特許第6275802号(P6275802)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ インテル コーポレイションの特許一覧

特許6275802意図しないダウンリンクサブフレームのためのHARQ−ACKハンドリング
<>
  • 特許6275802-意図しないダウンリンクサブフレームのためのHARQ−ACKハンドリング 図000006
  • 特許6275802-意図しないダウンリンクサブフレームのためのHARQ−ACKハンドリング 図000007
  • 特許6275802-意図しないダウンリンクサブフレームのためのHARQ−ACKハンドリング 図000008
  • 特許6275802-意図しないダウンリンクサブフレームのためのHARQ−ACKハンドリング 図000009
  • 特許6275802-意図しないダウンリンクサブフレームのためのHARQ−ACKハンドリング 図000010
  • 特許6275802-意図しないダウンリンクサブフレームのためのHARQ−ACKハンドリング 図000011
  • 特許6275802-意図しないダウンリンクサブフレームのためのHARQ−ACKハンドリング 図000012
  • 特許6275802-意図しないダウンリンクサブフレームのためのHARQ−ACKハンドリング 図000013
  • 特許6275802-意図しないダウンリンクサブフレームのためのHARQ−ACKハンドリング 図000014
  • 特許6275802-意図しないダウンリンクサブフレームのためのHARQ−ACKハンドリング 図000015
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6275802
(24)【登録日】2018年1月19日
(45)【発行日】2018年2月7日
(54)【発明の名称】意図しないダウンリンクサブフレームのためのHARQ−ACKハンドリング
(51)【国際特許分類】
   H04W 28/04 20090101AFI20180129BHJP
   H04W 72/04 20090101ALI20180129BHJP
【FI】
   H04W28/04 110
   H04W72/04 111
   H04W72/04 136
【請求項の数】22
【外国語出願】
【全頁数】20
(21)【出願番号】特願2016-228325(P2016-228325)
(22)【出願日】2016年11月24日
(62)【分割の表示】特願2015-515289(P2015-515289)の分割
【原出願日】2013年6月13日
(65)【公開番号】特開2017-63479(P2017-63479A)
(43)【公開日】2017年3月30日
【審査請求日】2016年11月24日
(31)【優先権主張番号】61/667,325
(32)【優先日】2012年7月2日
(33)【優先権主張国】US
(31)【優先権主張番号】13/721,458
(32)【優先日】2012年12月20日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】593096712
【氏名又は名称】インテル コーポレイション
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100091214
【弁理士】
【氏名又は名称】大貫 進介
(72)【発明者】
【氏名】ハン,スンヒ
(72)【発明者】
【氏名】ホーァ,ホーン
(72)【発明者】
【氏名】フゥ,ジョン−カエ
【審査官】 松野 吉宏
(56)【参考文献】
【文献】 Nokia, Nokia Siemens Networks,DAI Design for TDD configuration #5 (9:1) in ACK/NACK Bundling,3GPP TSG-RAN WG1#53b R1-082601,フランス,3GPP,2008年 6月25日,pages2,3
【文献】 ITRI, Qualcomm Inc,Clarification on the determination of resource for PUCCH Format 1b with channel selection in TDD mode,3GPP TSG-RAN WG1#66b R1-113611,フランス,3GPP,2011年10月14日,page5
【文献】 ZTE,Solve DTX for bundled ACK/NAK collide with CQI/PMI or SR on PUCCH,3GPP TSG-RAN WG1#55 R1-084107,フランス,3GPP,2008年11月 4日,Section2
【文献】 ZTE,On ACK/NACK bundling in LTE-A TDD,3GPP TSG-RAN WG1#62b R1-105454,フランス,3GPP,2010年10月 5日,Sections2,3
【文献】 Nokia, Nokia Siemens Networks,Explicit DTX support for UL ACK/NAK Feedback in LTE-A TDD,3GPP TSG-RAN WG1#62 R1-104430,フランス,3GPP,2010年 8月17日,pages1-3
(58)【調査した分野】(Int.Cl.,DB名)
H04B 7/24 − 7/26
H04W 4/00 − 99/00
3GPP TSG RAN WG1−4
SA WG1−4
CT WG1、4
(57)【特許請求の範囲】
【請求項1】
進化型NodeB(eNodeB)であって、
無線ダウンリンク制御チャネル(PDCCH)を介しダウンリンク割当てインデックス(DAI)を送信し、インデックス値jを有し、前記DAIを含むダウンリンクサブフレームを送信するよう構成される送信モジュールと、
j+p(jはHARQバンドリングウィンドウのサブフレームの個数未満の正定数、pは定数)に等しくない前記DAIの値を有する前記ダウンリンクサブフレームを送信したことに応答して、前記ダウンリンクサブフレームの間欠受信(DTX)のHARQ受信状態を受信するよう構成される受信モジュールと、
を有するeNodeB。
【請求項2】
前記eNodeBは、時分割複信(TDD)モードで動作するよう構成される、請求項1記載のeNodeB。
【請求項3】
前記受信モジュールは、複数のダウンリンクサブフレームの多重化されたHARQ受信状態を受信するよう構成され、前記複数のダウンリンクサブフレームはM個のダウンリンクサブフレームのバンドリングウィンドウを含む、請求項1記載のeNodeB。
【請求項4】
プライマリダウンリンク共有チャネル(PDSCH)がM個のダウンリンクサブフレームを含む前記バンドリングウィンドウ内で対応するPDCCHなしに送信される場合、pは0に等しく、
M個のダウンリンクサブフレームを含む前記バンドリングウィンドウ内で対応するPDCCHなしに送信されるPDSCHがない場合、pは1に等しい、請求項3記載のeNodeB。
【請求項5】
