特許第6275483号(P6275483)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エクソンモービル アップストリーム リサーチ カンパニーの特許一覧 ▶ ジョージア テック リサーチ コーポレイションの特許一覧

特許6275483燃料の燃焼を制御するためのシステムおよび方法
<>
  • 特許6275483-燃料の燃焼を制御するためのシステムおよび方法 図000002
  • 特許6275483-燃料の燃焼を制御するためのシステムおよび方法 図000003
  • 特許6275483-燃料の燃焼を制御するためのシステムおよび方法 図000004
  • 特許6275483-燃料の燃焼を制御するためのシステムおよび方法 図000005
  • 特許6275483-燃料の燃焼を制御するためのシステムおよび方法 図000006
  • 特許6275483-燃料の燃焼を制御するためのシステムおよび方法 図000007
  • 特許6275483-燃料の燃焼を制御するためのシステムおよび方法 図000008
  • 特許6275483-燃料の燃焼を制御するためのシステムおよび方法 図000009
  • 特許6275483-燃料の燃焼を制御するためのシステムおよび方法 図000010
  • 特許6275483-燃料の燃焼を制御するためのシステムおよび方法 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6275483
(24)【登録日】2018年1月19日
(45)【発行日】2018年2月7日
(54)【発明の名称】燃料の燃焼を制御するためのシステムおよび方法
(51)【国際特許分類】
   F02C 9/28 20060101AFI20180129BHJP
   F02C 3/30 20060101ALI20180129BHJP
   F02C 3/34 20060101ALI20180129BHJP
   F23R 3/00 20060101ALI20180129BHJP
   F02C 7/22 20060101ALI20180129BHJP
   F02C 7/00 20060101ALI20180129BHJP
   F02C 9/50 20060101ALI20180129BHJP
   F02C 9/00 20060101ALI20180129BHJP
   F01K 23/10 20060101ALI20180129BHJP
   F02C 6/18 20060101ALI20180129BHJP
   F23N 5/00 20060101ALI20180129BHJP
   F23C 9/00 20060101ALI20180129BHJP
   G01N 27/12 20060101ALI20180129BHJP
【FI】
   F02C9/28 C
   F02C3/30 D
   F02C3/34
   F23R3/00 B
   F02C3/30 B
   F02C7/22 D
   F02C7/00 B
   F02C9/50
   F02C9/00 A
   F02C7/00 A
   F02C9/00 B
   F01K23/10 A
   F02C6/18 A
   F23N5/00 J
   F23N5/00 S
   F23C9/00
   G01N27/12 A
【請求項の数】14
【全頁数】26
(21)【出願番号】特願2013-518774(P2013-518774)
(86)(22)【出願日】2011年7月1日
(65)【公表番号】特表2013-545001(P2013-545001A)
(43)【公表日】2013年12月19日
(86)【国際出願番号】US2011042870
(87)【国際公開番号】WO2012003489
(87)【国際公開日】20120105
【審査請求日】2014年6月18日
(31)【優先権主張番号】61/361,169
(32)【優先日】2010年7月2日
(33)【優先権主張国】US
【前置審査】
(73)【特許権者】
【識別番号】500450727
【氏名又は名称】エクソンモービル アップストリーム リサーチ カンパニー
(73)【特許権者】
【識別番号】504466834
【氏名又は名称】ジョージア テック リサーチ コーポレイション
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100088694
【弁理士】
【氏名又は名称】弟子丸 健
(74)【代理人】
【識別番号】100095898
【弁理士】
【氏名又は名称】松下 満
(74)【代理人】
【識別番号】100098475
【弁理士】
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【弁理士】
【氏名又は名称】山本 泰史
(72)【発明者】
【氏名】ハンティントン リチャード
(72)【発明者】
【氏名】ラスムッセン チャド シー
(72)【発明者】
【氏名】ミトリッカー フランクリン エフ
(72)【発明者】
【氏名】リュウウェン ティム
(72)【発明者】
【氏名】ダヌカ スラブ ケイ
(72)【発明者】
【氏名】ミンタ モーゼス ケイ
(72)【発明者】
【氏名】スターチャー ローレン ケイ
(72)【発明者】
【氏名】グプタ ヒマンシュ
【審査官】 松永 謙一
(56)【参考文献】
【文献】 国際公開第2010/044958(WO,A1)
【文献】 特開2008−115864(JP,A)
【文献】 特開2007−016787(JP,A)
【文献】 米国特許出願公開第2010/0115960(US,A1)
【文献】 特開2001−207833(JP,A)
【文献】 特表2009−529690(JP,A)
【文献】 特開平10−132739(JP,A)
【文献】 特表2008−530449(JP,A)
【文献】 特開2008−115863(JP,A)
【文献】 特開2008−121668(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F01K 23/10
F02C 3/30
6/18
7/00 − 7/22
9/00 − 9/50
F23R 3/00
F23C 9/00
(57)【特許請求の範囲】
【請求項1】
燃料を燃焼させるための方法であって、
燃料、酸化剤、および希釈剤を燃焼領域へ導入することを含み、前記酸化剤が空気、酸素リッチ空気、酸素リーン空気、過酸化水素(H22)、オゾン(O3)、酸素と水のガス状混合物、またはこれらの組み合わせであり、さらに、
前記燃料の少なくとも一部を燃焼させ、水、二酸化炭素、酸素、および一酸化炭素を含む排ガスを生成することを含み、前記排ガスは約0.01mol%〜約75mol%の範囲の窒素濃度を有し、
前記方法は、さらに、
前記排ガスを膨張させ、機械動力および膨張された排ガスを生成することと、
前記排ガスおよび前記膨張された排ガスの少なくとも一方において、酸素、水素、窒素酸化物、および一酸化炭素の少なくとも一の濃度を決定することと、
酸素、水素、窒素酸化物、および一酸化炭素の少なくとも一の決定された濃度に少なくとも部分的に基づき、前記燃焼領域へ導入される前記酸化剤および前記燃料の少なくとも一方の量を調節し、酸素および一酸化炭素の合計含有量が約2mol%未満の排ガスを生成することと、を含む、
ことを特徴とする方法。
【請求項2】
燃料を燃焼させるための方法であって、
燃料、酸化剤、および希釈剤を燃焼領域へ導入することと、
前記燃料の少なくとも一部を燃焼させ、水、二酸化炭素、酸素、および一酸化炭素を含む排ガスを生成することと、を含み、前記排ガスは約0.01mol%〜約75mol%の範囲の窒素濃度を有し、
前記方法は、さらに、
前記排ガスを膨張させ、機械動力および膨張された排ガスを生成することと、
前記排ガス、前記膨張された排ガス、またはその双方の中の酸素、水素、窒素酸化物、および一酸化炭素の少なくとも一の濃度に基づき、酸化剤の燃料に対する当量比(φ)を推定することと、
前記推定された酸化剤の燃料に対する当量比(φ)に基づき、前記燃焼領域へ導入される前記燃料、酸化剤、またはその双方の量を調節し、酸素および一酸化炭素の合計含有量が約2mol%未満の排ガスを生成することと、
前記排ガスの少なくとも一部を圧縮し、圧縮された排ガスを生成することと、
前記圧縮された排ガスの少なくとも一部を前記希釈剤として前記燃焼領域へ再生利用することと、を含む、
ことを特徴とする方法。
【請求項3】
前記排ガスは、酸素および一酸化炭素の合計含有量が約1.5mol%未満の排ガスであり、前記排ガスは、酸素および一酸化炭素の合計含有量が約4000ppm未満の排ガスである、
請求項1または2に記載の方法。
【請求項4】
前記酸化剤および前記燃料の少なくとも一方の調節は、当量比1.0になるよう駆動するように適合され、式中、前記当量比(ファイ、φ)は、(mol%燃料/mol%酸化剤)実量/(mol%燃料/mol%酸化剤)化学量論に等しく、前記mol%燃料は、F燃料/(F酸化剤+F燃料)に等しく、式中、F燃料は、燃料のモル流量に等しく、F酸化剤は酸化剤のモル流量に等しく、前記mol%酸化剤が、F酸化剤/(F酸化剤+F燃料)に等しく、式中、F酸化剤は酸化剤のモル流量に等しく、F燃料は燃料のモル流量に等しい、
請求項1〜3のいずれか一項に記載の方法。
【請求項5】
前記膨張された排ガスを熱回収ユニットへ導入し、第1の冷却された排ガスおよび加熱された伝熱媒体を生成すること、を更に含み、前記伝熱媒体は水および蒸気の少なくとも一方である、
請求項1〜4のいずれか一項に記載の方法。
【請求項6】
前記蒸気を、電力を生成する発電機、または機械動力を生成する別のデバイスの少なくとも一方に連結される蒸気ガスタービンへ導入することと、
前記冷却された排ガスの少なくとも一部を除去し、排出システム、フレアシステムもしくは地下タンクまたは格納システムの少なくとも一へ導入されることと、
前記冷却された排ガスを冷却し、前記冷却された排ガスの少なくとも一部の圧縮に先行して、前記冷却された排ガスから前記水の少なくとも一部を除去することと、
のうちのいずれか1つ以上を更に含む、
請求項に記載の方法。
【請求項7】
前記酸化剤は、本質的に空気からなり、また前記排ガスは、窒素を更に含み、前記燃料は、メタンおよび1つ以上のC2〜C10炭化水素を含む、
請求項1〜6のいずれか一項に記載の方法。
【請求項8】
前記排ガスは、約10mol%〜約34mol%の範囲の二酸化炭素濃度、および約5mol%〜約75mol%の範囲の窒素濃度を有する、
請求項1〜7のいずれか一項に記載の方法。
【請求項9】
