計算を行ったところ、4番アミノ酸のみで非常に有意なP値(P<0.01)、が得られた(
図4C)。これは4番アミノ酸が結合するRNA塩基のプリン/ピリミジンを主に区別していることを示している。
図4Cで示したPPRモチーフ中のRNA認識アミノ酸による結合塩基指定能力についてさらに詳細に解析を行った。その結果、4番アミノ酸が結合する塩基のプリン/ピリミジン(RY)を主に区別するする以外に、“ii”(-2)番アミノ酸が塩基のアミノ型(AおよびC)ケト型(GおよびU)(MK)の区別に働くことがわかった(
図4D)。
【0057】
3回以上使用されている3つのアミノ酸(1番、4番、及び“ii”番)の組み合わせをPPRモチーフのRNA認識コードのうち、triPPR codeとして、それぞれのP値を算出し、その結合RNA塩基指定能力を算出した。同定したtriPPR codeの一部を
図4Eに示した。
【0058】
当該3箇所のアミノ酸が非常に多様であるため、2箇所のアミノ酸(1&4、1&“ii”又は4&“ii”)での結合RNA塩基指定能力を算出したところ、4& “ii”番アミノ酸の組み合わせにおいて、顕著なP値が算出された(
図7)。そのため、3回以上使用されている4&“ii”番アミノ酸の組み合わせを、PPRモチーフのRNA認識コードのうち、diPPR codeとした。同定したtriPPR code、diPPR codeを
図8に示した。
【0059】
実施例3:同定したRNA認識コードの検証
シロイヌナズナのRNA編集PPR蛋白質を用いて同定したPPRモチーフのRNA認識コードの検証をおこなった。検証には、ヒメツリガネゴケのRNA編集PPR蛋白質を用いた。ヒメツリガネゴケ(以下、コケ)では、計13箇所(ミトコンドリア11箇所、葉緑体2箇所;配列番号32〜44)のRNA編集が行われることが既に明らかになっている。さらに、6コのPPR蛋白質(PpPPR_56, 71, 77, 78, 79, and 91)が9箇所のRNA編集にそれぞれ働くことが明らかになっている。蛋白質と対応するRNA編集部位を
図9に示した。
【0060】
検証は
図10に示すとおりに行った。まず、コケPPR蛋白質のアミノ酸配列情報を非特許論文より取得し(配列番号26〜31;
図2及び
図9)、
図1に定義したPPRモチーフモデルに従って、3つのアミノ酸(1番、4番、及び“ii”番)をそれぞれのPPRモチーフから抽出した。抽出した3つのアミノ酸の組み合わせが、シロイヌナズナより同定したtriPPR codeと一致する場合、そのcodeが呈する結合塩基得点行列(socring matrix)に置換した。次に、triPPR codeで変換できなかったPPRモチーフのうち、diPPR codeと一致する場合、当該モチーフをdiPPR codeの結合塩基得点行列に置換した。平行して、RNA編集部位周辺配列を(編集されるCを3’末端とする31 merの配列)を非特許論文より取得し(配列番号32〜44;
図2、
図9、及び
図16)、
図10に示すようなRNA配列の数字行列に置換した。次に、上述の整列P4(最後のPPRモチーフが編集されるCの4つ前の塩基に対応)に従うように、蛋白質の結合塩基得点行列とRNA配列の数字行列のそれぞれのマス目通しでかけ算を行い、得られた値の和を蛋白質とRNA配列の適合値(Matching score)として算出した。この計算は、triPPR code、diPPR code、それぞれのPPR結合塩基得点行列(PPR scoring matrix)
において行った。
【0061】
一つの蛋白質に対して、この計算を全てのコケのRNA編集部位(13箇所)に対して行った。また、RNA編集部位周辺配列の参照配列としてシロイヌナズナ葉緑体のRNA編集部位のRNA配列34箇所(
図16、配列番号45〜78)についても同様の計算を行った。
【0062】
次に、それぞれのRNA配列に対する蛋白質の適合値より、正規分布曲線を描き、それぞれのRNA配列に対する適合値の暫定P値をtriPPR code、及びdiPPR codeそれぞれ算出した。
