特許第6281858号(P6281858)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

<>
  • 6281858-光学デバイス 図000002
  • 6281858-光学デバイス 図000003
  • 6281858-光学デバイス 図000004
  • 6281858-光学デバイス 図000005
  • 6281858-光学デバイス 図000006
  • 6281858-光学デバイス 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6281858
(24)【登録日】2018年2月2日
(45)【発行日】2018年2月21日
(54)【発明の名称】光学デバイス
(51)【国際特許分類】
   H01L 31/02 20060101AFI20180208BHJP
   H01L 23/02 20060101ALI20180208BHJP
   H01L 33/48 20100101ALI20180208BHJP
【FI】
   H01L31/02 B
   H01L23/02 C
   H01L23/02 F
   H01L33/48
【請求項の数】5
【全頁数】10
(21)【出願番号】特願2012-275215(P2012-275215)
(22)【出願日】2012年12月18日
(65)【公開番号】特開2014-120635(P2014-120635A)
(43)【公開日】2014年6月30日
【審査請求日】2015年10月9日
【前置審査】
(73)【特許権者】
【識別番号】000002325
【氏名又は名称】セイコーインスツル株式会社
(74)【代理人】
【識別番号】100142837
【弁理士】
【氏名又は名称】内野 則彰
(74)【代理人】
【識別番号】100166305
【弁理士】
【氏名又は名称】谷川 徹
(74)【代理人】
【識別番号】100171251
【弁理士】
【氏名又は名称】篠田 拓也
(74)【代理人】
【識別番号】100140741
【弁理士】
【氏名又は名称】鈴木 光彌
(72)【発明者】
【氏名】林 恵一郎
【審査官】 山本 元彦
(56)【参考文献】
【文献】 特開平10−330132(JP,A)
【文献】 特開2006−267154(JP,A)
【文献】 特開2012−216648(JP,A)
【文献】 特開2009−267396(JP,A)
【文献】 特開2007−165503(JP,A)
【文献】 米国特許出願公開第2012/0266462(US,A1)
【文献】 特開2010−177375(JP,A)
【文献】 国際公開第2006/025139(WO,A1)
【文献】 特開2011−37694(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 31/00−31/0392、31/08−31/119、
33/48−33/64、27/14−27/148
(57)【特許請求の範囲】
【請求項1】
ベース基板と、
前記ベース基板に実装され、前記ベース基板とは反対側の表面に光学活性領域を有する光学チップと、
凹部を有し、前記凹部に前記光学チップを収容して前記ベース基板に金属接合材を介して接合される透光性の蓋体と、を備え、
前記蓋体は、母材に粉砕された形態のリン酸塩ガラスを有しており、前記リン酸塩ガラスによってフィルター機能を有する光学デバイス。
【請求項2】
前記金属接合材は、前記ベース基板の側に形成される第一金属膜と前記蓋体の側に形成される第二金属膜を含み、
前記第一又は第二金属膜は、下地層がCr、Ni、Ta、Al、Cuのいずれかを含む層からなり、表面層がAu、Snのいずれかを含む層からなる積層構造を有する請求項1に記載の光学デバイス。
【請求項3】
前記金属接合材は、前記ベース基板の側に形成される第一金属膜と前記蓋体の側に形成される第二金属膜を含み、前記第一又は第二金属膜はナノ銀粒子から形成される請求項1に記載の光学デバイス。
【請求項4】
前記金属接合材は、前記ベース基板の側に形成される第一金属膜と前記蓋体の側に形成される第二金属膜を含み、
前記第一金属膜と前記第二金属膜とは超音波接合又は半田接合により接合される請求項1に記載の光学デバイス。
【請求項5】
前記金属接合材は導電膜を含み、前記ベース基板と前記蓋体6とが陽極接合により接合される請求項1に記載の光学デバイス。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、可視光の光を発光し又は検出する光学デバイス及びその製造方法に関する。
【背景技術】
【0002】