前記燃料の少なくとも一部を、前記1種以上のC2〜C10炭化水素の濃度が低減されるように改質して、改質燃料を生成することと、前記改質燃料を前記燃焼領域へ導入することと、を更に含み、前記改質は、前記燃料を、ニッケル、白金、ロジウム、ルテニウム、パラジウム、それらの誘導体、それらの混合物、またはそれらの任意の組み合わせを含む1つ以上の触媒と接触させることを含む、
請求項1〜8のいずれか一項に記載の方法。
【請求項10】
前記第1の冷却された排ガスを送風機へと導入し、前記第1の冷却された排ガスの圧力を増加させることと、
前記第1の冷却された排ガスの中の任意の水の少なくとも一部を除去し、凝縮水および第2の冷却された排ガスを生成し、前記圧縮された排ガスが、前記第2の冷却された排ガスを含むことと、
の少なくとも一方を更に含む方法である、
請求項に記載の方法。
【請求項11】
前記機械動力の少なくとも一部が、圧縮機に動力を供給するため、発電機に動力を供給するため、またはその双方のために使用される、
請求項1〜10のいずれか一項に記載の方法。
【請求項12】
前記燃焼領域へ導入される、前記燃料、酸化剤または双方の前記量の調節は、
前記当量比(φ)が1未満である場合、前記当量比(φ)が1へと増加するように、前記燃焼領域へ導入される、前記酸化剤の量を減少することか、前記燃料の量を増加させることか、もしくはその双方か、または、
前記当量比(φ)が1を超える場合、前記当量比(φ)が1へと減少するように、前記燃焼領域へ導入される、前記燃料の前記量を減少させることか、前記酸化剤の前記量を増加させることか、もしくはその双方、を含む、
請求項に記載の方法。
【請求項13】
前記酸化剤を、前記燃焼器への導入に先行して圧縮することと、
圧縮機、バルブ、ノズルの少なくとも一の使用によって、前記酸化剤流量を制御することと、
バルブ、ポンプ、ノズル、タービン流量計、ベンチュリ流量計、およびオリフィス板の少なくとも一の前記使用によって、前記燃料の流量を制御することと、
の少なくとも一を更に含む、
請求項1〜12のいずれか一項に記載の方法。
【請求項14】
前記排ガスおよび前記膨張された排ガスのうちの一方における、酸素、水素、窒素酸化物および一酸化炭素の少なくとも一の前記濃度が、ラムダ、ジルコニア酸素、チタニア、ガルバニック、赤外線、および酸化膜センサーの少なくとも一を使用することによって判定される、
請求項1〜13のいずれか一項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の実施形態は、一般に、燃料を燃焼させるためのシステムおよび方法に関する。より詳細には、本開示の実施形態は、燃料を燃焼させることによって生成される排ガスの組成を制御するためのシステムおよび方法に関する。
【背景技術】
【0002】
本項は、本開示の例示的実施形態に関連付けることができる、当分野の種々の態様を紹介することを意図する。この考察は、本開示の特定の態様のより良い理解を促進するための枠組みを提供するのに役立つと考えられる。したがって、本項はこの観点で読まれるべきであり、必ずしも先行技術を自認するものではないことを理解すべきである。
【0003】
例えば、ガスタービンと一体化された燃焼器等の、燃焼器内での燃料の燃焼は従来、排ガスの温度をモニタリングすることによって制御される。全負荷時では、典型的なガスタービンは、所望の燃焼ガスまたは排ガス温度に到達するために、燃焼器へ導入される燃料の量を調節する。従来の燃焼タービンは、そこへ導入される酸化剤を、入口案内翼を使用して制御する。部分負荷時では、燃焼器へ導入される酸化剤の量が低減され、ここでも所望の排ガス温度に到達するために導入される燃料の量が制御される。部分負荷時では、酸化剤の量を低減させる能力が入口案内翼によって制限され、酸化剤の流れを僅かにしか低減させることができないため、ガスタービンの効率は低下する。加えて、部分負荷運転時における希薄吹き消えに伴う潜在的な問題が存在する。
【発明の概要】
【発明が解決しようとする課題】
【0004】
燃焼器へ導入される酸化剤の量を制御することは、排ガスから二酸化炭素(CO2)を捕捉することが目的である場合に望ましいことがある。現在の二酸化炭素捕捉技術は、いくつかの理由により費用のかかるものである。1つの理由は、排ガスにおける低圧力および二酸化炭素の低濃度に起因する。しかしながら、二酸化炭素濃度は、化学量論的または実質的に化学量論的条件下で燃焼を操作し、排ガスの温度を調節するために、排ガスの少なくとも一部を希釈剤として燃焼器へと再生利用することによって、約4%〜10%超まで著しく増加することができる。また、酸素燃料燃焼プロセスでは、排ガス内のいかなる未使用の酸素も、二酸化炭素の捕捉に利用することができる溶媒の種類を制限する捕捉された二酸化炭素内の汚染であるため、酸化剤の制御も重要である。
【0005】
温度モニタリングを介して燃焼プロセスを制御することは、排ガスの組成を、またより具体的には、排ガス内の酸素(O2)量を制御しないか、仮にあったとしてもほとんど制御しない。排ガス内の酸素濃度は、燃焼された燃料の量および/または組成の変化のため、変動することがある。それ故、燃焼の制御に対する温度モニタリング手法は、例えば、酸素等の、排ガス内の特定の成分/化合物の存在および濃度を制御することが目的である場合、望ましくない。
【0006】
当分野での必要性に関する上述の考察は、包括的というよりむしろ、代表的であることを意図される。1つ以上のかかる必要性、または業界におけるいくつかの他の関連する短所に対する技術は、燃焼排ガスの組成を制御するための燃焼システムおよび方法にとって、利益となるであろう。
【課題を解決するための手段】
【0007】
本開示は、燃料を燃焼させるためのシステムおよび方法を提供する。例示的方法は、燃料、酸化剤、および希釈剤を燃焼領域へ導入することと、燃料の少なくとも一部を燃焼させ、水、二酸化炭素、酸素、および一酸化炭素を含有する、排ガスを生成することと、を含む。排ガスは、膨張され、機械動力および膨張された排ガスを生成してもよい。排ガスおよび膨張された排ガスの少なくとも一方において、酸素および一酸化炭素の少なくとも一方の濃度が判定される。該方法は、酸素および一酸化炭素の少なくとも一方の判定された濃度に少なくとも部分的に基づき、燃焼領域へ導入される酸化剤および燃料の少なくとも一方の量を調節し、酸素および一酸化炭素の合計含有量が約2mol%未満の排ガスを生成することによって継続される。
【0008】
本発明の上述の利点および他の利点は、以下の非限定的実施形態例の詳細な記載および図を参照することによって、明らかになるであろう。
【図面の簡単な説明】
【0009】
図1】記載される1以上の実施形態に係る、燃焼プロセスから生成される燃焼ガスの組成を制御し、機械動力を生成するための、例示的な燃焼および発電システムの概略図を示す。
図2A-B】それぞれ、0.999〜1.001および0.75〜1.25で当量比(φ)が変化する際の、酸素および一酸化炭素の濃度間の関係を示す、シミュレーションのグラフ図である。
図3】記載される1以上の実施形態に係る、燃料および酸素リッチ流体の燃燃から生成される排ガスの組成を制御し、機械動力を生成するための、例示的な燃焼および発電システムの概略図を示す。
図4】記載される1以上の実施形態に係る、燃料を改質し、その燃料を燃焼させることによって生成される排ガスの組成を制御し、それから生じる電力を生成するための、例示的な燃焼および発電システムの概略図を示す。
図5】記載される1以上の実施形態に係る、燃料および酸化剤を燃焼させ、不活性ガスを生成するための、例示的な燃焼および発電システムの概略図を示す。
図6】記載される1以上の実施形態に係る、燃料および酸化剤を燃焼させ、圧縮された不活性ガスを生成するための、例示的な燃焼および発電システムの概略図を示す。
図7】記載される1以上の実施形態に係る、電力、二酸化炭素、および膨張された不活性ガスを発生させるための、例示的な燃焼および発電システムの概略図を示す。
図8】記載される1以上の実施形態に係る、電力、二酸化炭素、および膨張された不活性ガスを発生させるための、別の例示的な燃焼および発電システムの概略図を示す。
図9】記載される1以上の実施形態に係る、電力、二酸化炭素、および不活性ガスを発生させるための、別の例示的な燃焼および発電システムの概略図を示す。
【発明を実施するための形態】
【0010】
以下の発明を実施するための形態の項では、本発明の具体的な実施形態を、好ましい実施形態に関連して記載する。しかしながら、以下の記載は、本発明の特定の実施形態または特定の使用に固有であるため、これは、例示的目的のみのためであり、単に例示的実施形態の記載を提供することを意図する。したがって、本発明は、以下に記載される具体的な実施形態に限定されることなく、むしろ、添付の特許請求の範囲の真の精神および範囲に含まれる全変更、修正、および均等物を含む。
【0011】
図1は、1以上の実施形態に係る、燃焼プロセスから生成される燃焼ガスまたは「排ガス」の組成を制御し、機械動力を生成するための、例示的な燃焼および発電システム100の概略図を示す。システム100は、1つ以上の燃焼器または燃焼領域(1つが図示される)120、膨張器(1つが図示される)125、熱回収ユニット(1つが図示される)140、圧縮機(2つが図示される)105、150、蒸気ガスタービン160、および発電機(2つが図示される)165、170を含むことができるが、それらに限定されない。
【0012】
ライン101を介する酸化剤は、圧縮機105へと、または直接に燃焼器120へと導入されることができる。ライン107内の圧縮された酸化剤の流量は、流量計(「第1の流量計」)110を介して、制御、調節、または別の方法で変更することができる。ライン107内の圧縮された酸化剤は、約400kPa〜約4500kPaの範囲の圧力であってよい。ライン107内の圧縮された酸化剤は、約30℃〜約500℃の範囲の温度であってよい。
【0013】
第2の流量計(「燃料流量計」)115は、ライン117を介して燃焼器120へ導入される燃料の量を通じて、制御、調節、または別の方法で変更することができる。図示されていないが、ライン112内の酸化剤およびライン117内の燃料は、燃焼器120へ導入される酸化剤/燃料混合物を提供するために、少なくとも部分的に混合され、または別の方法で組み合わされてもよい。
【0014】
ライン114を介して導入される燃料の少なくとも一部は、燃焼され、ライン123を介して燃焼ガスまたは排ガスを生成することができる。排ガスは、燃料、酸素、一酸化炭素、二酸化炭素、水素、窒素、酸化窒素、アルゴン、水、蒸気、またはそれらの任意の組み合わせを含有することができるが、それらに限定されない。ライン123内の排ガスは、約1000℃〜約1,500℃の範囲の温度および約400kPa〜約4,500kPaの範囲の圧力を有してよい。