【0063】
最終的なP値(蛋白質とRNA配列の適合値)は、triPPR codeとdiPPR codeの暫定P値の積として求めた。
【0064】
それぞれのコケPPR蛋白質と13箇所のコケRNA編集部位との適合値を
図11に示す。解析の結果、7種の蛋白質のうち、6種の蛋白質が正しいRNA編集部位に計算的に特定された。すなわち、この解析は、3つのアミノ酸(1番、4番、及び“ii”番)にPPRモチーフの結合RNA塩基指定に関する情報が全て含まれることを意味している。言い換えると、
図8に示した3つ、又は2つ、の組み合わせのアミノ酸の情報(triPPR、diPPR code)を参照することで、意図するRNA配列に結合するPPR蛋白質を探索できることを示している。同時に、当該アミノ酸情報を有したPPRモチーフを用いること、又は連結することで、意図したRNA配列に結合する人工タンパク質を合成できることを示している。
【0065】
実施例4:未解析RNA編集PPR蛋白質の標的分子の同定
次に、コケより多くのRNA編集部位を含むシロイヌナズナを用いた解析を行った(葉緑体ゲノム34箇所(配列番号45〜78)、ミトコンドリアゲノム488箇所(配列番号79〜566)、
図6を参照)。予測精度を検証するために、コード抽出に用いた24種のPPR蛋白質のRNA変種部位予測を行った。その結果、葉緑体局在PPR蛋白質では、13個中10個が最低1個の正しいRNA編集部位を最も高いP値で予測した。ミトコンドリア局在PPR蛋白質では、11個中8個が正しいRNA編集部位をトップ20以内で予測した(
図12)。この予測精度検証を基に、機能未知PPR蛋白質の標的RNA編集部位の予測を行った。AHG11変異体は、アブシジン酸経路に異常をきたす変異体であり、その遺伝子(ahg11、at2g44880)がコードする蛋白質は典型的なRNA編集PPR蛋白質様のモチーフ構造を有する(
図13;配列番号1)。RNA編集部位を予測し、トップ20を含むミトコンドリア405箇所、葉緑体30箇所のRNA編集を実験的に検証した。その結果、7番目に高いP値で予測されたミトコンドリアnad4_376のRNA編集のみが変異体で異常をきたしていることが明らかになった(
図13)。
【0066】
次に、オルガネラ全ゲノム配列、すなわち約3×10
5のRNA配列のデータセット、からの標的RNA配列の同定を試みた。この解析には、
図8に示すPPR codeの蓋然性行列(probability matrix)を用いた。また、diPPR、triPPR コードと一致しないアミノ酸の組み合わせを持つモチーフには、background frequencyを適応した。作製した蛋白質の蓋然性行列は、シロイヌナズナの葉緑体全塩基配列(AP000423)と共に、MEME suiteのFIMO解析(http://meme.nbcr.net/meme4_6_1/fimo-intro.html)に供した。
【0067】
その結果、CRR4とCRR21において、その標的RNA配列を正確に予測することが出来た。また、コケPPR蛋白質からもPPRコードの抽出を行うことでコードの改良を行ったところ(
図15)、いくつかの蛋白質に置いて、その予測精度が大きく向上した。
【0068】
これらの結果から、同定したPPRコードを用いることで、数十万パターンのRNA配列から一カ所の正しい標的配列を同定できることを示している。逆に言えば、コードに沿ったアミノ酸を当該位置(1、4、“ii”)に持つPPRモチーフ、を探索することで、意図する有用なRNA配列に結合する蛋白質を同定できる。もしくはPPRモチーフを連結させることで、高い配列選択性を有する人工RNA結合蛋白質を創出できることを示している。変異導入により、当該位置のアミノ酸をPPRコードに準じた組み合わせにすることで、意図したRNA結合選択性を獲得させることが可能なことも当業者であれば理解できる。
【0069】