プライマリセル上で対応する制御チャネル送信と共にセカンダリセル上でダウンリンク共有チャネル送信がある場合、pは1に等しい、請求項4記載のeNodeB。
【請求項6】
前記受信モジュールは、前記受信状態に基づき選択されたコンステレーション及びコード入力ビットセットを有するPUCCHアップリンクリソースにより前記HARQ受信状態を受信するよう構成される、請求項1記載のeNodeB。
【請求項7】
前記eNodeBは、ロング・ターム・エボリューション(LTE)規格のファミリを利用する無線ネットワークと通信するよう構成される、請求項1記載のeNodeB。
【請求項8】
前記受信モジュールは、物理アップリンク制御チャネル(PUCCH)フォーマット1bチャネルにより前記HARQ受信状態を受信するよう構成される、請求項1記載のeNodeB。
【請求項9】
無線ダウンリンク制御チャネル(PDCCH)を介しダウンリンク割当てインデックス(DAI)を送信し、インデックス値jを有し、前記DAIを含むダウンリンクサブフレームを送信することと、
j+p(jはHARQバンドリングウィンドウのサブフレームの個数未満の正定数、pは定数)に等しくない前記DAIの値を有する前記ダウンリンクサブフレームを送信したことに応答して、前記ダウンリンクサブフレームの間欠受信(DTX)のHARQ受信状態を受信することと、
をプロセッサに実行させるためのプログラム。
【請求項10】
NodeBは、時分割複信(TDD)モードで動作するよう構成される、請求項9記載のプログラム。
【請求項11】
前記受信することは、複数のダウンリンクサブフレームの多重化されたHARQ受信状態を受信することを含み、前記複数のダウンリンクサブフレームはM個のダウンリンクサブフレームのバンドリングウィンドウを含む、請求項9記載のプログラム。
【請求項12】
プライマリダウンリンク共有チャネル(PDSCH)がM個のダウンリンクサブフレームを含む前記バンドリングウィンドウ内で対応するPDCCHなしに送信される場合、pは0に等しく、
M個のダウンリンクサブフレームを含む前記バンドリングウィンドウ内で対応するPDCCHなしに送信されるPDSCHがない場合、pは1に等しい、請求項11記載のプログラム。
【請求項13】
プライマリセル上で対応する制御チャネル送信と共にセカンダリセル上でダウンリンク共有チャネル送信がある場合、pは1に等しい、請求項12記載のプログラム。
【請求項14】
前記受信状態に基づき選択されたコンステレーション及びコード入力ビットセットを有するPUCCHアップリンクリソースにより前記HARQ受信状態を受信することを前記プロセッサに更に実行させる、請求項9記載のプログラム。
【請求項15】
物理アップリンク制御チャネル(PUCCH)フォーマット1bチャネルにより前記HARQ受信状態を受信することを前記プロセッサに更に実行させる、請求項9記載のプログラム。
【請求項16】
進化型NodeB(eNodeB)が、無線ダウンリンク制御チャネル(PDCCH)を介しダウンリンク割当てインデックス(DAI)を送信し、インデックス値jを有し、前記DAIを含むダウンリンクサブフレームを送信することと、
前記eNodeBが、j+p(jはHARQバンドリングウィンドウのサブフレームの個数未満の正定数、pは定数)に等しくない前記DAIの値を有する前記ダウンリンクサブフレームを送信したことに応答して、前記ダウンリンクサブフレームの間欠受信(DTX)のHARQ受信状態を受信することと、
を有する方法。
【請求項17】
前記eNodeBが、複数のダウンリンクサブフレームの多重化されたHARQ受信状態を受信することを更に含み、前記複数のダウンリンクサブフレームはM個のダウンリンクサブフレームのバンドリングウィンドウを含む、請求項16記載の方法。
【請求項18】
プライマリダウンリンク共有チャネル(PDSCH)がM個のダウンリンクサブフレームを含む前記バンドリングウィンドウ内で対応するPDCCHなしに送信される場合、pは0に等しく、
M個のダウンリンクサブフレームを含む前記バンドリングウィンドウ内で対応するPDCCHなしに送信されるPDSCHがない場合、pは1に等しい、請求項16記載の方法。
【請求項19】
プライマリセル上で対応する制御チャネル送信と共にセカンダリセル上でダウンリンク共有チャネル送信がある場合、pは1に等しい、請求項18記載の方法。
【請求項20】
前記eNodeBが、前記受信状態に基づき選択されたコンステレーション及びコード入力ビットセットを有するPUCCHアップリンクリソースにより前記HARQ受信状態を受信することを更に有する、請求項16記載の方法。
【請求項21】
前記eNodeBが、物理アップリンク制御チャネル(PUCCH)フォーマット1bチャネルにより前記HARQ受信状態を受信することを更に有する、請求項16記載の方法。
【請求項22】
請求項9乃至15何れか一項記載のプログラムを記憶するためのコンピュータ可読記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、参照することによってその全体がここに援用される、2012年12月20日に出願された米国特許出願第13/721,458号及び2012年7月2日に出願された米国仮特許出願第61/667,325号に対する優先権の利益を主張する。
【背景技術】
【0002】
ロング・ターム・エボリューション(LTE)及び他の無線ネットワークは、移動機(ユーザ装置(UE)など)と無線アクセスネットワーク(RAN)との間の信頼性の低い媒体を介したメッセージの送信に依拠する。LTEでは、RANは1以上のeNodeBから構成される。この信頼性の低い通信媒体は、データが低い信号品質、干渉又は無線媒体による他の問題のため消失又は損傷する可能性があるため、RANとUEとの間のデータの適切な通信にとって問題を生じさせうる。
【図面の簡単な説明】
【0003】
図1図1は、本開示のいくつかの具体例によるHARQ−ACKレスポンスからリソースへのマッピング、コンステレーション及び3のバンドリングウィンドウによる2つのセルのRMコード入力ビットを示すテーブルである。
図2図2は、本開示のいくつかの具体例によるHARQ−ACKレスポンスからリソースへのマッピング、コンステレーション及び4のバンドリングウィンドウによる2つのセルのRMコード入力ビットを示すテーブルである。
図2A図2Aは、本開示のいくつかの具体例による図2のテーブルの続きである。
図3図3は、本開示のいくつかの具体例による一例となるリソース割当の図を示す。
図4図4は、本開示のいくつかの具体例による一例となるリソース割当の図を示す。
図5A図5Aは、本開示のいくつかの具体例によるHARQ−ACKレスポンスを生成する方法のフローチャートを示す。
図5B図5Bは、本開示のいくつかの具体例によるHARQ−ACKレスポンスを処理する方法のフローチャートを示す。
図6図6は、本開示のいくつかの具体例による無線通信システムのブロック図を示す。
図7図7は、本開示のいくつかの具体例によるUE及びeNodeBの特定の機能を示す機能ブロック図を示す。