【0015】
ライン123を介する排ガスは、膨張器125へ導入され、ライン127を介して膨張された排ガスを生成することができる。ライン127内の膨張された排ガスは、約430℃〜約725℃の範囲の温度および約101kPa〜約110kPaの範囲の圧力を有してよい。
【0016】
ライン127を介する膨張された排ガスは、1つ以上の排ガスセンサ(1つが図示される。130、131)に接触され、またはそれらによって別の方法で接近されることができる。排ガスセンサ130、131は、排ガス内に存在する可能性のある任意の1つ以上の成分の有無および/もしくは濃度、ならびに/または排ガスの任意の1つ以上の特性を、推定、判定、検出、または別の方法で測定することができる。ライン127を介する排ガスは、熱回収ユニット140へ導入され、ライン143を介して冷却された排ガスを生成することができ、またライン142を介して加熱された伝熱媒体を生成することができる。図示されていないが、排ガスセンサ130、131のうちの任意の1つ以上は、ライン127内の膨張された排ガスよりむしろ、またはライン127内の膨張された排ガスに加えて、ライン123内の排ガスと連通してもよい。
【0017】
推定されることができる例示的な排ガス成分には、酸素、一酸化炭素、水(液体水、気体状水、またはそれらの組み合わせ)、二酸化炭素、窒素、酸化窒素、アルゴン、燃料、酸化剤、水素、またはそれらの任意の組み合わせが挙げられるが、それらに限定されない。本明細書で使用するとき、用語「酸化窒素」は、化合物を含有する窒素を指す。例示的な酸化窒素には、一酸化窒素(NO)、二酸化窒素(NO2)、またはそれらの組み合わせが挙げられるが、それらに限定されない。推定されることができる例示的な排ガス特性には、温度、圧力、密度、質量流量および/もしくは体積流量といった流量、またはそれらの任意の組み合わせが挙げられるが、それらに限定されない。
【0018】
1以上の実施形態では、排ガスセンサ130は、ライン127内の膨張された排ガス内の1つ以上の成分を分析することができ、また排ガスセンサ131は、ライン127内の膨張された排ガスの温度を推定することができる。例えば、排ガスセンサ130は、ライン127内の膨張された排ガス内の酸素および/または一酸化炭素の濃度を推定することができる。別の例では、排ガスセンサ131は、ライン127内の膨張された排ガスの温度を推定することができる。したがって、排ガスセンサ130、131は、ライン127内の排ガスの異なる特性および/または成分の測定専用とすることができる。
【0019】
1以上の実施形態では、排ガスセンサ130、131の双方は、同一の成分(単数または複数)および/もしくは特性(単数または複数)、異なる成分(単数または複数)および/もしくは特性(単数または複数)、または何らかの同一の成分(単数または複数)および/もしくは特性(単数または複数)と異なる成分(単数または複数)および/もしくは特性(単数または複数)との組み合わせを推定するように構成されてもよい。例えば、排ガスセンサ130は、ライン127内の膨張された排ガスの酸素および/または二酸化炭素濃度ならびに圧力を推定することができ、また排ガスセンサ131は、ライン127内の膨張された排ガスの温度および圧力を推定することができる。1以上の実施形態では、ただ1つの排ガスセンサ、例えば、排ガスセンサ130を使用してもよく、単一の排ガスセンサ130は、ライン127内の膨張された排ガスの任意の1つ以上の成分および/または特性を推定するように構成されてもよい。
【0020】
例示的な酸素センサには、ラムダおよび/または全領域空燃比酸素センサ、チタニアセンサ、ガルバニセンサ、赤外ラインセンサ、またはそれらの任意の組み合わせが挙げられるが、それらに限定されない。例示的な温度センサには、熱電対、抵抗温度形、赤外ラインセンサ、またはそれらの任意の組み合わせが挙げられるが、それらに限定されない。例示的な一酸化炭素センサは、スズ酸バリウムおよび/または二酸化チタン等の、酸化物系フィルムセンサを含むことができるが、それに限定されない。例えば、一酸化炭素センサは、白金活性二酸化チタン、ランタン安定化二酸化チタン等を含んでもよい。
【0021】
図2Aおよび2Bは、それぞれ、当量比(φ)が0.999〜1.001および0.75〜1.25で変化する際の、酸素濃度と一酸化炭素濃度との間の関係を示すシミュレーションのグラフ図である。当量比の関数としての酸素濃度をライン210で示し、また当量比の関数としての一酸化炭素濃度をライン220で示す。当量比(φ)は、(mol%燃料/mol%酸化剤)実量/(mol%燃料/mol%酸化剤)化学量論的に等しい。mol%燃料は、F燃料/(F酸化剤+F燃料)に等しく、式中F燃料は燃料のモル流量に等しく、F酸化剤は酸化剤のモル流量に等しい。mol%酸化剤は、F酸化剤(F酸化剤+F燃料)に等しく、式中F酸化剤は酸化剤のモル流量に等しく、F燃料は燃料のモル流量に等しい。当量比(φ)が1を下回る、または1を上回ると、排ガス内の酸素および二酸化炭素のモル分率または濃度は変化する。例えば、当量比(φ)が1を下回ると、酸素のモル分率は、当量比(φ)約1での約1ppm(すなわち、約1.0x10-6の酸素モル分率)から、当量比約0.999での約100ppm(すなわち、約1x10-4の酸素モル分率)へと、急速に増加する。同様に、当量比(φ)が1を上回ると、一酸化炭素の濃度は、当量比(φ)約0.9995での約1ppm(すなわち、約1x10-6の一酸化炭素モル分率)から、当量比約1.001での約100ppm超(すなわち、約1x10-4の一酸化炭素モル分率)へと、急速に増加する。
【0022】
排ガスセンサ130および/または131から提供される情報またはデータに少なくとも部分的に基づき、ライン112を介する酸化剤の量および/またはライン117を介する燃料の量を変更、修正、調節、または他の方法で制御し、ライン123を介する所望の組成を有する排ガスを生成することができる。驚くべきことに、また予想外に、ライン123内の排ガス内および/またはライン127内の膨張された排ガス内の酸素および/または一酸化炭素濃度をモニタリングすることによって、燃焼器120へと導入されるライン112を介する酸化剤および/またはライン117を介する燃料の量は、燃料の燃焼を事前に判定された範囲の当量比(φ)で実行し、約3mol%未満、約2.5mol%未満、約2mol%未満、約1.5mol%未満、約1mol%未満、または約0.5mol%未満の酸素および一酸化炭素の組み合わせ濃度を有する排ガスを生成するように、制御することが可能であることが見出された。さらに、驚くべきことに、または予想外に、ライン123内の排ガス内および/またはライン127内の膨張された排ガス内の酸素および/または一酸化炭素濃度をモニタリングすることによって、燃焼器120へと導入されるライン112を介する酸化剤および/またはライン117を介する燃料の量は、燃料の燃焼を事前に判定された範囲の当量比(φ)で実行し、約4,000ppm未満、約2,000ppm未満、約1,000ppm未満、約500ppm未満、約250ppm未満、または約100ppm未満の、酸素および一酸化炭素の組み合わせを有する排ガスを生成するように、制御することが可能であることが見出された。
【0023】
使用可能な当量比(φ)に対する所望のまたは事前に判定された範囲は、ライン112内の燃料の燃焼を実行し、ライン123内の所望の量の酸素および/または一酸化炭素を含有する排ガスを生成する。例えば、当量比(φ)は、最低約0.5mol%、約0.8mol%、または約1mol%から、最高約1.5mol%、約1.8mol%、約2mol%、または約2.2mol%までの範囲にわたる酸素および一酸化炭素の組み合わせ濃度を有するライン123を介する排気を生成するように、約0.85〜約1.15の事前に判定された範囲内に維持されることができる。別の例では、当量比(φ)は、2mol%未満、約1.9mol%未満、約1.7mol%未満、約1.4mol%未満、約1.2mol%未満、または約1mol%未満の酸素および一酸化炭素の組み合わせ濃度を有するライン123を介する排ガスを生成するように、約0.85〜約1.15の範囲内に維持されることができる。また別の例では、当量比(φ)は、約4,000ppm未満、約3,000ppm未満、約2,000ppm未満、約1,000ppm未満、約500ppm未満、約250ppm未満、または約100ppm未満の酸素および一酸化炭素の組み合わせ濃度を有するライン123を介する排ガスを生成するように、約0.96〜約1.04の範囲内に維持されることができる。
【0024】
図1、2A、および2Bを参照すると、燃焼器120内で燃料を燃焼させるための1つの方法は、始めに、すなわち、開始時に、ライン117を介する燃料およびライン112を介する酸化剤を、1を超える当量比で導入することを含むことができる。例えば、ライン117を介する燃料およびライン112を介する酸化剤は、最低約1.0001、約1.0005、約1.001、約1.05、または約1.1から、最高約1.1、約1.2、約1.3、約1.4、または約1.5までの範囲の当量比(φ)で、始めに燃焼器120へ導入されることができる。別の例では、当量比(φ)は、約1.0001〜約1.1、約1.0005〜約1.01、約1.0007〜約1.005、または約1.01〜約1.1の範囲にわたってもよい。ライン123内の排ガス内の、または、図示されるように、ライン127内の膨張された排ガス内の、酸素および/または一酸化炭素の濃度は、ガスセンサ130を介して判定または推定することができる。ライン127内の膨張された排ガスは、始めは、高濃度の一酸化炭素(例えば、約1,000ppm超または約10,000ppm超)および低濃度の酸素(例えば、約10ppm未満または約1ppm未満)を有しているはずである。
【0025】
燃焼器120内で燃料を燃焼させるための別の方法は、始めに、すなわち、開始時に、ライン117を介する燃料およびライン112を介する酸化剤を、1未満の当量比で導入することを含むことができる。例えば、ライン117を介する燃料およびライン112を介する酸化剤は、最低約0.5、約0.6、約0.7、約0.8、または約0.9から、最高約0.95、約0.98、約0.99、約0.999までの範囲の当量比(φ)で、始めに燃焼器120へ導入されることができる。別の例では、当量比(φ)は、約0.9〜約0.999、約0.95〜約0.99、約0.96〜約0.99、または約0.97〜約0.99の範囲にわたってもよい。ライン123内の排ガス内の、または、図示されるように、ライン127内の膨張された排ガス内の、酸素および/または一酸化炭素の濃度は、排ガスセンサ130を介して判定または推定することができる。ライン127内の膨張された排ガスは、始めは、高濃度の酸素(例えば、約1,000ppm超、または約10,000ppm超)および低濃度の一酸化炭素(例えば、約10ppm未満、またはさらには約1ppm未満)を有しているはずである。