図15では、triPPR code、diPPR codeそれぞれの結合RNA塩基選択能力をP値で評価した。有意なP値(P <0.05)を示したPPRcodeは、高い結合RNA塩基選択能力を有すると推認できる。
【0070】
実施例5:ダイコンRfの標的RNA配列の予測
次に本発明で得られた知見を基に、細胞質雄性不稔性の稔性回復因子として働くPPR蛋白質の機能判定を行った(実施例5〜9)。
【0071】
細胞質雄性不稔(Cytoplasmic Male Sterility;CMS)は、細胞質のゲノム、特にミトコンドリアのゲノムの変異が原因で雄性配偶子が正常に機能しなくなる形質である。この形質は、しばしば核に存在する稔性回復遺伝子(Restorer of Fertility;Rf)によって打ち消され、雄性配偶子が正常になることが知られている。一代雑種育種法に利用されており、農業上重要な形質の一つである。このCMS-Rfシステムにおいて、Rf遺伝子は多くの場合、PPR蛋白質をコードすることが知られている。
【0072】
ダイコンやナタネの一代雑種育種法に用いられるオグラ型(別名、コセナ型)細胞質は、ミトコンドリアゲノムのorf125遺伝子の発現に由来し、核コードのorf687遺伝子の存在によって不稔性が解除され、可稔となる。orf687遺伝子産物はPPR蛋白質であり、orf125を含むRNAに作用することで、その発現を不活化し、結果として不稔性が解除されると考えられている。
【0073】
しかし、様々なダイコン系統が有するorf687様遺伝子にはアミノ酸多型が有ること、このアミノ酸多型が稔性回復因子としての遺伝子の機能性に影響を及ぼすことがこれまでの育種学的解析から明らかになってきた。しかし、当該遺伝子のアミノ酸配列からその機能性を類推する手法は確立されていない。
【0074】
そこで、まず優性Rfとして働くことが知られているダイコン品種、園紅のORF687蛋白質(Enko Bと命名)のアミノ酸から、PPRモチーフを特定し、塩基指定能力を司るアミノ酸(1、4、ii)を抽出し、PPRコードに変換後、ミトコンドリアorf125を含む転写物に対して、標的RNA配列予測を行った(
図19)。
【0075】
平行して、優性Rfとして働くことが知られているダイコン品種、園紅のORF687蛋白質(Enko Bと命名)、同じく園紅中に含まれ、ORF687と良く似ているが、劣性の遺伝子として働くORF687様蛋白質(enko Aと命名)、異なるダイコン品種である小瀬菜ゲノム中に存在する園紅ORF687と相同な遺伝子(kosena Bと命名;劣性の遺伝子)、の3種のORF687様蛋白質を材料にその特徴を生化学的に解析した。
【0076】
(5-1)ダイコンからのゲノムDNAの調製
ダイコンをムラシゲ・スクーク培地(2%ショ糖、0.5% Gellangamを含む)で3週間培養した。培養した植物の緑葉(0.5 g)をフェノール/クロロホルム抽出した後、エタノールを加えてDNAを不溶化した。回収したDNAを100μlのTE液(10 mM トリス・塩酸(pH 8.0)、1 mM EDTA)に溶解し、10ユニットのRNase A(DNase-free、タカラバイオ社)を加えて、37℃で30分反応させた。その後、反応液を再度フェノール/クロロホルム抽出した後、エタノール沈殿によりDNAを回収した。10μgのDNAが得られた。
【0077】
(5-2)ORF687様蛋白質をコードする遺伝子のクローニング
ダイコンゲノムDNAを鋳型に、Enko Bはオリゴヌクレオチドプライマー(Enko_B-FプライマーとEnko_B-Rプライマー;それぞれ配列番号567、568に記載)、Kosena Bはオリゴヌクレオチドプライマー(kosena_B-Fプライマーとkosena_B-Rプライマー;それぞれ配列番号569、570に記載)、Enko Aはオリゴヌクレオチドプライマー(Enko_A-FプライマーとEnko_A-Rプライマー;それぞれ配列番号571、572に記載)、を用いて、50μlの反応液を95℃ 30秒、60℃ 30秒、72℃ 30秒の25サイクルでKOD-FX(TOYOBO社)をDNA 伸長酵素として用い、PCRすることによって、それぞれ増幅した。