図8図8は、本開示のいくつかの具体例によるマシーンのブロック図を示す。
【発明を実施するための形態】
【0004】
信頼性の低い無線通信媒体を処理するため、LTE及び他のセルラネットワークは、HARQ(Hybrid Automatic Repeat Request)と呼ばれる機構を利用して、RANとUEとの間のデータの安全な配信を確保するため、誤り訂正とパケットアクノリッジメントとを提供する。HARQは、順方向誤り訂正符号化(FEC)と共にARQ(Automatic Repeat Request)を用いてパケットの受信が成功したか送信側に通知することによって、受信側における誤り訂正を提供する。データパケットを受信すると、受信機は、誤り検出コード(CRC(Cyclic Redundancy Check)など)を用いて、当該パケットが正しく受信されたか判断する。パケットの受信が成功した場合、受信機は、フィードバック機構(ACKなど)を用いて送信機をアクノリッジする。パケットの受信が成功しなかった場合、受信機は、FEC情報を用いて当該パケットを修復することを試みてもよい。受信機がFEC情報を用いてパケットを修復することに成功した場合、送信機をACKし、そうでない場合、ネガティブアクノリッジメント(NACK)により送信機に応答してもよい。更なる他の例では、受信機(UE)は、簡潔送信モード(DTX)モードにあったと応答してもよい。DTXレスポンスは、UEが制御チャネル(プライマリダウンリンク制御チャネル(PDCCH)など)上で情報を適切に検出できず、パケットがUEに送信されたか判断できなかったケースを表すものであってもよい。
【0005】
セルラネットワークでは、これらのHARQレスポンスは、典型的には、制御チャネルにより送信される。UEからRANに送信されるアップリンクトラフィックに対するレスポンスは、典型的には、アップリンク制御チャネル(物理アップリンク制御チャネル(PUCCH)など)において送信される。UEからRANに送信されるアップリンクトラフィックに対するレスポンスは、典型的には、ダウンリンクHARQ−ACKチャネル(物理ハイブリッドHARQインジケータチャネル(PHICH)など)において送信される。アクノリッジされていないパケット(NACKされたか、又は単に全くアクノリッジされていない)は、送信機によって再送されてもよい。
【0006】
いくつかのシステムでは、アップリンク通信(UEからRANへの)は、周波数領域においてダウンリンク通信と分離される。すなわち、アップリンク及びダウンリンク無線通信は、異なる周波数帯域において行われる。これらのシステムは、FDD(Frequency Duplex Division)システムとして参照される。他の例では、アップリンク及びダウンリンク無線通信は、同一の周波数帯域を共有してもよいが、時間領域において分割されてもよい。すなわち、周波数帯域は、ある時間インスタンス(タイムスロットなどと呼ばれる)においてアップリンク無線送信のために確保され、他の時間インスタンス(タイムスロットなど)においてダウンリンク無線通信のために確保される。この方式は、TDD(Time Division Duplex)と呼ばれる。更なる他の例では、H−FDD(Half−Duplex FDD)システムは、異なる周波数帯域にアップリンク及びダウンリンク無線通信を割り当てるが、時間領域において分割される。
【0007】
セルラネットワークの性質は、UEとRANとの間の通信がダウンリンク無線リンク寄りに非対称的であるということである。すなわち、より多くのデータが、通常はUEからRANよりもRANからUEに送信される。これを補償するため、セル設計者は、しばしばより多くの周波数又は時間リソース(ネットワークがFDD又はTDDであるかに応じて)をアップリンク無線通信に割り当てられるダウンリンク無線通信に割り当てることになる。
【0008】
このリソース非対称性は、レスポンスを送信するためアップリンク制御チャネルにしばしば十分なアップリンクリソースがないため、必要なHARQアクノリッジメントを管理しようとする際にUEに対して問題を生じさせる。この問題は、複数のキャリアの追加やチャネル状態情報などの他のアップリンクシグナリングによって悪化する。
【0009】
LTEでは、無線送信は、典型的には、フレームと呼ばれる離散的なユニットに分割され、その後、それはサブフレームに分割され、サブフレームは1以上のコードワードに分割される。各コードワードは、特定のトランスポートブロックとのマッピング関係を有してもよく、特段の断りがない場合、互換的に用いられる。FDDシステムによると、HARQレスポンスは、送信の受信後に、固定数のサブフレームにより送信されてもよい(典型的には、4サブフレーム後)、しかしながら、TDDシステムによると、非対称的な無線インバランスのために無線フレームに可変数のアップリンク及びダウンリンクタイムスロットがしばしばあるため、固定的な遅延はありえない。
【0010】
これらの問題を解決するため、TDDシステムについて、4G(LTE)無線ネットワークの規格を公開する3GPP(3rd Generation Partnership Project)は、複数の機構を開発してきた。第1は、ACK/NACK/DTX時間領域バンドリングである。HARQ−ACKバンドリングについて、ダウンリンクチャネル(物理ダウンリンク共有チャネルPDSCHなど)において受信された特定数のサブフレーム(バンドリングウィンドウと呼ばれる)のための各ダウンリンクサブフレームにおける特定の各コードワードのACK、NACK又はDTXの結果は、バンドリングウィンドウの全てのサブフレームの各コードワードに対応する1以上の複合的な結果を生成するため、論理的にAND処理される。このとき、生成される複合的なACK/NACK/DTX結果の個数は、サブフレームにおけるコードワードの個数に等しい。例えば、バンドリングウィンドウのサイズが4ダウンリンクサブフレームであり、各サブフレームが2つのコードワードを有する場合、サブフレーム0〜3の第1のコードワードのアクノリッジメントは、一緒に論理的にAND化され、サブフレーム0〜3の第2のコードワードはまた、一緒に論理的にAND化され、2つのアクノリッジメントビットを生成する。当該技術の効果は、アップリンクカバレッジが確保できるように、数ビットを用いて大変コンパクトになるということである。ダウンサイドは、サブフレームの何れか1つのコードワードの何れか1つが正しく受信されなかった場合、全てのサブフレームのコードワードが再送される。他の技術は、各ダウンリンクサブフレーム毎に1つのアクノリッジメントビットを生成するため、各ダウンリンクサブフレームのコードワード(すなわち、空間領域バンドリングと呼ばれる)においてコードワードを個別に論理的にAND処理するHARQ−ACK多重化を利用することである。この結果は、バンドリングウィンドウ内の関連する各ダウンリンクサブフレームのACK/NACK/DTXの結果である。サブフレーム毎に2つのコードワードがある4つのダウンリンクサブフレームについて、論理AND処理による2つのコードワード(存在する場合)における空間領域バンドリングが、サブフレームにおいて適用され、サブフレームの複数のバンドル化されたACK/NACKは、バンドリングウィンドウ内の1つの複合的な状態を生じさせてもよい。物理アップリンク制御チャネル(PUCCH)により送信されるHARQ−ACKレスポンスについて、複合的な状態は、PUCCHリソース及びコンステレーションポイントの組み合わせとして表現されてもよい。これは、各サブフレームに1つのアクノリッジメント結果である4つのアクノリッジメント結果をもたらす。当該HARQ−ACK技術の名称は“多重化”であるという事実に関わらず、明細書全体において“バンドリングウィンドウ”という用語が用いられることに留意されたい。