【0026】
例えば、排ガス内の酸化剤の濃度が、約1ppm未満から約100ppm超、約1,000ppm超、約1mol%超、約2mol%超、約3mol%超、または約4mol%超へと増加すると、操作者、自動制御システム、またはその双方は、1未満の当量比(φ)が到達されたことを通知されてもよい。1以上の実施形態では、ライン112を介する酸化剤およびライン117を介する燃料の量は、例えば、0.99といった、1より僅かに少ない当量比(φ)を有する燃焼プロセスを提供するように、一定または実質的に一定に維持されてもよい。ライン112を介する酸化剤の量は減少されてよく、および/またはライン117を介する燃料の量は増加されてよく、その後、事前に判定された範囲内に含まれる当量比(φ)を有する燃焼プロセスを提供するように、一定または実質的に一定に維持されてもよい。例えば、酸素濃度が、約1ppm未満から約1,000ppm、約0.5mol%、約2mol%、または約4mol%に増加する場合、ライン112を介する酸化剤の量は、排ガス内の酸素の増加が初期に検出された時点で導入されたライン112を介する酸化剤の量に対して、最低約0.01%、約0.02%、約0.03%、または約0.04から、最高約1%、約2%、約3%、または約5%までの範囲の量で、低減または増加されてもよい。別の例では、酸素濃度が、約1ppm未満から約1,000ppm以上へ増加する場合、ライン112を介する酸化剤の量は、排ガス内の酸素の増加が検出された時点で導入されたライン112を介する酸化剤の量に対して、約0.01%〜約2%、約0.03%〜約1%、または約0.05%>〜約0.5%で、低減または増加されてもよい。また別の例では、酸素濃度が、約1ppm未満から約1,000ppm以上へ増加する場合、ライン117を介する燃料の量は、排ガス内の酸素の増加が初期に検出された時点で導入されたライン117を介する燃料の量に対して、最低約0.01%、約0.02%、約0.03%、または約0.04から、最高約1%、約2%、約3%、または約5%の範囲にわたる量で、増加されてもよい。
【0027】
燃焼および発電システム100の稼働中、当量比(φ)は、排ガスセンサ130を介して、絶え間なく、周期的な間隔で、ランダムまたは非周期的な間隔で、ライン123内の排ガスの当量比(φ)を変更または変化させる可能性のある1つ以上の変化がシステム100に生じたときに、またはそれらの任意の組み合わせでモニタリングすることができる。当量比(φ)を変更または変化させる可能性のあるシステム100に対する例示的な変化には、燃料の組成の変化、酸化剤の組成の変化、またはそれらの組み合わせが挙げられるが、それらに限定されない。このように、酸素および/または一酸化炭素の濃度は、例えば、観察されることができ、ライン123内の排ガス内の酸素および/または一酸化炭素の量を制御または調節するために、ライン112を介する酸化剤および/またはライン117を介する燃料の量の調節をおこなうことができる。
【0028】
少なくとも1つの実施形態では、当量比(φ)の低減は、漸増的工程で、非漸増的工程で、継続的様式で、またはそれらの任意の組み合わせで実行することができる。例えば、ライン112を介する酸化剤のおよび/またはライン117を介する燃料の量は、当量比(φ)が、例えば、約0.001、約0.01、または約0.05といった、酸化剤および/または燃料に対する1回の調節につき固定された、または実質的に固定された量で変化するように、調節されることができる。別の例では、ライン112を介する酸化剤および/またはライン117を介する燃料の量は、当量比が連続的に変化するように、連続的に変更されてもよい。好ましくは、ライン112を介する酸化剤および/またはライン117を介する燃料の量は変更され、燃焼は、当量比(φ)を最低約0.00001、約0.0001、または約0.0005から、最高約0.001、約0.01、または約0.05までの範囲の量で変化させるように酸化剤および/または燃料の量を調節することが可能である、一定または実質的に一定の組成の排ガスを生成するのに十分な時間、実行される。排ガスが一定のまたは実質的に一定の酸素濃度を獲得した後、ライン112を介する酸化剤および/またはライン117を介する燃料は、当量比(φ)が再び変化するように、再び調節されてもよい。ライン123内の排ガス内の、および/またはライン127内の膨張された排ガス内の酸素および/または一酸化炭素の量は、モニタリングすることができ、ライン112を介する酸化剤および/またはライン117を介する燃料の量は、排ガスが、例えば、約2mol%未満、または約1.5mol%未満、または約1mol%未満の酸素および一酸化炭素の組み合わせ濃度を有するまで、反復して調節することができる。
【0029】
燃焼器120は、ライン123内の排ガスが、2mol%未満、1mol%未満、0.5mol%未満、または約0.1mol%未満の酸素および一酸化炭素の組み合わせ濃度を有するように、絶え間なく稼動されることができる。別の例では、燃焼器120内で燃焼が実行されている間の時間、ライン123内の排ガスは、燃焼および発電システム100が稼動時間中の約50%、55%、60%、65%、70%、75%、80%、85%、90%、または約95%の間、2mol%未満、または約1mol%未満の酸素および一酸化炭素の組み合わせ濃度を有することが可能である。換言すると、燃焼器120内で燃焼が実行されている時間の大部分で、ライン123内の排ガスは、約2mol%未満、約1mol%未満、約0.5mol%未満、または約0.1mol%未満の酸素および一酸化炭素の組み合わせ濃度を有することができる。
【0030】
熱回収ユニット140は、ライン127を介してそれへと導入される排ガスからの熱を、ライン138を介して導入される1つ以上の伝熱媒体へと間接的に伝達することができる。熱は、排ガスから伝熱媒体へと間接的に伝達または交換され、ライン142を介する加熱された伝別媒体および143を介する冷却された排ガスを生成することができる。
【0031】
ライン143を介する冷却された排ガスは、最低約75℃〜最高約105℃の範囲にわたる温度、および最低で大気圧〜最高約120kPaの範囲にわたる圧力を有することができる。例えば、ライン143内の冷却された排ガスの圧力は、約101kPa〜約110kPa、約102kPa〜約107kPa、または約103kPa〜約105kPaの範囲にわたることができる。
【0032】
例示的なライン138内の伝熱媒体には、水、空気、蒸気、エチレングリコール、炭化水素、またはそれらの任意の組み合わせが挙げられるが、それらに限定されない。ライン142内の加熱された伝熱媒体は、約75℃〜約110℃の範囲にわたる温度を有することができる。伝熱媒体が、例えば、ボイラー用水といった,水である場合、蒸気、または水と蒸気の混合物が、ライン142を介して生成されることができる。ライン142内の加熱された伝熱媒体は、最低約4,000kPa〜最高約15,000kPaの範囲にわたる圧力を有することができる。
【0033】
例えば、蒸気等の、ライン142を介する加熱された伝熱媒体は、伝別媒体を膨張させることができる蒸気ガスタービン150へ導入され、それによって、それへ連結される発電機165を介して電力を発生させ、またライン142内の加熱された伝熱媒体に対して低減された圧力を有する、ライン162を介する伝熱媒体を生成することができる。ライン162内の伝熱媒体は、ライン138を介して熱回収ユニット140へと再生利用される、廃棄される、および/または1以上の他のプロセスで使用されることができる。
【0034】
1以上の実施形態では、ライン143内の冷却された排ガスの少なくとも一部は、ライン142を介してシステム100から除去されることができる。ライン145を介してシステム100から除去された冷却された排ガスは、大気へと放出されるか、その中の任意の残留燃料を少なくとも部分的に燃焼させるために炎へと送られるか、または貯蔵および/もしくは格納用の地下構造へと導入されてもよい。
【0035】
1以上の実施形態では、ライン143内の冷却された排ガスの少なくとも一部は、ライン147を介してシステム100へと再生利用することができる。例えば、ライン143内の冷却された排ガスの約20%〜約100%を、ライン147を介して圧縮機150へ導入することができ、ライン152を介して圧縮された排ガスを提供することができる。別の例では、ライン147を介して圧縮機150へと導入されるライン143内の冷却された排ガスの量は、最低約25%、約40%、または約50%から最高約60%、約80%、約90%、または約100%の範囲にわたることができ、ライン152を介する圧縮された排ガスを提供することができる。少なくとも1つの特定の実施形態では、ライン147を介する冷却された排ガスの全てが、ライン147を介して圧縮機150へ導入されることができ、ライン152を介する圧縮された排ガスを提供することができる。
【0036】
ライン152内の圧縮された排ガスは、最低約400kPa〜最高約4,500kPaの範囲の圧力を有することができる。ライン152内の圧縮された排ガスは、最低約300℃〜最高約430℃の範囲の温度を有することができる。
【0037】
図示されていないが、ライン147内の冷却された排ガスに含まれる任意の水(気体、液体、またはそれらの混合物)の少なくとも一部は、圧縮機150への導入前に除去されてもよい。水は、任意の好適なシステム、機器、またはシステムおよび/もしくは機器の組み合わせを使用して除去することができる。例えば、ライン147内の冷却された排ガス内の任意の水の少なくとも一部は、冷却された排ガスの温度を十分に下げ、それによって凝縮水を冷却された排ガスから分離することによって、除去することができる。別の実施例では、ライン147内の冷却された排ガス内の任意の水の少なくとも一部は、吸着または吸収プロセスを介して除去されてもよい。
【0038】