【0078】
得られたDNA断片は、pBAD/Thio-TOPO ベクター(Invitrogen社)を用いて、製品に添付するプロトコールに従ってクローニングした。DNA配列を決定し、目的と相当するDNA配列と相同な配列(Enko B、配列番号:573;kosena B、配列番号:574;Enko A、配列番号:575)であることを確認した。
【0079】
(5-3)組換えORF687様蛋白質の調製
上で得られたプラスミドをEscherichia coli TOP10株(Invitrogen社)に形質転換した。この大腸菌をアンピシリンが100μg/mlの濃度で存在するLB培地300 ml(300 mL培地を含む1 L三角フラスコ)中で、37℃で培養した。培養液の濁度が波長600 nmでの吸光度が0.5に達した時に、誘導物質であるL-アラビノースを最終濃度が0.2%になるように添加し、さらに4時間培養を行った。
【0080】
遠心による集菌後、菌体を1 mg/mlのリゾチームを含む200 mlのバッファーA(50 mMトリス・塩酸 pH 8.0、500 mM KCl、2 mMイミダゾール、10 mM MgCl
2、0.5%Triton X100、10%グリセロール)に懸濁し、超音波破砕と凍結溶解により菌体を破壊した。15,000×g、20分間の遠心分離後に、上清を粗抽出液として回収した。
【0081】
この粗抽出液をバッファーAで平衡化したニッケルカラム樹脂(ProBond A、Invitrogen社)を充填したカラムに供した。
【0082】
カラムクロマトグラフィーは、20 mMイミダゾールを含むバッファーAで十分に洗浄した後、200 mMイミダゾールを含むバッファーAで目的タンパク質を溶出する二段階濃度勾配により行った。得られたタンパク質は、配列番号(Enko B、配列番号:576;kosena B、配列番号:577;Enko A、配列番号:578)に記載のアミノ酸配列を備えるとともに、N末端側に溶解性を高めるためのチオレドキンのアミノ酸配列、C末端側にヒスチジンタグ配列を備える融合タンパク質である。精製画分100μlを500 mLのバッファー E(20 mMトリス・塩酸 pH 7.9、60 mM KCl、12.5 mM MgCl
2、0.1 mM EDTA、17%グリセロール、2 mM DTT)で透析した後、精製標品とした。
【0083】
(5-4)基質RNAの調製
基質RNAとして、オグラ型細胞質ダイコンのミトコンドリアDNAの配列をふくむ3種のRNA、RNAa、RNAb、およびRNAcを用いた。
【0084】
RNAaはオリゴヌクレオチドプライマーA-FプライマーとA-Rプライマー(それぞれ、配列番号579、580)、RNAbはオリゴヌクレオチドプライマーB-FプライマーとB-Rプライマー(それぞれ、配列番号581、582)、RNACはオリゴヌクレオチドプライマーC-FプライマーとC-Rプライマー(配列番号583、584)、を用いて、上記のオグラ型細胞質ダイコンDNA 10 ngを鋳型DNAとして含む50μlの反応液を95℃30秒、60℃30秒、72℃30秒の25サイクルでKOD FX(TOYOBO社)をDNA伸長酵素として用い、PCRすることによって増幅した。それぞれのフォワードプライマー(-F)には、基質RNAを試験管内で合成するためのT7プロモータ配列を付加した。
【0085】
得られたDNA断片は、アガロースゲルで展開後、ゲルから切り出すことによって精製した。精製DNA断片を鋳型にNTP mix(10 nmol GTP、CTP、ATP、0.5 nmol UTP)、4μl [
32P] α-UTP(GEヘルスケア社、3000 Ci/mmol)、T7 RNA polymerase(タカラバイオ社)を含む20μlの反応液を37℃60分間反応させることで、基質RNAを合成した。
【0086】
基質RNAはフェノール/クロロホルム抽出、エタノール沈殿後、全量を6 M尿素を含む変性6%ポリアクリルアミドゲル電気泳動で展開し、X線フィルムで60秒間感光させることによって、