【0011】
バンドリングウィンドウ(bundling window)は、あるアップリンクサブフレームにおけるダウンリンクトラフィックに対応するHARQ−ACKフィードバックがアップリンクにおいて送信されるときを指定する時間ユニット(複数のサブフレームなど)である。UEは、サブフレームnにおいてPUCCHを用いてHARQ−ACKフィードバックを送信する。ここで、HARQ−ACKフィードバックはn−kに対するものであり、k∈K(テーブル1に規定)及び0≦i≦M−1である。バンドリングウィンドウは、一般にサブフレームnにおけるアップリンクHARQ−ACKフィードバックについてn−kのダウンリンクサブフレームとして規定される。
テーブル1.TDDのためのダウンリンク関連付けセットインデックスK:{k,k,...,kM−1
【0012】
【表1】
【0013】
TDD UL−DLコンフィギュレーションテーブルは、テーブル2として与えられる。
テーブル2 TDD UL−DLコンフィギュレーション
【表2】
TDDアップリンク/ダウンリンクコンフィギュレーション(D=ダウンリンク、S=ダウンリンクからアップリンクにスイッチするための時間をUEに与えるのに用いられる3つのフィールドDwPTS,GP,UpPTSによる特別なサブフレーム、U=アップリンク)
【0014】
LTEアドバンストは、複数のキャリアがダウンリンクにおいて利用可能なキャリアアグリゲーションをサポートする。これは、複数のキャリアのための複数のACK/NACK情報ビットがアップリンクにおいてフィードバックされる必要があることを意味する。このため、LTEは、時間領域のバンドリングによりチャネル選択として知られる技術を規定する。この技術は、当該技術の時間領域バンドリングが既存のものと若干異なるということを除き、HARQ−ACK多重化と同様の技術を利用する。キャリアアグリゲーションのための時間領域バンドリングは、シングルキャリアのためのものが論理的にバンドル化されたHARQ−ACK情報を送信するためのものである一方、各コンポーネントキャリアについて複数の連続するACKを送信するためのものであってもよい。結果としてのACK/NACK情報は、チャネルとQPSKコンステレーションシンボルとのジョイント選択によって符号化されてもよい。本質的に、多重化されたアクノリッジメント結果は、その後にPUCCH送信のための2つのビットフィールド(QPSKコンステレーション)及びPUCCHリソース(選択されたチャネル)を選択するため、ルックアップテーブルにおいてインデックス化されてもよい。RMコード入力ビットセットがまた、HARQ−ACKがPUSCHにピギーバックされる場合に設けられる。マッピングテーブルは、異なるバンドリングウィンドウサイズについて図1及び2(図2は、図2Aに続く)に示される。図1のHARQ−ACK(0)−(2)と、図2及び2AのHARQ−ACK(0)−(3)とラベル付けされたカラムは、プライマリセルとセカンダリセル(それぞれPCell及びSCell)との双方について当該サブフレームのACK、NACK又はDTX判定を表す。例えば、4サブフレームバンドリングウィンドウの場合、プライマリセルにおいて、サブフレーム(0)の受信が成功し(ACK)、サブフレーム(1)の受信が不成功であり(NACK)、サブフレーム(2)の受信が成功し(ACK)、サブフレーム(3)の受信が成功し(ACK)、セカンダリセルにおいて、ACK,ACK,ACK,NACKのレスポンスであった場合、UEは、物理アップリンク制御チャネル(PUCCH)3に対応するフィードバックリソースによって、0,0,1,1のコード入力ビットを用いて(0,1)のコンステレーションを選択するであろう。すなわち、HARQ−ACK(j)カラムは、プライマリ及びセカンダリセルのそれぞれについて選択されたHARQ−ACK(j)に依存して、使用すべきRMコード入力ビット、対応するPUCCHリソース、コンステレーション及びプライマリ及びセカンダリセル(複数のキャリアに対する)のそれぞれについて各ダウンリンクサブフレームのACK/NACK/DTXレスポンスである。当該技術は、HARQ−ACKがPUCCHを用いて送信されるとき、PUCCHフォーマット1bを利用する。
【0015】
HARQ−ACKバンドリング又はHARQ−ACK多重化は、UEが何れかスケジューリングされたフレームのスケジューリング情報を正しく受信しない場合、適切に機能しないかもしれない。例えば、eNodeBがバンドリングウィンドウサイズ2の2つのサブフレームについて端末をスケジューリングしたが、UEが最後のフレームしか受信せず、最初のフレームにおいてスケジューリングされたことを認識していない場合、UEは、ACKにより応答するであろう。eNodeBは、当該ACKを双方のサブフレームのアクノリッジメントとして解釈するであろう。UEのダウンリンクグラントが見逃されたときを決定するため、LTE仕様書は、PDCCH上でダウンリンクスケジューリング情報と共に、RANからUEに送信されるダウンリンクアサイメントインデックス(DAI)を提供する。ダウンリンクグラントにおいて伝搬されるDAIは、設定された各サービングセルの同じバンドリングウィンドウ内の現在のサブフレームまでのSPS(Semi Persistent Scheduling)リリースを示すPDCCHと割り当てられたPDSCH送信のPDCCHとの累積数を示す。その後、UEは、DAIを用いてバンドリングウィンドウ内でHARQ−ACK(j)を生成する。
【0016】
図3を参照して、一例となるレスポンス計算が示される。図3の例では、4つのサブフレーム(M=4)のバンドリングウィンドウが、2つの設定されたセルにおいて示される。プライマリセル(PCell)のHARQ−ACK(j)レスポンスは、ACK,ACK,DTX,ACKであり、セカンダリセル(SCell)では、それはそれぞれACK,NACK,NACK,ACKとなる。PCellについてPDCCHにより受信したDAIは、サブフレーム0について1であり、サブフレーム1について2であり、サブフレーム3について4である。UEはサブフレーム2(m=2)においてPDCCHを復号化可能でなく、それのDAI値を更新しなかったことに留意されたい。UEが更新されたDAI値を消失したとしても、それはサブフレームm=3においてそれを復元し、DAIがバンドリングウィンドウのエンドにおいて4であることを知る。DAI値は4であるため、UEは、それが4つのHARQ−ACK(j)レスポンスを必要とすることを知っている。SCellについて、PUCCHにおいて受信したDAIは、サブフレーム0,1,2,3のそれぞれについて1,2,3,4である。