任意の量のライン152内の圧縮された排ガスが、希釈剤として、ライン154を介して燃焼器120へ導入されることができる。同様に、任意の量のライン152内の圧縮された排ガスが、ライン155を介してシステム100から除去されることができる。例えば、ライン154を介して燃焼器120へ導入される圧縮された排ガスまたは「希釈剤」の量は、ライン152内の圧縮された排ガスの約10%〜約100%の範囲にわたることができる。別の実施例では、ライン154を介して燃焼器120へ導入される圧縮された排ガスの量は、ライン152内の圧縮された排ガスの、最低約20%、約30%、または約40%から、最高約50%、約60%、または約70%までの範囲にわたることができる。少なくとも1つの実施形態では、ライン154を介して燃焼器120へ導入される圧縮された排ガスの量は、約50%〜約70%の範囲にわたることができ、またライン155を介してシステム100から除去される圧縮された排ガスの量は、ライン152内の圧縮された排ガスの約30%〜約50%の範囲にわたることができる。少なくとも1つの他の例では、ライン154を介する全ての圧縮された排ガスが、燃焼器120へ導入されることができ、過剰の圧縮された排ガスは、燃焼器から除去されることができる。
【0039】
したがって、圧縮された排ガスとしてライン154を介して燃焼器120へ最終的に導入されるライン143内の冷却された排ガスの量は、最低約10%〜約100%までの範囲にわたることができる。例えば、圧縮された排ガスとしてライン154を介して燃焼器120へ最終的に導入されるライン143内の冷却された排ガスの量は、最低約40%、約45%、約50%、または約55%から、最高約65%、約70%、約80%、または約90%までの範囲にわたることができ、ライン155を介してシステム100から最終的に除去されるライン143内の冷却された排ガスの量は、約1%〜約60%の範囲にわたることができる。別の例では、圧縮された排ガスとしてライン154を介して燃焼器120へ最終的に導入されるライン143内の冷却された排ガスの量は、約55%〜約65%の範囲にわたることができ、ライン155を介してシステム100から最終的に除去されるライン143内の冷却された排ガスの量は、約35%〜約45%の範囲にわたることができる。
【0040】
ライン112内の特定の酸化剤、ライン117内の特定の燃料、および/または燃焼器120へ導入されるライン154を介する圧縮された排ガスの量に、少なくとも部分的に、依存して、ライン123内の排ガスは、最低約6mol%、約8mol%、約10mol%、約12mol%、または約14mol%から、最高約20mol%、約24mol%、約28mol%、約32mol%、または約34mol%の範囲にわたる二酸化炭素濃度を有することができる。ライン123内の排ガスは、最低約19mol%、約25mol%、約30mol%、または約35mol%から、最高約50mol%、約60mol%、約65mol%、または約70mol%の範囲にわたる水および/または蒸気濃度を有することができる。ライン123内の排ガスは、約2mol%未満、約1.5mol%未満、1mol%未満、0.5mol%未満、約0.1mol%、または約0.05mol%未満の一酸化炭素濃度を有することができる。ライン123内の排ガスは、約2mol%未満、約1.5mol%未満、1mol%未満、0.5mol%未満、約0.1mol%未満、または約0.05mol%未満の酸素濃度を有することができる。ライン123内の排ガスは、最低約0.01mol%、約1mol%、または約5mol%から、最高約60mol%、約70mol%、約75mol%の範囲にわたる窒素濃度を有することができる。ライン123内の排ガスは、約0.0001mol%〜約0.1mol%の酸化窒素濃度を有することができる。ライン123内の排ガスは、約0.1mol%〜約1.5mol%のアルゴン濃度を有することができる。
【0041】
1以上の実施形態では、燃料と燃焼器120へ導入される圧縮された排ガスとの間の重量比は、酸化剤が酸素であるかまたは空気であるかによって、最低約0.027:1〜最高約0.061:の範囲にわたることができる。1以上の実施形態では、酸化剤と燃焼器120へ導入される圧縮された排ガスとの間の重量比は、最低約0.101:1〜最高約0.9555:1の範囲にわたることができる。
【0042】
1以上の実施形態では、ライン154を介する圧縮された排ガスは、ライン112内の酸化剤と混合されるか、ライン117内の燃料と混合されるか、燃焼器120へ直接導入されるか、またはそれらの任意の組み合わせであってよい。例えば、ライン154内の圧縮された排気の全てまたは一部は、ライン112内の酸化剤と混合され、その後に燃料と混合されることができる酸化剤/排ガス混合物を提供してもよい。少なくとも1つの具体的な実施形態では、ライン154内の圧縮された排ガスの第1の部分は、ライン112内の酸化剤と混合されてよく、ライン154内の圧縮された排ガスの第2の部分は、燃焼器120へ直接導入されるか、ライン117内の燃料と混合されるか、またはその双方であってよい。少なくとも1つの他の具体的な実施形態では、ライン154内の圧縮された排ガスの第1の部分は、ライン112内の酸化剤と混合されるか、または燃焼器120内で酸化剤と混合されてよく、ライン154内の圧縮された排ガスの第2の部分は、燃焼器へ導入され、燃焼器120内で排ガスと混合されてもよい。
【0043】
圧縮機105へ導入される、ライン101を介する酸化剤は、任意の好適な酸素含有材料または材料の組み合わせであってよく、またはそれらを含んでよい。例示的な酸化剤には、空気、酸素(O2)、実質的酸素、酸素富化空気、酸素リーン空気、過酸化水素(H22)、オゾン(O3)、例えば、空気、水、二酸化炭素、窒素、および/もしくはアルゴン等の1つ以上の気体と酸素との混合物、またはそれらの任意の組み合わせが含まれるが、それらに限定されない。ライン101内の酸化剤は、約1vol%〜約100vol%の酸素を含有することができる。本明細書で使用するとき、用語「実質的酸素」とは、50vol%を超える酸素を含有する酸化剤を指す。例えば、実質的酸素流体は、約55vol%〜約100vol%の酸素を含有してもよい。本明細書で使用するとき、用語「酸素富化空気」は、約21vol%を超える酸素および最大50vol%の酸素を含有する酸化剤を指す。本明細書で使用するとき、用語「酸素リッチ」は、酸素富化空気および実質的酸素の双方を指す。本明細書で使用するとき、用語「酸素リーン空気」は、約20vol%未満の酸素を含有する酸化剤を指す。ライン101内の酸化剤は、窒素を含まない、または実質的に窒素を含まないことが可能である。本明細書で使用するとき、用語「実質的に窒素を含まない」は、約5vol%の窒素もしくはそれ未満、4vol%の窒素もしくはそれ未満、3vol%の窒素もしくはそれ未満、2vol%の窒素もしくはそれ未満、または1vol%の窒素もしくはそれ未満を含有する、ライン101内の酸化剤を指す。
【0044】
酸化剤流量計110は、燃焼器120へ導入される酸化剤の量を制御するように適合または構成される、任意の好適な機器、システム、または機器および/もしくはシステムの組み合わせであってよい。例示的な流量制御機器には、弁、圧縮機、筒口、ポンプ等が挙げられるがそれらに限定されない。
【0045】
ライン114内の燃料は、任意の燃焼可能材料または燃焼可能材料の組み合わせであってよく、またはそれを含有してもよい。ライン114内の燃料は、1つ以上の気体炭化水素、液体炭化水素、固体炭化水素、または、気体、液体、および/もしくは固体炭化水素の混合物を含有してもよい。例示的な炭化水素には、C1〜C20炭化水素、またはそれらの任意の組み合わせが挙げられるが、それに限定されない。例えば、ライン114内の燃料は、メタン、エタン、エチレン、アセチレン、プロパン、プロピレン、メチルアセチレン、シクロプロパン、プロパジエン、ブタン、ブチレン、ブチン、シクロブタン、ブタジエン、ペンタン、ペンテン、ペンチン、シクロペンタン、ペンタジエン、ヘキサン、ヘキセン、ヘキシン、シクロヘキサン、ヘキサジエン、ヘプタン、ヘプテン、ヘプチン、シクロヘプタン、ヘプタジエン、オクタン、オクテン、オクチン、シクロオクタン、オクタジエン、ノナン、ノネン、ノニン、シクロノナン、ノナジエン、デカン、デセン、デシン、シクロデカン、デカジエン、それらの混合物、またはそれらの任意の組み合わせを含むことができる。別の好適な燃料は、水素を含有してもよい。水素は、単独で使用されてもよく、例えば、1種以上のC1〜C10炭化水素等の、任意の1つ以上の他の燃料と組み合わされてもよい。
【0046】
1以上の実施形態では、ライン114内の燃料は、水素、C2、C3、C4、およびより重い炭化水素、またはそれらの任意の組み合わせを含む平衡を有する、最低約10mol%、約30mol%、約50mol%、または約75mol%から、最高約95mol%、約99mol%、または約99.9mol%の範囲にわたるメタン濃度を有することができる。例えば、ライン114内の燃料は、約80mol%以上、約90mol%以上、約97mol%以上、約98mol%以上、または約99.5mol%以上のメタン濃度を有することができる。ライン114内の燃料における水素濃度は、最低約0.1mol%、約1mol%、または約5mol%から、最高約20mol%、約30mol%、または約35mol%の範囲にわたることができる。別の例では、ライン114内の燃料は、天然ガスであるか、または天然ガスを含有することができる。ライン114内の燃料が天然ガスを含有する場合、天然ガスは、随伴ガス(すなわち、油井から回収されたもの)、非随伴ガス(すなわち、天然ガス田で単離されたもの)、バイオガス(例えば、埋立処理地から生成されるメタン含有ガス)、水和物、またはそれらの任意の組み合わせに由来してもよい。天然ガスは、その生成源から直接的に使用されてもよく、および/または、硫化水素(H2S)、水、砂、二酸化炭素等の1つ以上の汚染物質の少なくとも一部を除去するために、予め精製され、もしくは予め処理されてもよい。
【0047】
燃料流量計115は、114を介してそれへと導入される燃料の量を測定、判定、または別の方法で推定することが可能な、任意の機器、システム、または機器および/またはシステムの組み合わせを含むことができる。例示的な燃料流量計115は、弁、ポンプ、筒口、タービン流量計、ベンチュリ流量計、オリフィス板、またはそれらの任意の組み合わせを含むことができるが、それらに限定されない。
【0048】
燃焼器120は、1つ以上のバーナ、燃焼領域、燃焼器ライナー、混合領域、および関連設備を含むことができる。燃焼器は、例えば、ガスタービンシステム等の、システム内へ統合される場合は、トランジションピースおよび他の機構と組み合わされてもよい。
【0049】