32P標識RNAを検出した。
【0087】
次に、
32P標識RNAをゲルから切り出し、200μlのゲル溶出液(0.3 M酢酸ナトリウム、2.5 mM EDTA、0.01%SDS)中に、4℃で12時間浸し、RNAをゲルから溶出した。RNAのうち、1μlの放射活性を測定し、合成したRNAの総量を算出した。エタノール沈殿後、2500 cpm/μl(1 fmol/μl)になるように、RNAを超純水に溶解した。この調製方法で通常、2500 cpm/μlのRNAが約100μl得られた。
【0088】
(5-5)蛋白質とRNAとの結合実験
Enko B(Rf)、Kosena B(rf)、およびEnko A(rf;園紅品種に存在するORF687様蛋白質)の組換え蛋白質を作製し、そのRNA結合活性を検証した。
【0089】
作製した組換え蛋白質(Enko B(配列番号:576)、Kosena B(配列番号:577)、Enko A(配列番号:578))のRNA結合活性は、ゲルシフト法によって解析した。反応液(10 mMトリス・塩酸 pH 7.9、30 mM KCl、6 mM MgCl
2、2 mM DTT、8%グリセロール、0.0067%Triton X-100)20μl中に上記の375 pM(7.5 fmol/20μL)の基質RNA(BD120)と0〜2500 nMの組換え蛋白質を混合し、25℃で15分間反応した。その後、反応液に4μLの80%グリセロール液を添加し、10μLを1×TBE(89 mM Tris-HCl、89 mM Boric acid、2 mM EDTA)を含む10%未変性ポリアクリルアミドゲルで展開し、電気泳動後にゲルを乾燥させた。
【0090】
ゲル中のRNAの放射活性をバイオイメージングアナライザーBAS2000(フジフィルム社)で測定した。
【0091】
実施例6:組換え蛋白質を用いたRNA結合実験
図17は、Enko B蛋白質と細胞質雄性不稔(CMS)遺伝子を含むRNAとの結合解析を示す図である。このうち、
図17Aは、ミトコンドリアorf125 近傍の模式図を示し、あわせて結合実験に用いたRNA a、RNA bc、RNA b、およびRNA c の領域を模式図で示した。
図17Bは、Enko B蛋白質のRNA結合について示す図である。Enko Bタンパク質(1.4 nmol)と
32P標識したRNA bc(0.1 ng)と共に、未標識のRNA a、RNA bc、RNA b、RNA c(RNA bc に対して、×5、×10 w/w;競合阻害物質として使用)を20μLの反応液中で反応させ、ゲルシフト競合実験を行った。図左のComplex(▽)はタンパク質とRNAとの複合体を、Free(▼)はRNA のみを示す。
【0092】
これらの図に示すように、蛋白質とRNAの結合は、
32P標識RNAの移動度の違いとして現れる。
32P標識RNA・蛋白質複合体の分子量が、
32P標識RNA単体の分子量より大きいため、電気泳動での移動度が遅くなるためである。
この実験では、EnkoBの組換え蛋白質を調製し、orf125を含むミトコンドリアRNAとの結合を競合ゲルシフト法で検証した。RI標識したRNAbと蛋白質を混合し、次に未標識RNAを添加した。すなわち、Complexで示した位置のバンドのシグナル強度がより減少したほうがcompetitorとして加えたRNAと蛋白質が結合する、すわなち、EnkoBが高い親和性で結合するRNA領域、であることを意味する。その結果、RNAbの領域にEnkoBは強く結合することが明らかとなった。
【0093】
No.208の候補配列は
図19に示す結合配列予測で一番有意なP値を示し、tRNAメチオニンの3’末端に正確に位置する。しかし、これまでの解析で、tRNA量およびorf125を含むRNAの形状(切断の有無)が不稔および回復系統において差が無いこと、in vitroの結合実験(
図17B)でNo.208を含むRNAa配列とEnko Bが結合しないことから、この領域は、オグラ型細胞質の稔性・不稔性には関係ないと判断した。