【0017】
図2及び2Aのマッピングテーブルに基づき、これは、
【0018】
【表3】
のレスポンスを生成する。あるバンドリングウィンドウの全てのサブフレームがRANによってスケジューリングされていないときに問題があることに留意されたい。あるフレームがスケジューリングされていないため、DAIはインクリメントされず、バンドリングウィンドウのエンドではバンドリングウィンドウサイズ未満となる。図1及び2のフィードバックテーブルは、全てのフレームがスケジューリングされていることを仮定する。図4は、この問題の一例を示す。この例では、PCellの最初の2つのダウンリンクサブフレームはスケジューリングされない。従って、サブフレーム2についてDAIは1であり、サブフレーム3についてDAIは2である(図3と比較して、DAIはサブフレーム2及び3のそれぞれについて3及び4となる)。HARQ−ACK(j)はDAI値に関して決定されるため、HARQ−ACK(0)はサブフレーム2に対応し、HARQ−ACK(1)はサブフレーム3に対応する。しかしながら、HARQ−ACK(2)及びHARQ−ACK(3)は、DAIの定義に従ってバンドリングウィンドウ内に対応する3及び4のDAI値が存在しないため、定義されない。これは、割り当てられたPDSCH送信内のPDCCHと、バンドリングウィンドウ内の現在のサブフレームまでのダウンリンクSPSリリースを示すPDCCHとの累積値として定義される。従って、バンドリングウィンドウ内のDAI値に関連するHARQ−ACK(j)についてUEによりモニタリングされるべき予想されるDLサブフレームがない場合、UE動作は指定されない。
【0019】
いくつかの具体例では、最後に受信したDAI(LDAI)値がバンドリングウィンドウのサイズ未満である状況についてアクノリッジメントを生成する問題を解決するシステム、方法、UE及びマシーン可読媒体が開示される。いくつかの例では、所定の状態がLDAI≦j<M−1のHARQ−ACK(j)について利用され、Mは多重化又はバンドリングウィンドウサイズである。例えば、DTX状態は、これらのHARQ−ACKレスポンスにパディングされてもよい。従って、例えば、図4において、PCellが適切なレスポンスパラメータを決定するのに利用するHARQ−ACK(j)は、ACK,ACK,DTX,DTXとなるであろう。
【0020】
PCellの最後の2つの状態がDTXによりパディングされるため、UEは、テーブルから使用すべき正確なマッピングを知ることになる。さらに、ネットワーク側では、eNodeBは最後の2つの状態がDTXによりパディングされていることをすでに知っているため、DTX以外の無関係な状態は、HARQ−ACK検出パフォーマンスを改善するPUCCH検出仮説検定中に排除できる。例えば、図3では、PCellのHARQ−ACKレスポンスは{ACK,ACK,DTX,DTX},{ACK,NACK,DTX,DTX},{NACK,ACK,DTX,DTX}又は{NACK,NACK,DTX,DTX}であるため、{any,any,ACK/NACK,ACK/NACK}の状態は、eNB検出において排除できる。検出仮説検定を減少させることによって、PUCCH検出パフォーマンスが向上されてもよい。
【0021】
図4に示される具体例に本方法を適用することによって、以下が生成される。
【0022】
【表4】
いくつかの具体例では、HARQ−ACK(j)は、バンドリングウィンドウ内の全てのダウンリンクサブフレームがスケジューリングされたとは限らないケースについて、DTXにより充填されるかもしれないが、他の例では、ACK、NACK又は他の定義された値などの他の値が利用されてもよい。これは、eNodeBがこれらの値を無視するのに十分なシステム知識を有しているためである。実際、いくつかの具体例では、UEは、何れかのACK/NACK/DTX値を任意に選択してもよい。
【0023】
図5Aを参照して、あるバンドリングウィンドウ内の全てのダウンリンクフレームが必ずしもスケジューリングされなかった送信をアクノリッジする方法5000が示される。処理5010において、UEは、スケジューリングされるダウンリンクフレームを通知するスケジューリング情報をPDCCHにおいて受信する。処理5020において、UEは、あるバンドリングウィンドウについて最後のダウンリンク割当を受信したと判断し、処理5030において、最後のDAI値(LDAI)がバンドリングウィンドウサイズ未満であると判断する。処理5040において、UEは、スケジューリングされたことをUEが認識したフレームについてACK/NACK/DTXレスポンスを決定する。処理5050において、対応するDAI値を有しない残りのHARQ−ACK(j)は、所定値(DTXなど)により充填される。
【0024】
図5Bを参照して、あるバンドリングウィンドウの全てのダウンリンクフレームが必ずしもスケジューリングされていない送信のeNodeBにおけるアクノリッジメントを処理する方法5100が示される。処理5110において、基地局(eNodeBなど)は、あるアクノリッジメント期間(バンドリングウィンドウなど)において1以上のダウンリンク送信をスケジューリングし、物理ダウンリンク制御チャネル(PDCCH)などのダウンリンク制御チャネルを介しUEに通知してもよい。処理5120において、eNodeBは、スケジューリングされたフレームを送信してもよい。処理5130において、eNodeBは、UEからレスポンスを受信する。処理5140において、eNodeBは、PDCCHにより送信された最後のDAI値がバンドリングウィンドウサイズ未満であると判断する。処理5150において、eNodeBは、受信したコンステレーション及びRMコードビットと共に、レスポンスが受信されたリソース(PUCCHリソースなど)を利用して、HARQ−ACK(j)がパディング値であることを考慮してレスポンスを判断してもよい。ここで、jはLDAI≦j<M−1であり、Mは多重化又はバンドリングウィンドウサイズである。eNodeBは、このとき、何れか必要な再送を送信してもよい。
【0025】
図6を参照して、送信をアクノリッジするシステム6000が示される。ユーザ装置(UE)6010は、1以上の無線リンク6040を介し1以上の基地局(eNodeBなど)6030,6035を含む無線アクセスネットワーク(RAN)6020と通信する。RAN602は、エンハンスドパケットコアなどのコアネットワーク6045に接続されてもよい。EPC6045は、インターネット、POTS(Plain Old Telephone Serivce)ネットワークなどのネットワーク6050に接続されてもよい。図6のシステムでは、無線リンク6040は、TDDモードにより動作してもよい。
【0026】