膨張器125は、ライン123内の排ガスをタービンへと方向付けることができる1つ以上の筒口を含むことができる。タービンへ導入される排ガスは、タービンを回転させ、それによって機械動力を発生させることができる。膨張器125を介して発生された機械動力は、軸126を介して圧縮機150を駆動するように使用することができる。別の例では、膨張器125を介して発生される動力の全てまたは一部は、発電機170に電力を供給するために使用することができる。また別の例では、膨張器125を介して発生される動力の第1の部分が、圧縮機150を駆動するために使用され、また第2の部分が、発電機170を駆動するために使用されてもよい。
【0050】
圧縮機105、150は、任意の種類の圧縮機を含むことができる。例示的な圧縮機は、軸方向式、遠心分離式、回転式容積式等を含むことができるが、それらに限定されない。1以上の実施形態では、圧縮機105は、圧縮機150と異なる種類の圧縮機であってもよい。1以上の実施形態では、圧縮機105および150は、例えば、軸方向式圧縮機等の、同一の種類の圧縮機であってもよい。
【0051】
各燃焼器120、膨張器125、および圧縮機150は、互いに一体化され、一体型ガスタービンまたは燃焼タービンシステム180を提供することができる。別の例では、燃焼器120、膨張器125、および/または圧縮機150は、個別の構成要素であることが可能である。例えば、燃焼器120は、加熱炉といった、独立型ユニットであってもよい。膨張器125および圧縮機150もまた、独立型ユニットであってもよく、または軸126を介して互いに連結されてもよく、またはそれによって膨張器125によって発生される機械的エネルギーの少なくとも一部が圧縮機150を駆動することを可能にする、他の機械的、電気的、もしくは他の動力連結装置であってもよい。
【0052】
熱回収ユニット140は、ライン127を介して導入された膨張された排ガスと、ライン138を介してそれへと導入された伝熱媒体との間で間接的に熱を交換することが可能な、任意のシステム、機器、またはシステムおよび/または機器の組み合わせを含むことができる。例示的な熱回収ユニット140には、シェルアンドチューブ式交換器、プレートフレーム式交換器、Uチューブ式交換器、渦巻き型交換器、フィン・ファン式交換器、またそれらの任意の組み合わせが挙げられるが、それらに限定されない。別の例では、熱回収ユニット140は、膨張された排ガス導管または経路であってもよく、またはそれを含むことができ、ライン127を介して導入される排ガスは、膨張された排ガスが1つ以上のコイルを横断して流れるようにその中に配置された1つ以上のコイルを通して、流動する。1以上の実施形態では、熱回収ユニット140の任意の構成要素は、表面増強管(例えば、フィン、静的ミキサ、旋条、熱伝導パッキン、渦流生成突起、またそれらの組み合わせ)等を含むことができる。
【0053】
蒸気タービン160は、ライン142内の加熱された伝熱媒体を蒸気タービンへと方向付けることができる、1つ以上の筒口を含むことができる。蒸気タービン160へ導入される加熱された伝熱媒体は、タービンを回転させ、それによって機械動力を発生させることができる。蒸気タービン160を介して発生される機械動力は、発電機165を駆動するために使用することができる。図示されていないが、蒸気タービン160を介して発生される機械動力は、圧縮機105、圧縮機150、発電機170、発電機165、またはそれらの任意の組み合わせを駆動するために使用することができる。
【0054】
発電機165、170は、機械的エネルギーを電気エネルギーに転換することが可能な、任意の機器、システム、または機器および/システムの組み合わせを含むことができる。例示的な発電機165、170には、同期型発電機および誘導型発電機が挙げられるが、それらに限定されない。
【0055】
図3は、1以上の実施形態に係る、燃料および酸素リッチ流体の燃焼から生成される排ガスの組成を制御し、機械動力を生成するための、別の例示的な燃焼および発電システム300の概略図を示す。燃焼および発電システム300は、図1を参照して上述に説明および記載されるシステム100同様であることができる。システム300はさらに、1つ以上の空気分離ユニット(「ASU」)(1つが図示される)305を含むことができる。ライン301を介する空気は、空気から少なくとも部分的に酸素を分離し、ライン307を介する酸素富化空気または実質的酸素流体と、ライン309を介する酸素リーン空気とを提供することが可能な、空気分離ユニット305へ導入されることができる。
【0056】
少なくとも1つの具体的な実施形態では、空気分離ユニット305は、ライン307を介する酸素富化流体を提供することができる。少なくとも1つの具体的な実施形態では、空気分離ユニット305は、ライン307を介する実質的酸素流体を提供することができる。したがって、ライン307内の酸素の量は、21vol%の酸素を超えることができ、また最大約100vol%の酸素であることが可能である。ライン307を介する酸素リッチ流体は、例えば、空気の低温蒸留、圧力スイング吸着、膜分離、またはそれらの任意の組み合わせから獲得することができる。
【0057】
ライン107内の圧縮された酸化剤が酸素富化空気である場合、ライン123を介する排ガスは、約10mol%〜約34mol%の二酸化炭素濃度、約15mol%〜約60mol%の水および/もしくは蒸気濃度、約0.01mol%〜約2mol%の一酸化炭素濃度、約0.001mol%〜約2mol%の酸素濃度、約0.001mol%〜約0.1mol%の燃料濃度、約0.01mol%〜約70mol%の窒素濃度、約0.01mol%〜約0.03mol%の酸化窒素濃度、ならびに/または約0.2mol%〜0.9mol%のアルゴン濃度を有することができる。ライン107内の酸化剤が実質的酸素である場合、ライン123を介する排ガスは、約30mol%〜約35mol%の二酸化炭素濃度、約60mol%〜約70mol%の水および/もしくは蒸気濃度、約0.01mol%〜約2mol%の一酸化炭素濃度、約0.001mol%〜約2mol%の酸素濃度、約0.001mol%〜約0.1mol%の燃料濃度、約0.01mol%〜約1.5mol%の窒素濃度、約0.001mol%〜約0.03mol%の酸化窒素濃度、ならびに/または約0.2mol%〜約1.5mol%のアルゴン濃度を有することができる。
【0058】
図4は、1以上の実施形態に係る、燃料を改質し、燃焼を燃焼させることによって生成される排ガスの組成を制御し、またそれから生じる動力を生成するための、例示的な燃焼および発電システム400の概略図を示す。燃焼および発電システム400は、図1および3を参照して上述に説明および記載されるシステム100および/または300と同様であることができる。システム400はさらに、1つ以上の改質器(1つが図示される)405を含むことができる。改質器405は、ライン114内の燃焼の組成を少なくとも部分的に改質、処理、精製、濾過、または別の方法で修正もしくは変更し、ライン412を介する改質燃料を生成することができる。
【0059】
ライン412を介する改質燃料は、ライン114内の燃料以外の、微量の1種以上の不純物または不要な成分を含んでもよい。例示的な不純物には、硫化水素、一酸化炭素、例えば、C2−C20炭化水素等の、1つを超える炭素原子を含有する炭化水素、またはそれらの任意の組み合わせが挙げられるが、それらに限定されない。
【0060】
改質器305は、ライン114内の燃料の組成を、任意の種類のプロセスまたはプロセスの組み合わせを使用して、修正または変更することができる。図示されるように、改質器405は、ライン114内の燃料内に含まれる1種以上の不純物を、より有益な、またはより望ましい成分へと触媒的に反応させることが可能な、1つ以上の触媒含有床410を含むことができる。
【0061】
例えば、ライン114を介する燃料は、炭化水素含有構造から回収されることができ、一般的に「破過ガス(breakthrough gas)」と称される。ブレイクスルーガス内のより大きい炭化水素の大部分はそれから分離されることができるが、例えば、C2、C3、およびC4炭化水素といった、幾つかの少量の炭化水素が、ライン114内の燃料内に依然として含まれる場合がある。これらのより大きい炭化水素内の炭素間結合の少なくとも一部は、改質器405を介して破断されることができ、それによってより大きい炭化水素の量を低減させることができる。ライン114内の燃料内のC2およびより大きい炭化水素の量を低減することにより、燃焼器120内に生じる煤煙の量、および/または燃焼器内に生じる煤煙の可能性を低減することができる。さらに、C2およびより大きい炭化水素の量を低減することにより、幾らかの水素を生成することもでき、燃焼器120内での燃料の燃焼を改善することができる。生成することができる水素の別の利益は、燃焼プロセスの吹き消え温度を低下させることができ、それによって燃焼器120内の火炎温度を低下させることが可能となる。燃焼器120内の火炎温度を低下させることはまた、システム400の効率を増加させることができる。
【0062】
触媒含有床410に使用することができる例示的な触媒には、ニッケル、白金、ロジウム、ルテニウム、パラジウム、それらの誘導体、またはそれらの任意の組み合わせが挙げられるが、それらに限定されない。触媒含有床410は固定床、流動床、もしくは移動床、またはそれらの組み合わせであってよい。
【0063】
改質器405における使用に好適な他の例示的なプロセスには、溶媒抽出プロセス、液体間抽出プロセス、蒸留、分割、膜濾過、逆抽出、吸着プロセス、吸収プロセス、またはそれらの任意の組み合わせが挙げられるが、それらに限定されない。
【0064】
図5は、1以上の実施形態に係る、燃料および酸化剤を燃焼させ、不活性ガスを生成するための、例示的な燃焼および発電システム500の概略図を示す。燃焼および発電システム400は、図1、3、および4を参照して上述に説明および記載されるシステム100、300、および/または400と同様であることができる。燃焼および発電システム500はさらに、1つ以上の送風機(1つが図示される)505、凝縮器(1つが図示される)510、および一酸化炭素転換器(1つが図示される)530を含むことができる。
【0065】
1以上の実施形態では、ライン147を介する冷却された排ガスは、送風機505へ導入され、ライン147内の排ガスに対して増大された圧力を有する、ライン507を介する冷却された排ガスを生成することができる。図1を参照して上述に説明および記載されるように、ライン147内の排ガスは、約大気圧から約110kPaまでの範囲にわたる圧力を有することができる。1以上の実施形態では、ライン507内の排ガスは、最低約110kPa、約113kPa、または約115kPaから、最高約120kPa、約140kPa、または約150kPaの範囲にわたる圧力を有することができる。
【0066】