【0094】
よって、RNAb中に含まれるNo.316、352、373の領域に着目して解析を進めた。RNAbは125bから成る。scanning mutationにより、20b単位まで結合領域を絞り込もうと試みたが、単一の箇所に絞り込むことができなかった(データ未公開)。そのため、Enko Bの結合箇所は、RNAb中に複数ある可能性が考えられた。
【0095】
実施例7:Rf様蛋白質のRNA結合活性
図18は、ORF687様蛋白質とRNAとの結合を示す。このうち、
図18Aは、ORF687様蛋白質のRNA結合特性に関して、Enko B(Rf)、Kosena B(rf)、Enko A(rf)とRNAbとの結合をゲルシフト法で解析した結果を示す。
図18Bは、(A)の結果をグラフ化したものであり、このグラフより、各蛋白質のRNA結合能力を表す解離定数(KD)を算出した。
図18Cは、Enko B(Rf)、Kosena B(rf)、Enko A(rf)と潜在的な結合領域との適合値を
図19と同様な方法で算出した。
【0096】
その結果、非競合状態では、3つの蛋白質(Enko B、Kosena B、Enko A)ともに、RNAbに高い親和性でRNAと結合した。Kosena Bに関しては競合状態でのRNA結合活性を解析したが、Enko Bと明確な差は見られなかった(
図18Aおよび
図18B)。
【0097】
Kosena BはしばしばEnko Bより若干低いRNA結合活性を示す(KDで約2倍)。しかし、一般的なRNA結合における活性の強弱は10倍以上の差で検出されることが多く、この差が有意とは見なせない。
【0098】
PPRコードに基づいた予測でも該当領域に対する適合スコアは、各蛋白質間で明確な差はない(
図18C)。このことから、EnkoBとkosenaBの差は、単純なRNA結合親和性の違いではなく、結合した後の作用に違いがある可能性を検討することとした。
【0099】
さらに、オグラ型細胞質に働く稔性回復因子の結合配列予測を
図19に示す。ここで、
図19Aは、PPRコードを用いたEnko B蛋白質の結合予測を示しており、
図19A下図にCMS遺伝子orf125を含むRNAの構造を示す。
図19A中のRNAa〜RNAcの領域は
図17を参照。この
図19Aでは、有意な高いP値を示した領域のうち、No.208、230、316、352、373に着目した(
図19A)。
【0100】
次に、
図19BにORF687蛋白質配列から予測された標的RNA配列(有意なP値を示した領域(No.208、316、352、373)の配列)のロゴ表記、候補となる結合RNA配列、劣性rfを持つダイコン品種、小瀬菜のORF687様蛋白質(Kosena B)配列から予測された標的RNA配列のロゴ表記、を示した。また、劣性rfであるKosena Bの予測結合塩基も示した。
【0101】
EnkoBとKosenaBは、2及び3番目のPPRモチーフ中のアミノ酸多型により、指定塩基が異なることが明らかとなった(RfはUA、rfはGC)。この違いが、Rfとrfの機能的差異に直結すると予測できた。
【0102】
実施例8:RNAの構造予測と解析
コンピュータ予測およびin vitro RNA結合実験より、RfはRNAbの領域、特にNo.316、352、373、に結合する可能性が考えられた。in vitroの解析からRNAb中に複数箇所の結合個所がある可能性も考えられた。そこで、RNAb配列の2次構造予測を行い、該当領域に着目した。
【0103】
結果を
図20に示す。ここで、
図20は、ORF687様蛋白質の候補結合RNA領域の二次構造と構造変化を示す。
図20Aは、No.306を含む領域の2次構造とORF687様蛋白質の予測結合サイトを示しており、各PPRモチーフをボックスで対応する塩基と共に示した。EnkoB(Rf)とKosena B(rf)で顕著な差がある2番目、3番目のPPRモチーフを強調した。