図7は、UE7000(図示しない更なるコンポーネントが含まれてもよい)のパーシャル機能図を示す。UE7000は、送信モジュール7010を有してもよい。送信モジュール7010は、物理アップリンク制御チャネル(PUCCH)、物理アップリンク共有チャネル(PUSCH)などの1以上のアップリンクチャネルを介しRANに制御及びユーザトラフィックを送信する。送信モジュール7010は、ダウンリンクチャネル(物理ダウンリンク共有チャネル(PDSCH)及び物理専用制御チャネル(PDCCH)など)によりRANからUE7000に送信されるユーザトラフィック及び制御トラフィックのアクノリッジメントを送信してもよい。
【0027】
受信モジュール7020は、物理ダウンリンク共有チャネル(PDSCH)及び物理ダウンリンク制御チャネル(PDCCH)などのダウンリンクチャネル上でRANにより送信された情報を受信し、当該情報の受信状態をレスポンスモジュール7030に通知してもよい。例えば、受信したサブフレームは、受信モジュールにおいて復号化され(何れかのFEC訂正がまたここで実行されてもよい)、サブフレームがACK、NACK又はDTX処理されるべきかの通知が、レスポンスモジュール7030に送信されてもよい。受信モジュール7020はまた、バンドリングウィンドウのサイズや当該ウィンドウにおいて最後に受信したDAIなどの各種通信パラメータをレスポンスモジュール7030にわたしてもよい。
【0028】
レスポンスモジュール7030は、LDAI、バンドリングウィンドウサイズなどに基づき、図1及び2(図2Aに続く)のテーブルに従って適切なレスポンスパラメータ(PUCCHリソース、RMコードビット、コンステレーションなど)を送信モジュール7010に通知してもよい。例えば、レスポンスモジュール7030は、複数の受信したダウンリンク割当がレスポンスバンドリングウィンドウサイズ未満であることを判断し、当該判断に基づき、受信したダウンリンク割当に関するフレームの受信が成功したかに基づき、受信した各ダウンリンク割当の受信状態を設定し、所定値に対応するダウンリンク割当を有しなかったバンドリングウィンドウのフレームの受信状態を設定してもよい。例えば、レスポンスモジュールは、レスポンスバンドリングウィンドウの複数のダウンリンクサブフレームの各インデックスjについて、受信した1以上のダウンリンク割当インデックス(DAI)値がj+pに等しいか判断してもよい。1以上のDAI値の1つがj+pに等しいことを判断したことに応答して、jに対応するサブフレームの受信状態(ACK/NACK/DTX)を判定する。1以上のDAI値の何れもj+pに等しくないと判断したことに応答して、jに対応するサブフレームの受信状態を所定値に設定する。ここで、pは定数(0又は1など)であり、1以上のDAI値が物理ダウンリンク制御チャネル(PDCCH)により受信され、j≦M−1であり、MはHARQバンドリングウィンドウのサブフレームの個数である。レスポンスモジュール7030はまた、HARQモジュールと呼ばれ、送信モジュール7010に適切に決定されたレスポンスを送信するよう指示してもよい。いくつかの具体例では、バンドリングウィンドウ内で検出された対応するPDCCHのないプライマリセル上の物理ダウンリンク共有チャネル(PDSCH)の送信が存在する場合、変数pは0に等しくてもよく、そうでない場合、pは1であってもよい。従って、pの値は、対応するPDCCHのないセミパーシスタントスケジューリング(SPS)のPDSCHがバンドリングウィンドウ内に存在するか否かを表すことができる。明細書はスケジューリングされたダウンリンクフレームについてDAI値によるPDCCHを説明しているが、本開示はまた、UEがDAI値を含むダウンリンクセミパーシステントスケジューリング(SPS)リリースメッセージを示すPDCCHを受信するときに利用されてもよいことに留意されたい。
【0029】
図7はまた、eNodeB7100のパーシャル機能図を示す(図示されない更なるコンポーネントが含まれてもよい)。eNodeB7100は、1以上のチャネルによりユーザデータ及び制御データを送信する送信モジュール7110を有する。例えば、ユーザデータ又は制御データは、物理専用制御チャネル(PDCCH)又は物理専用共有チャネル(PDSCH)により送信されてもよい。送信モジュール7110は、送信用のフレームをスケジューリングし、PDCCHによりUEに通知してもよい。送信モジュール7110はまた、PDCCHにおいてDAIを送信してもよい。受信モジュール7120は、物理アップリンク制御チャネル(PUCCH)及び物理アップリンク共有チャネル(PUSCH)などのアップリンク通信チャネルにより制御及びユーザデータを受信してもよい。受信モジュール7120は、UEからダウンリンクサブフレームに対するHARQレスポンス(ACK−NACK−DTXレスポンスなど)を受信してもよい。当該情報に応答して、受信モジュールは、特定のデータが再送される必要があることを送信モジュールに通知してもよい。受信モジュール7120は、レスポンスが受信されたPUCCHリソース、受信したコンステレーションビット及び受信したRMコードに基づきレスポンスを復号化してもよい。受信モジュール7120はまた、バンドリングウィンドウの最後のDAI値がバンドリングウィンドウのサブフレーム数未満であり、サブフレームのACK/NACK/DTXの1以上が実際の送信を表していないとして無視されるべきであることを判断してもよい。
【0030】
図8は、ここに開示される技術の何れか1以上が実行可能な一例となるマシーン8000のブロック図を示す。UE、RAN(eNodeBを含む)又はEPCが、マシーン8000であってもよいし、又は一部を含むものであってもよい。他の実施例では、マシーン8000は、スタンドアローン装置として動作可能であるか、又は他のマシーンと接続(ネットワーク化など)可能である。ネットワーク化された配置では、マシーン8000は、サーバマシーン、クライアントマシーンのキャパシティにおいて又はサーバ・クライアントネットワーク環境の双方において動作可能である。一例では、マシーン8000は、ピア・ツー・ピア(P2P)(又は他の分散)ネットワーク環境においてピアマシーンとして動作可能である。マシーン8000は、パーソナルコンピュータ(PC)、タブレットPC、セットトップボックス(STB)、PDA(Personal Digital Assistant)、携帯電話(UEなど)、ウェブアプライアンス、無線基地局、ネットワークルータ、スイッチ若しくはブリッジ又は当該マシーンによりとられるべきアクションを指定する命令(逐次的又はその他)を実行可能な何れかのマシーンとすることができる。さらに、単一のマシーンのみが図示されるが、“マシーン”という用語はまた、クラウドコンピューティング、SaaS(Software as a Service)、他のコンピュータクラスタコンフィギュレーションなど、ここに説明される方法の何れか1以上を実行するための命令セット(又は複数のセット)を個別に又は結合して実行する何れかのマシーンのコレクションを含むよう解釈される。例えば、マシーン8000の機能は、ネットワークの他の複数のマシーンに分散可能である。
【0031】