フォトダイオードや発光ダイオードを用いた光学デバイスが実用化されている。例えば、照明装置の自動点灯制御、液晶ディスプレイのバックライトの明るさの制御、携帯電話のキーパッドのバックライト制御、監視カメラの暗視野切り替え制御等の分野で光検知の手段とし使用されている。また、発光素子と組み合わせて近接センサを構成し、物体の有無や距離の測定にも使用されている。
【0003】
図5は、この種の光学デバイスのパッケージ構造30を示す断面模式図である(特許文献1の図3)。ベースとなるセラミック基板31には固体撮像素子32が搭載される。セラミック基板31は3層又はそれ以上の多層構造をなし、層間に所定本数の導電膜33aがパターン形成される。各々の導電膜33aの一端はセラミック基板31上の固体撮像素子32の周辺部に近接配置され、そこに固体撮像素子32の電極部から引き出されたボンディングワイヤ34が接続される。一方、各々の導電膜33aの他端はセラミック基板31の外側面に露出しており、その露出部分に側面導電膜33bが形成される。そして、各々の側面導電膜33bにリード端子35がセラミック基板31の裏側方向に垂直に伸びるようにろう付けされる。さらに、セラミック基板31の上端部にはシールガラス36が接合され、シールガラス36によって固体撮像素子32が気密封止される。
【0004】
図6は、他の光学デバイスのパッケージ構造を示す断面模式図である(特許文献1の図2)。固体撮像装置41は、主にベース基板42、固体撮像素子43、樹脂枠44及び透明板45から構成される。ベース基板42はセラミック基板からなる平板構造を成す。固体撮像素子43はCCD素子からなりベース基板42の中央部に実装される。ベース基板42の両側は平面視半円状の凹部46が所定の間隔で形成される。ベース基板42の上には各々の凹部46面を経由して断面コの字形の厚膜導電材料からなる導電膜47が形成される。導電膜47の一端部47aは固体撮像素子43の周辺部に近接配置され、導電膜47の他端部47bはベース基板42の素子実装面とは反対側の面に延出し、その延出部分を基板表面に露出させて外部接続用の電極部とする。固体撮像素子43の上面周縁部には複数の電極部が形成され、この電極部と一端部47aはボンディングワイヤ48により接続される。樹脂枠44はベース基板42上の固体撮像素子43を取り囲むように形成される。透明板45はベース基板42の素子実装面との間に所定の空間を確保した状態で、樹脂枠44の上端部に接合される。これにより、従来の中空パッケージ構造に比較して製造工程が大幅に簡略化されることが記載されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平10−144898号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
図5に示される光学デバイスのパッケージ構造30では、多層構造のセラミック基板に階段状の凹部を形成し、その凹部の底面に固体撮像素子32を実装して気密封止用の空間を確保している。そのため、セラミック基板31の製造工程が煩雑になり、セラミック基板31の材料費や加工費が高くなる、という課題があった。
【0007】
また、図6に示される固体撮像装置41のパッケージ構造では、樹脂枠44の上端部を平坦に形成し、透明板45とベース基板42との間に形成される中空部を気密封止するのは難しい。つまり、透明板45をベース基板42側に押圧しながら加熱すると、樹脂枠44は軟化して所定の高さの中空部を形成することが困難となる。また、樹脂枠44として熱硬化型樹脂に代えて紫外線硬化型樹脂を使用すると、紫外線をカットするフィルター機能を有する透明板45を使用することができなくなる。
【0008】
本発明は上記課題に鑑みてなされたものであり、フィルター機能を有する透明板を使用することができ、簡単な工程で製造することができ、高気密性を有する光学デバイス及びその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明の光学デバイスは、ベース基板と、前記ベース基板に実装され、前記ベース基板とは反対側の表面に光学活性領域を有する光学チップと、凹部を有し、前記凹部に前記光学チップを収容して前記ベース基板に金属接合材を介して接合される透光性の蓋体と、を備えることとした。
【0010】
また、前記金属接合材は、前記ベース基板の側に形成される第一金属膜と前記蓋体の側に形成される第二金属膜を含み、前記第一又は第二金属膜は、下地層がCr、Ni、Ta、Al、Cuのいずれかを含む層からなり、表面層がAu、Snのいずれかを含む層からなる積層構造を有することとした。
【0011】
また、前記金属接合材は、前記ベース基板の側に形成される第一金属膜と前記蓋体の側に形成される第二金属膜を含み、前記第一又は第二金属膜はナノ銀粒子から形成されることとした。
【0012】
また、前記第一金属膜と前記第二金属膜とは超音波接合又は半田接合により接合されることとした。
【0013】