ライン507を介する冷却された排ガスは、凝縮器510へ導入され、ライン512を介する飽和した排ガスおよびライン514を介する凝縮水を提供することができる。ライン512内の飽和した排ガスは、最低約5mol%〜最高約20mol%の範囲にわたる水の濃度を有することができる。ライン512内の飽和した排ガス内の水の特定の濃度は、少なくとも部分的に、飽和した排ガスの特定の温度および/または圧力に依存する。ライン514を介する凝縮水は、例えば、廃棄されるか、ライン138を介して熱回収ユニット140へ導入されるか、1以上の他のプロセスで使用されるか、またはそれらの任意の組み合わせであってよい。図示されていないが、ライン147を介する冷却された排ガスは、送風機505へ導入される前に、凝縮器510へ導入されることができる。
【0067】
ライン512を介する飽和した排ガスは、圧縮機150へ導入され、圧縮され、また圧縮された排ガスとしてライン152を介して回収されることができる。ライン154を介する飽和した排ガスの少なくとも一部は、燃焼器120へ導入することができ、および/またはライン155を介して燃焼および発電システム500から除去することができる。少なくとも1つの具体的な実施形態では、ライン154を介する圧縮された飽和排ガスの第1の部分は、燃焼器120へ導入され、ライン155を介する圧縮された排ガスの第2の部分は、一酸化炭素転換器530へ導入される。
【0068】
ライン155内の圧縮された排ガス内の一酸化炭素の少なくとも一部は、一酸化炭素転換器530内で二酸化炭素へと転換され、ライン155内の圧縮された排ガスに対して低減された一酸化炭素濃度を有する、ライン537を介する排ガスまたは「不活性ガス」を提供することができる。ライン537を介する不活性ガスは、乾燥量基準で、約500ppm未満、約100ppm未満、約50ppm未満、約20ppm未満、約10ppm未満、約5ppm未満、約1ppm未満、約0.5ppm未満、または約0.01ppmの一酸化炭素濃度を有することができる。ライン537内の不活性ガスは、水および/または水蒸気を含有することができる。ライン537内の不活性ガス内に含まれる任意の水および/または水蒸気の少なくとも一部は、除去され、ライン537内の不活性ガスより少ない水および/または水蒸気を有する不活性ガスを生成することができる。
【0069】
1以上の実施形態では、ライン112を介する酸化剤およびライン117を介する燃料は、燃焼器120内で少なくとも部分的に燃焼され、約10ppm未満の酸素、約5ppm未満の酸素、約3ppm未満の酸素、約1ppm未満の酸素、約0.1ppm未満の酸素、または約0.01ppmの酸素を含有する、ライン123を介する排ガスを生成することができる。このように、ライン537を介する排ガスは、約10ppm未満の酸素、および約10ppmの一酸化炭素を含有することができる。別の例では、ライン537を介する排ガスは、約1ppm未満の酸素および約1ppm未満の一酸化炭素を含有することができる。したがって、燃焼および発電システム500は、ライン101内の酸化剤内の特定の酸素濃度に応じて、二酸化炭素、窒素、またはその双方を主に含有する「不活性ガス」と称することができるライン537を介する排ガスを生成することができる。例えば、酸化剤が空気である場合、ライン537内の不活性ガスは、約11mol%〜約12mol%の二酸化炭素、および約85mol%〜約88mol%の窒素を含有することができる(乾燥重量基準)。別の実施例では、ライン101内の酸化剤が純粋な酸素、例えば、約95mol%超の酸素または約99mol%超の酸素等、を含有する場合、ライン537内の不活性ガスは、約98mol%〜約99.5mol%の二酸化炭素および約0.01mol%〜0.05mol%の窒素を含有することができる(乾燥重量基準)。
【0070】
1以上の実施形態では、送風機505は、ライン147内の冷却された排ガスの圧力を増大させることが可能な、任意の機器、システム、またはシステムおよび/または機器の組み合わせを含むことができる。例えば、送風機505は、1つ以上のファンであるか、またはそれを含むことができる。他の例示的な送風機505には、軸方向式、遠心分離式、またはそれらの任意の組み合わせが挙げられるがそれらに限定されない。
【0071】
1以上の実施形態では、凝縮器510は、排ガスの温度をその中で低減させ、それによって、水蒸気がある場合少なくともその一部を凝縮させる、冷却器を含むことができる。他の好適な凝縮器510には、直接接触冷却器、熱交換器、またはそれらの任意の組み合わせが挙げられるが、それらに限定されない。
【0072】
1以上の実施形態では、一酸化炭素転換器530は、1つ以上の転換システム、機器、プロセス、またはそれらの任意の組み合わせを含むことができる。図示されるように、一酸化炭素転換器530は、1つ以上の触媒含有床535を含むことができる。例示的な触媒には、白金、ロジウム、パラジウム、ルテニウム、ニッケル、それらの酸化物、それらの誘導体、またはそれらの任意の組み合わせが挙げられるが、それらに限定されない。
【0073】
1以上の実施形態では、一酸化炭素転換器530は、一酸化炭素に加えて、または一酸化炭素の代わりに、1種以上の他の化合物を転換することができる。例えば、一酸化炭素転換器530は、ライン155内の圧縮された排ガス内の、酸化窒素がある場合少なくともその一部を、窒素および酸素へ転換することができる。別の例では、一酸化炭素転換器530は、ライン155内の圧縮された排ガス内の、燃料がある場合少なくともその一部を、二酸化炭素および水または蒸気へ転換することができる。また別の例では、一酸化炭素転換器530は、ライン155内の圧縮された排ガス内の任意の一酸化炭素、燃料、および酸化窒素のうちの2つ以上の少なくとも一部を、それぞれ、二酸化炭素、二酸化炭素および水または蒸気、窒素および酸素へ転換することができる。
【0074】
図6は、1以上の実施形態に係る、燃料および酸化剤を燃焼させ、圧縮された不活性ガスを生成するための、例示的な燃焼および発電システム600の概略図を示す。燃焼および発電システム600は、図1および3〜5を参照して説明および記載される、システム100、300、400、および/または500と同様であることができる。燃焼および発電システム600はさらに、1つ以上の二酸化炭素除去ユニット(1つが図示される)605および圧縮機(1つが図示される)615を含むことができる。
【0075】
1以上の実施形態では、ライン155を介する圧縮された排ガスの少なくとも一部は、二酸化炭素除去ユニット605へ導入され、ライン607を介する二酸化炭素リッチガス、およびライン609を介する二酸化炭素リーンガスを生成することができる。換言すれば、ライン607を介する二酸化炭素リッチガス内の二酸化炭素濃度は、ライン155内の圧縮された排ガス内より大きくなることが可能である。同様に、ライン609を介する二酸化炭素リーンガス内の二酸化炭素濃度は、ライン155内の圧縮された排ガス内より低くなることが可能である。
【0076】
ライン607を介する二酸化炭素リッチガスは、例えば、約95mol%以上、約97mol%以上、または約99mol%、または約99.9mol%の二酸化炭素濃度を有することができる。ライン609を介する二酸化炭素リーンガスは、約5mol%未満、約3mol%未満、約1mol%未満、約0.5mol%未満、または約0.1mol%未満の二酸化炭素濃度を有することができる。
【0077】
ライン607内の二酸化炭素リッチガスは、任意の数の用途またはプロセスに対して使用されることができ、および/または廃棄されることができる。例えば、ライン607内の二酸化炭素リッチガスは、最終製品として売却されてもよく、石油増進回収操作、空気圧式システム、消火システム、溶接システム、カフェイン除去プロセス、レーザー、冷凍システムといった、1以上のプロセスまたは用途に対して使用されてもよく、またはそれらの任意の組み合わせであってよい。別の例では、ライン607を介する二酸化炭素リッチガスは、1つ以上の隔離用貯蔵容器システムへ導入されることができる。例示的な隔離用貯蔵容器システムには、地下構造、人工格納容器、またはその双方が挙げられるが、それらに限定されない。
【0078】
ライン609内の二酸化炭素リーンガスは、任意の数の用途またはプロセスに対して使用されることができ、および/または廃棄されることができる。例えば、ライン609内の二酸化炭素リーンガスは、大気中に放出されてもよい。別の例では、ライン609内の二酸化炭素リーンガスは、液化され、冷却用媒体として使用されることができる。また別の例では、ライン609内の二酸化炭素リーンガスは、例えば、アンモニアおよび/または尿素といった、1つ以上の製品へとさらに加工されることができる。また別の例では、ライン609内の二酸化炭素リーンガスは、例えば、1つ以上の通信ワイヤまたはケーブルを運搬する導管の乾燥等、乾燥用途用の不活性ガスとして使用されることができる。
【0079】
1以上の実施形態では、ライン609を介する二酸化炭素リーンガスは、圧縮機615へ導入され、ライン617を介する第2の圧縮された排ガスを生成することができる。ライン617内の第2の圧縮された排ガスは、1以上の圧力維持用途において使用することができる。別の実施例では、ライン617内の第2の圧縮された排ガスは、1つ以上の炭化水素貯留容器上の圧力維持のために使用することができる。
【0080】
二酸化炭素除去ユニット605は、直列、並列、またはそれらの組み合わせで構成される、物理的システム、機械的システム、電気システム、および/または化学システムの、任意の1つまたは組み合わせを含むことができる。1以上の実施形態では、二酸化炭素除去ユニット605は、膜型システムおよび/または溶媒系システムを含むがそれらに限定されない、1つ以上の物理的分離システムを含むことができる。例えば、二酸化炭素除去ユニット605は、吸収/脱着型の溶媒系システムを含むことができるがそれに限定されない。二酸化炭素除去ユニット605は、ライン155を介して導入される圧縮された排ガスを、1つ以上の吸収剤と接触させ、二酸化炭素の少なくとも一部を除去することができる。二酸化炭素選択性吸着剤には、モノエタノールアミン(「MEA」)、ジエタノールアミン(「DEA」)、トリエタノールアミン(triethanolamie)(「TEA」)、炭酸カリウム、メチルジエタノールアミン(「MDEA」)、活性メチルジエタノールアミン(「aMDEA」)、ジグリコールアミン(「DGA」)、ジイソプロパノールアミン(「DIP A」)、それらの誘導体、それらの混合物、またそれらの任意の組み合わせ挙げられるが、それらに限定されない。他の好適な吸着剤および技術には、炭酸カリウム、炭酸プロピレン物理吸着溶媒、ならびに、他の炭酸アルキル、2〜12のグリコール単位のポリエチレングリコールのジメチルエーテル(Selexol(登録商標)プロセス)、n−メチル−ピロリドン、スルホラン、およびSulfmol(登録商標)ガス処理プロセスの使用が挙げられるが、それらに限定されない。