ここに説明される具体例は、ロジック若しくは複数のコンポーネント、モジュール又は機構を含むことができ、又は動作可能である。モジュールは、指定された処理を実行可能な有形のエンティティであり、ある方法により設定又は構成可能である。一例では、回路は、モジュールとして指定された方法により構成可能である(例えば、内部的に又は他の回路などの外部エンティティに関してなど)。一例では、1以上のコンピュータシステムの全体若しくは一部(スタンドアローン、クライアント又はサーバコンピュータシステムなど)又は1以上のハードウェアプロセッサは、指定された処理を実行するよう動作するモジュールとしてファームウェア又はソフトウェア(命令、アプリケーション部分又はアプリケーションなど)によって構成可能である。一例では、ソフトウェアは、(1)非一時的なマシーン可読媒体上に、又は(2)伝送信号において配置可能である。一例では、モジュールの基礎となるハードウェアによって実行されると、ソフトウェアは、ハードウェアに指定された処理を実行させる。
【0032】
従って、“モジュール”という用語は、指定された方法により動作するか、又はここに記載された処理の一部又は全てを実行するよう物理的に構成、具体的に構成(ハードウェア化など)又は一時的に構成(プログラムなど)されるエンティティとなる有形のエンティティを含むよう理解される。モジュールが一時的に構成される例を検討すると、各モジュールは、何れかの時点においてインスタンス化される必要はない。例えば、モジュールがソフトウェアを用いて構成される汎用のハードウェアプロセッサから構成される場合、汎用のハードウェアプロセッサは、経時的に変化しうる1以上のモジュールとして構成可能である。従って、ソフトウェアは、ある時点においてあるモジュールを構成し、異なる時点では異なるモジュールを構成するようハードウェアプロセッサを構成可能である。
【0033】
マシーン(コンピュータシステムなど)8000は、ハードウェアプロセッサ8002(CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ハードウェアプロセッサコア又はこれらの何れかの組み合わせなど)、メインメモリ8004及びスタティックメモリ8006を含むことが可能であり、その一部又は全てがバス8008を介し互いに通信可能である。マシーン8000は更に、ディスプレイユニット8010、英数字入力装置8012(キーボードなど)、ユーザインタフェース(UI)制御装置及び/又は他の入力装置を含むことが可能である。一例では、ディスプレイユニット8010及びUI制御装置8014は、タッチ画面ディスプレイとすることができる。マシーン8000は更に、ストレージ装置(ドライブユニットなど)8016、信号生成装置8018(スピーカなど)及びネットワークインタフェース装置8020を含むことができる。
【0034】
ストレージ装置8016は、ここに記載される技術又は機能の何れか1以上を実現又は利用されるデータ構造又は命令8024(ソフトウェアなど)の1以上のセットが格納されるマシーン可読媒体8022を含むことができる。当該命令8024はまた、マシーン8000による実行中に、メインメモリ8004内、スタティックメモリ8006内又はハードウェアプロセッサ8002内に完全に又は少なくとも部分的に配置できる。一例では、ハードウェアプロセッサ8002、メインメモリ8004、スタティックメモリ8006又はストレージ装置8016の1つ又は何れかの組み合わせは、マシーン可読媒体を構成できる。
【0035】
マシーン可読媒体8022は、単一の媒体として示されるが、“マシーン可読媒体”という用語は、1以上の命令8024を格納するよう構成される単一の媒体又は複数の媒体(例えば、中央化又は分散化データベース、及び/又は関連するキャッシュ及びサーバなど)を含むことが可能である。
【0036】
“マシーン可読媒体”という用語は、マシーン8000による実行用の命令を格納、符号化又は担持可能であって、マシーン本開示の技術の何れか1以上を実行させる何れかの有形な媒体、又は当該命令によって利用されるか、若しくは関連するデータ構造を格納、符号化又は担持可能な何れかの有形な媒体を含むことが可能である。非限定的なマシーン可読媒体の具体例は、ソリッドステートメモリ、光及び磁気媒体を含むことが可能である。マシーン可読媒体の具体例は、半導体メモリデバイス(EPROM(Electrically Programmable Read−Only Memory)、EEPROM(Electrically Erasable Programmable Read−Only Memory)など)、フラッシュメモリデバイス、内部ハードディスクや着脱可能なディスクなどの磁気ディスク、光磁気ディスク及びCD−ROM及びDVD−ROMディスクなどの不揮発性メモリを含むことが可能である。
【0037】
命令8024は更に、ネットワークインタフェース装置8020を介し伝送媒体を用いて通信ネットワーク8026上で送信又は受信可能である。ネットワークインタフェース装置8020は、複数のプロトコル(フレームリレイ、インターネットプロトコル(IP)、送信制御プロトコル(TCP)、ユーザデータグラムプロトコル(UDP)、ハイパーテキストトランスファプロトコル(HTTP)など)の何れか1つを利用することによって、ネットワークのその他のマシーンと通信するため、当該マシーン8000と他のマシーンのネットワークとを接続してもよい。一例となる通信ネットワークは、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、パケットデータネットワーク(インターネットなど)、携帯電話ネットワーク(セルラネットワークなど)、POTSネットワーク、無線データネットワーク(WiFi(登録商標)として知られるIEEE(Institute of Electrical and Electronics Engineers)802.11の規格ファミリ、WiMAX(登録商標)として知られるIEEE802.16の規格ファミリなど)、ピア・ツー・ピア(P2P)ネットワークを含みうる。一例では、ネットワークインタフェース装置8020は、通信ネットワーク8026に接続するための1以上の物理ジャック(イーサネット(登録商標)、同軸又は電話ジャックなど)又は1以上のアンテナを含みうる。一例では、図8に示されるように、ネットワークインタフェース装置8020は、SIMO(Single−Input Multiple−Output)、MIMO(Multiple−Input Multiple−Output)又はMISO(Multiple−Input Single−Output)技術の少なくとも1つを利用して、無線通信するための複数のアンテナ(図示せず)を有することができる。“伝送媒体”という用語は、マシーン8000による実行用の命令を格納、符号化又は担持可能であって、ソフトウェアの通信を実現するためのデジタル若しくはアナログ通信信号又は他の無形な媒体を含む何れか無形な媒体を含むよう解釈される。
[他の留意点及び具体例]