図20Bは、No. 352および373を含む領域の2次構造とORF687様蛋白質の予測結合サイトを示した。
図20Cは、RNAbのEnko Bによる構造変化しており、RNAbとEnko B蛋白質を混合し、その後、2本鎖選択的なRNA分解酵素(Rnase V1)を添加した。
【0104】
その結果、No. 316領域は、orf125の開始コドン直下のステムループ構造に相当することが明らかとなった(
図20A)。また、Enko BとKosena Bとで多型が見られる2番および3番PPRモチーフはステムループの根元の二本鎖に位置した。特に3番PPRモチーフの対応塩基はEnko BではAで有るのに対して、Kosena Bでは、Cとなっている(
図19Bを参照)。これらのことから、EnkoBが当該領域に結合し、ステムループ構造形成を促進することで、orf125の翻訳を阻害する作業仮説が考えられた。
【0105】
No.352および373領域でも2本鎖構造が予測され、Rf蛋白質が両側に結合することが考えられた(
図20B)。しかし、この場合、Rf結合により、構造の破壊(1本鎖形成促進)が予測される。また。Rfとrfの違いである2番および3番PPRモチーフに対応する塩基と構造の違いは考えられず、具体的な分子機構の予測は出来なかった。
【0106】
そこで、内部ラベルRNAを蛋白質と混合し、そこに、RNaseV1を添加し、標識RNAを限定分解した。RNaseV1はRNAの2本鎖領域のみを選択的に切断するRNaseである。その結果、蛋白質存在下で、基質RNAが早く分解されること、すわなち、Rf(Enko B)存在下で、2本鎖RNA形成が促進することが示された(
図20C)。すなわち、Rfによるorf125 mRNAの2本鎖RNA形成による翻訳阻害が、オグラ型細胞質雄性不稔性の稔性回復の主原因と考えられた。
【0107】
実施例9:ORF687様遺伝子の稔性回復能についての機能判定
これまでに様々なダイコン品種よりORF687様遺伝子が単離されており、交配実験により、そのRfとしての機能性が類推されている。しかし、それぞれのアミノ酸配列は非常に似ており、全体のアミノ酸保存性からRfとしての機能性を判定することは出来ない。
【0108】
本実施例においてはまず、ORF687様蛋白質の配列解析を行った。具体的には、配列番号576〜578、および585〜591に示す蛋白質配列を材料にPPR蛋白質としての配列解析を行った。全ての配列を問い合わせ配列に用いて、CLUSTALW(http://www.genome.jp/tools/clustalw/)によって、配列アライメントを得た。Web上のドメイン解析ソフト、
Pfam(http://pfam.sanger.ac.uk/)、
InterProScan(http://www.ebi.ac.uk/Tools/InterProScan/)、
Prosite(http://www.expasy.org/prosite/)、
を用いて、ORF687様蛋白質のアライメントを作成し、そしてそれぞれの蛋白質のPPRモチーフ構造を解析した。その結果を
図21に示す。全てのORF687様遺伝子は16個のPPRモチーフから構成されている(
図21)。
【0109】
得られたPPRモチーフモデルと非特許文献5に示されるアミノ酸番号に従って、1、2、”ii”(-2)番アミノ酸を抽出し、ORF様蛋白質の稔性回復能機能判定に用いた。
【0110】
そこで、9種のRf様遺伝子の機能判定をPPRコードを用いて行った。前述のEnkoBと同じように塩基指定能力を司るアミノ酸(1、4、ii)を抽出し、PPRコードに変換後、アミノ酸種をRNA binding windowとして、その機能性判定に用いた(