【0081】
圧縮機615は、図1を参照して上述に説明および記載される圧縮機105および150と同様のものであってよい。
【0082】
図7は、1以上の実施形態に係る、電力、二酸化炭素、および膨張された不活性ガスを発生させるための例示的な燃焼および発電システム700の概略図を示す。燃焼および発電システム700は、図1、および3〜6を参照して上述に説明および記載されるシステム100、300、400、500、および/または600と同様のものであってよい。燃焼および発電システム700はさらに、1つ以上の第2の燃焼器(1つが図示される)705、第2の膨張器(1つが図示される)715、および発電機(1つが図示される)730を含むことができる。
【0083】
ライン609を介する二酸化炭素リーンガスは、第2の燃焼器705へ導入されることができる。ライン703を介する酸化剤および/またはライン704を介する燃料も、同様に第2の燃焼器705へ導入されることができる。燃焼器705へ導入される、ライン609を介する二酸化炭素リーンガス内の任意の燃焼可能材料および/またはライン704を介する燃料の少なくとも一部は、第2の燃焼器710内で燃焼され、ライン609内の二酸化炭素リーンガスと比較して低減された濃度の燃焼可能材料を有する、ライン710を介する第2の排ガスを生成することができる。例えば、図6を参照して上述に説明されたように、ライン512内の飽和した排ガスは、最低約0.001mol%〜最高約0.1mol%の範囲にわたる燃料濃度を有することができる。したがって、ライン155内の圧縮された排ガスは、最低約0.001mol%〜最高約0.1mol%の範囲にわたる燃料濃度を有することができる。ライン704を介して導入される補足燃料の添加は、ライン710を介する排ガスが、ライン609内の二酸化炭素リーンガスと比較してより低い燃料濃度を有するように、調節されることができる。
【0084】
ライン710内の第2の排ガスは、約2mol%〜約8mol%の二酸化炭素濃度、約8mol%〜約16mol%の水および/もしくは蒸気濃度、約0.01mol%〜約1mol%の一酸化炭素濃度、約0.1mol%〜約1mol%の酸素濃度、約70mol%〜約85mol%の窒素濃度、約0.1mol%〜約0.3mol%の酸化窒素(単数または複数)濃度、ならびに/または約0.1mol%〜約1.5mol%のアルゴン濃度を有することができる。1以上の実施形態では、ライン710内の第2の排ガスは、約2mol%未満、約1mol%未満、約0.5mol%未満、または約0.1mol%未満の一酸化炭素を含有することができる。1以上の実施形態では、ライン710内の第2の排ガスは、約2mol%未満、約1mol%未満、約0.8mol%未満、または約0.5mol%未満の酸素を含有することができる。1以上の実施形態では、ライン710内の第2の排ガスは、約1mol%未満、約0.5mol%未満、または約0.1mol%の酸化窒素を含有することができる。
【0085】
ライン710を介する第2の排ガスは、約1,100℃〜約1,500℃の範囲にわたる温度、および約1,200kPa約4,500kPaの範囲にわたる圧力を有することができる。
【0086】
ライン710を介する第2の排ガスは、膨張器715へ導入され、ライン720を介する第2の膨張された排ガスを生成することができる。ライン720を介する膨張された排ガスは、約690℃〜約725℃の範囲にわたる温度、および約101kPa〜約110kPaの範囲にわたる圧力を有することができる。ライン710内の第2の排ガスを膨張させることによって生成される機械動力の少なくとも一部は、例えば、発電機730を介する電気等の、エネルギーに転換され、1つ以上の圧縮機105および/もしくは150、ならびに/または他の仕掛けを駆動するために使用することができる。ライン720を介する膨張されたガスは、大気中に放出されるか、液化され1つ以上の冷凍プロセスに使用されることができ、またはそれらの任意の組み合わせであってよい。
【0087】
図8は、1以上の実施形態に係る、電力、二酸化炭素、および膨張された不活性ガスを生成するための、例示的な燃焼および発電システム800の別の概略図を示す。燃焼および発電システム800は、図1および3〜6を参照して上述に説明および記載される、システム100、300、400、500、および/または600と同様のものであってよい。燃焼および発電システム800はさらに、1つ以上の触媒反応器(1つが図示される)805、第2の膨張器(1つが図示される)815、および発電機(1つが図示される)830を含むことができる。
【0088】
ライン609を介する二酸化炭素リーンガスは、触媒反応器805へ導入されることができる。ライン609を介する二酸化炭素リーンガス内の任意の燃焼可能材料の少なくとも一部は、触媒反応器805内で触媒的に反応され、ライン609内の二酸化炭素リーンガスと比較してより低減された燃焼可能材料の濃度を有する、ライン810を介する第2の排ガスを生成することができる。例えば、図6を参照して上述に説明されたように、ライン512内の飽和した排ガスは、最低約0.001mol%〜最高約0.1mol%の範囲にわたる燃料濃度を有することができる。したがって、ライン155内に圧縮された排ガスは、最低約0.001mol%〜最高約0.1mol%の範囲にわたる燃料濃度を有することができる。
【0089】
ライン810内の第2の排ガスは、約2mol%約8mol%の二酸化炭素濃度、約8mol%〜約16mol%の水および/もしくは蒸気濃度、約0.01mol%〜約1mol%の一酸化炭素濃度、約0.1mol%〜約1mol%の酸素濃度、約70mol%〜約85mol%の窒素濃度、約0.1mol%〜約0.3mol%の酸化窒素(単数または複数)濃度、ならびに/または約0.1mol%〜約1.5mol%のアルゴン濃度を有することができる。
【0090】
1以上の実施形態では、ライン810内の第2の排ガスは、約2mol%未満、約1mol%未満、約0.5mol%未満、または約0.1mol%未満の一酸化炭素を含むことができる。1以上の実施形態では、ライン710内の第2の排ガスは、約2mol%未満、約1mol%未満、約0.8mol%未満、または約0.5mol%未満の酸素を含むことができる。1以上の実施形態では、ライン710内の第2の排ガスは、約1mol%未満、約0.5mol%未満、または約0.1mol%未満の酸化窒素を含むことができる。
【0091】
ライン810を介する第2の排ガスは、約1,100℃〜約1,500℃の範囲にわたる温度、および約1,200kPa〜約4,500kPaの範囲にわたる圧力を有することができる。
【0092】
ライン810を介する第2の排ガスは、膨張器815へ導入され、ライン820を介する第2の膨張された排ガスを生成することができる。ライン820内の膨張された排ガスは、約690℃〜約725℃の範囲にわたる温度、および約101kPa〜約110kPaの範囲にわたる圧力を有することができる。ライン810内の第2の排ガスを膨張させることによって生成される機械動力の少なくとも一部は、例えば、発電機830を介する電気等の、エネルギーに転換され、1つ以上の圧縮機105および/もしくは150、ならびに/または他の仕掛けを駆動するために使用することができる。ライン820を介する膨張されたガスは、大気中に放出されるか、液化され1つ以上の冷凍プロセスに使用されることができ、またはそれらの任意の組み合わせであってよい。
【0093】
触媒反応器805は、1つ以上の触媒含有床(1つが図示される)807を含むことができる。触媒含有床807は、その中に配置された1つ以上の触媒を含むことができる。例示的な触媒には、ニッケル、白金、ロジウム、ルテニウム、パラジウム、それらの誘導体、またはそれらの任意の組み合わせが挙げられるが、それらに限定されない。1以上の実施形態では、2つ以上の触媒含有床807を有する触媒反応器805が、互いに同一の、または互いに異なる触媒を含むことができる。触媒含有床807は、固定床、流動床、もしくは移動床、またはそれらの組み合わせであってよい。
【0094】
図9は、1以上の実施形態に係る、電力、二酸化炭素、および不活性ガスを発生させるための、例示的な燃焼および発電システム900の別の概略図を示す。燃焼および発電システム900は、図1および3〜8を参照して上述に説明および記載される、システム100、300、400、500、600、700、および/または800と同様のものであってよい。燃焼および発電システム900は、ライン720を介する第2の膨張された排ガス、ライン820を介する第2の膨張された排ガス、ライン617を介する第2の膨張された排ガス、またはそれらの任意の組み合わせを生成することができる。換言すれば、ライン609内の二酸化炭素リーンガスの第1の部分は、ライン903を介して圧縮機615へ導入されることができ、ライン609内の二酸化炭素リーンガスの第2の部分は、ライン905を介して触媒反応器805へ導入されることができ、および/またはライン609内の二酸化炭素リーンガスの第3の部分は、ライン910を介して燃焼器705へ導入されることができる。別の例では、燃焼および発電システム900は、ライン617を介する圧縮された排ガスと、ライン720か、またはライン820かのいずれかを介する膨張された排ガスとを生成することができる。また別の例では、燃焼および発電システム900は、ライン720およびライン820の双方を介する膨張された排ガスを生成することができる。また別の例では、燃焼および発電システム900は、ライン720およびライン820の双方を介する膨張された排ガスと、ライン617を介する膨張された排ガスとを生成することができる。
【0095】
種々の用語を上述に定義してきた。特許請求の範囲に使用される用語が上述に定義されていない範囲においては、該用語は、少なくとも1つの刊行物または発行された特許に反映される通り、当業者が該用語に対して付与している最も広義の定義を付与するものとする。
【0096】
本発明は、種々の修正および変更形態を許容することができるが、上述に記載される例示的実施形態は、例示の目的としてのみ示されてきた。しかしながら、本発明は、本明細書に開示される特定の実施形態に限定されることを意図してはいないということを、再び理解すべきである。実際、本発明は、添付の特許請求の範囲の真の精神および範囲に含まれる全ての変更、修正、および均等物を含む。
図1
図2A
図2B
図3
図4
図5
図6
図7
図8
図9