例1:無線ダウンリンク制御チャネルを介しバンドリングウィンドウの1以上のダウンリンク割当を受信し、ダウンリンクデータチャネルのサブフレームがダウンリンク割当の1つに関連付けされたか、及びサブフレームの受信が成功したかに基づき、バンドリングウィンドウにおいてダウンリンクデータチャネルの各サブフレームの受信状態を設定し、対応するダウンリンク割当を有さない前記バンドリングウィンドウにおける前記ダウンリンクデータチャネルの各サブフレームの受信状態を所定値に設定するよう構成されるレスポンスモジュールと、前記レスポンスモジュールにより設定される受信状態に基づくレスポンスを送信するよう構成される送信モジュールとを有するユーザ装置(UE)が開示される。
【0038】
例2:前記受信状態は、アクノリッジメント(ACK)、非アクノリッジメント(NACK)及び間欠受信(DTX)の1つである、例1記載のユーザ装置。
【0039】
例3:前記所定値は、間欠送信(DTX)を示す値である、例1〜2の何れか1つに記載のユーザ装置。
【0040】
例4:当該ユーザ装置は、TDD(Time Division Duplex)モードにより動作するよう構成され、前記送信モジュールは、物理アップリンク制御チャネル(PUCCH)フォーマット1bを用いて前記レスポンスを送信するよう構成される、例1〜3の何れか1つに記載のユーザ装置。
【0041】
例5:前記バンドリングウィンドウは、2つのサブフレームより大きい、例1〜4の何れか1つに記載のユーザ装置。
【0042】
例6:前記送信モジュールは、前記受信状態に基づき、PUCCHアップリンクリソース、コンステレーション及びコード入力ビットのセットを選択することによって、前記レスポンスを送信するよう構成される、例1〜5の何れか1つに記載のユーザ装置。
【0043】
例7:当該ユーザ装置は、ロング・ターム・エボリューション(LTE)規格ファミリを用いて無線ネットワークと通信するよう構成される、例1〜6の何れか1つに記載のユーザ装置。
【0044】
例8:当該ユーザ装置は、2つのサービングセルのコンフィギュレーションによるキャリアアグリゲーションを利用するよう構成される、例1〜7の何れか1つに記載のユーザ装置。
【0045】
例9:複数のダウンリンクサブフレームの各インデックスjについて、ダウンリンク制御チャネル(PDCCH)を介し受信された1以上のダウンリンク割当インデックス(DAI)値がj+pに等しいか判断するステップであって、j≦M−1であり、MはHARQバンドリングウィンドウのサブフレームの個数であり、pは定数である、判断するステップと、前記1以上のDAI値の何れもj+1に等しくないと判断したことに応答して、jに対応するサブフレームの受信状態を所定値に設定するステップと、前記バンドリングウィンドウMの複数のダウンリンクサブフレームjのそれぞれの受信状態を送信するステップとを有する方法が開示される。
【0046】
例10:前記所定値は、間欠送信(DTX)を示す値である、例9記載の方法。
【0047】
例11:前記バンドリングウィンドウ内に検出される対応するPDCCHのないプライマリセル上にプライマリダウンリンク共有チャネル(PDSCH)の送信があるか判断するステップと、対応するPDCCHのないPDSCHがあると判断したことに応答して、pを0に設定するステップと、対応するPDCCHのないPDSCHがないと判断したことに応答して、pを1に設定するステップとを有する、例9〜10の何れか1つに記載の方法。
【0048】
例12:前記受信状態は、物理アップリンク制御チャネル(PUCCH)フォーマット1bを用いて送信される、例9〜11の何れか1つに記載の方法。
【0049】
例13:前記受信状態に基づきPUCCHアップリンクリソース、コンステレーション及びコード入力ビットのセットを少なくとも選択することによって、前記受信状態を送信するステップを更に有する、例9〜11の何れか1つに記載の方法。
【0050】
例14:複数のダウンリンクサブフレームの各インデックスjについて、物理ダウンリンク制御チャネル(PDCCH)を介し受信した1以上のダウンリンク割当インデックス(DAI)値がj+pに等しいか判断し、pは定数であり、j≦M−1であり、MはHARQバンドリングウィンドウのサブフレームの個数であり、前記1以上のDAI値の1つがj+pに等しいと判断したことに応答して、jに対応するサブフレームの受信状態を決定し、前記1以上のDAI値の何れもj+pに等しくないと判断したことに応答して、jに対応するサブフレームの受信状態を所定値に設定するよう構成されるHARQ(Hybrid Automatic Repeat Request)モジュールと、前記バンドリングウィンドウMにおいて前記複数のダウンリンクサブフレームjのそれぞれの受信状態を送信するよう構成される送信モジュールとを有するユーザ装置(UE)が開示される。
【0051】
例15:前記受信状態は、アクノリッジメント(ACK)、非アクノリッジメント(NACK)及び間欠受信(DTX)の1つである、例14に記載のユーザ装置。
【0052】
例16:前記所定値は、間欠送信(DTX)を示す値である、例14〜15の何れか1つに記載のユーザ装置。
【0053】
例17:前記所定値は、ACK、NACK及びDTXを示す値と異なる値である、例14〜16の何れか1つに記載のユーザ装置。
【0054】
例18:前記所定値は、ACK、NACK及びDTXを示す値の1つからランダムに選ばれる値である、例14〜17の何れか1つに記載のユーザ装置。
【0055】
例19:当該ユーザ装置は、TDD(Time Division Duplex)モードにより動作するよう構成される、例14〜18の何れか1つに記載のユーザ装置。
【0056】
例20:当該ユーザ装置は、HARQ受信状態を多重化するよう構成される、例14〜19の何れか1つに記載のユーザ装置。
【0057】
例21:前記送信モジュールは、物理アップリンク制御チャネル(PUCCH)フォーマット1bを用いて前記受信状態を送信するよう構成される、例14〜20の何れか1つに記載のユーザ装置。
【0058】
例22:前記HARQモジュールは更に、前記バンドリングウィンドウ内に検出される対応するPDCCHのないプライマリセル上にプライマリダウンリンク共有チャネル(PDSCH)の送信があるか判断し、対応するPDCCHのないPDSCHがあると判断したことに応答して、pを0に設定し、対応するPDCCHのないPDSCHがないと判断したことに応答して、pを1に設定するよう構成される、例14〜21の何れか1つに記載のユーザ装置。
【0059】
例23:前記送信モジュールは、前記受信状態に基づきPUCCHアップリンクリソース、コンステレーション及びコード入力ビットのセットを選択することによって、前記受信状態を送信するよう構成される、例14〜22の何れか1つに記載のユーザ装置。
【0060】
例24:当該ユーザ装置は、ロング・ターム・エボリューション(LTE)規格のファミリを用いて無線ネットワークと通信するよう構成される、例14〜23の何れか1つに記載のユーザ装置。
図1
図2
図2A
図3
図4
図5A
図5B
図6
図7
図8