図22)。Enko BとKosena Bは、全体で99.4%の相同性を示すが、RNA binding windowには2箇所のアミノ酸多型があり、これがORF687様遺伝子の稔性回復に対する優性/劣性に深く関与すると考えられた(非特許論文4)。一方、品種Comet中で、Enko Bと相同な遺伝子座に座乗する遺伝子Comet BはEnko Bと98.0%の相同性を示し、RNA binding windowは全く同一である。過去の交配試験で得られたCometBが優性遺伝子であるという知見を裏付けることができた。また、Enko AはEnko Bの近傍に座乗する重複遺伝子だが、RNA認識の観点からも劣性の遺伝子であることが示唆された。これらのデータから、ORF687様遺伝子の稔性回復に対する優性/劣性は、Enko BのRNA binding windowと比較した場合に、ORF687様遺伝子における対応するPPRモチーフすべてにおいて、塩基指定能力を司るアミノ酸(1、4、ii)が同一であること、特に同一の4番アミノ酸(A
4)を有すること、あるいは同一の“ii”番アミノ酸を有すること、が重要であることが示唆された。中でも、特に同一の4番アミノ酸(A
4)を有することが重要と考えられた。この点から、稔性に関する情報が未知である様々な系統のダイコンにおいて、Enko Bと相同な遺伝子座に座乗する遺伝子、rrORF690-1、rrORF690-2、icicle_pprCA、PC_PPR-A、PC_PPR-BLについては、優性遺伝子であるEnko Bとは異なったRNA binding windowを持ち、これら遺伝子も劣性rfであると考えられた。
【0111】
以上の結果は、本発明で示すPPRコードは、稔性回復因子として働くような産業上有用なPPR蛋白質の機能判定を高速化することができる。当該技術はCMS-Rfシステムを利用した一代雑種育種法に新しい系統を適用するさいに、候補Rf遺伝子の配列から、その稔性回復能の有無を判定することが可能である。発明者らは21種の新規ダイコン品種のORF687様遺伝子の機能判定を行い、19種のORF様遺伝子の稔性回復能の優性/劣性の判定に成功している(データ未公開)。本技術はオグラ型細胞質のダイコンに限らず、PPR蛋白質をRfとする様々な細胞質、植物種に適用可能である。
【0112】
[実施例で引用した論文]
参照文献1:Small, I.D., and Peeters, N. (2000). The PPR motif - a TPR-related motif prevalent in plant organellar proteins. Trends Biochem. Sci. 25, 46-47.
参照文献2:Lurin, C., Andres, C., Aubourg, S., Bellaoui, M., Bitton, F., Bruyere, C., Caboche, M., Debast, C., Gualberto, J., Hoffmann, B., et al. (2004). Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16, 2089-2103.
参照文献3:Okuda, K., Myouga, F., Motohashi, R., Shinozaki, K., and Shikanai, T. (2007). Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proc Natl Acad Sci USA 104, 8178-8183.
参照文献4:Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, et al. (2003) Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J 34: 407-415.
参照文献5:Nakamura T, Yagi Y, Kobayashi K (2012) Mechanistic insight into pentatricopeptide repeat proteins as sequence-specific RNA-binding proteins for organellar RNAs in plants. Plant & Cell Physiology 53: 1171-1179