前記金属接合材は導電膜を含み、前記ベース基板と前記蓋体6とが陽極接合により接合されることとした。
【0014】
また、前記蓋体は特定の光の波長を透過するフィルター機能を有することとした。
【0015】
本発明の光学デバイスの製造方法は、表面から反対側の裏面に貫通する貫通電極を備えるベース基板を準備するベース基板準備工程と、表面に光学活性領域を有する光学チップを前記表面とは反対側の裏面を前記ベース基板の表面に向けて実装する光学チップ実装工程と、凹部が形成される蓋体を準備する蓋体準備工程と、前記光学チップを前記凹部に収納して前記蓋体を前記ベース基板に設置する蓋体設置工程と、前記凹部を形成する側壁の上面と前記ベース基板の表面とを金属接合材を介在させて接合する接合工程と、を備えることとした。
【0016】
また、前記ベース基板準備工程は、前記ベース基板の前記蓋体が接合される領域の表面に第一金属膜を形成する工程と、前記蓋体準備工程は、前記側壁の上面に第二金属膜を形成する工程と、を含むこととした。
【0017】
また、前記接合工程は、前記第一金属膜と前記第二金属膜とを超音波接合又は半田接合により接合することとした。
【0018】
また、前記接合工程は、前記蓋体と前記ベース基板とを陽極接合により接合することとした。
【0019】
また、前記光学チップ実装工程は、前記ベース基板に複数の前記光学チップを実装する工程であり、前記蓋体準備工程は、前記蓋体に複数の凹部を形成する工程を含み、前記蓋体設置工程は、複数の前記光学チップを複数の前記凹部にそれぞれに収納して前記蓋体を前記ベース基板に設置する工程であり、前記接合工程の後に、個々の光学デバイスに分離する分離工程を備えることとした。
【発明の効果】
【0020】
本発明の光学デバイスは、ベース基板と、ベース基板に実装され、ベース基板とは反対側の表面に光学活性領域を有する光学チップと、凹部を有し、凹部に光学チップを収容してベース基板に金属接合材を介して接合される透光性の蓋体と、を備える。これにより、光学チップを収納する高気密性の空間を確実に形成することができ、構造が簡素なので低コストで光学デバイスを提供することができる。
【図面の簡単な説明】
【0021】
図1】本発明の第一実施形態に係る光学デバイスの断面模式図である。
図2】本発明の第二実施形態に係る光学デバイスの製造方法を表す工程図である。
図3】本発明の第二実施形態に係る光学デバイスの製造工程の説明図である。
図4】本発明の第二実施形態に係る光学デバイスの製造工程の説明図である。
図5】従来公知の光学デバイスのパッケージ構造を示す断面模式図である。
図6】従来公知の光学デバイスのパッケージ構造を示す断面模式図である。
【発明を実施するための形態】
【0022】
(第一実施形態)
図1は、本発明の第一実施形態に係る光学デバイス1の断面模式図である。光学デバイス1は、ベース基板2と、ベース基板2の上に実装される光学チップ3と、光学チップ3を収納しベース基板2に金属接合材10を介して接合される透光性の蓋体6とを備える。光学チップ3はベース基板2とは反対側の表面に光学活性領域4を有する。蓋体6は凹部5を有し、凹部5に光学チップ3を収容する。
【0023】
具体的に説明する。ベース基板2は、ガラス材料(ソーダ石灰ガラス、硬質ガラス、アルミナガラス等)、石英、セラミックス、プラスチック材料(ガラスエポキシ樹脂、エポキシ系樹脂、アクリル系樹脂、ポリイミド系樹脂、アラミド不織布等)を使用することができる。蓋体6は透光性の材料を使用することができる。例えば、ガラス材料、石英、セラミックス、プラスチック材料を使用することができる。蓋体6として、特定の光の波長を透過するフィルター機能を有する材料を使用することができる。例えば、粉砕したリン酸塩ガラスを混入して視感度特性に近い分光特性を付与したガラス材料や透光性プラスチック材料を使用することができる。また、表面に光干渉膜を形成してフィルター機能を付与してもよい。光学チップ3として、フォトダイオード、発光素子等の光学チップを使用することができる。
【0024】
ベース基板2は、板厚方向に貫通する貫通電極11と、貫通電極11に電気的に接続し、ベース基板2の表面に形成される内部電極9と、表面とは反対側の裏面に形成される外部電極8とを備える。貫通電極11は、Ag、Au系の貴金属ペーストや、Cu、Ni系の卑金属ペースト等の圧膜導電体材料により、また、Cuの電解メッキ又は無電解メッキにより形成することができる。また、コバール、ステンレス等の金属線材から形成することができる。内部電極9は、単層の金属膜の他に、Au/Ni/Cuの積層構造としてもよい。
【0025】
ベース基板2と蓋体6とは金属接合材10を介して陽極接合、超音波接合、又は半田接合により接合される。陽極接合の場合は、例えば、ベース基板2と蓋体6にソーダ石灰ガラスを使用し、金属接合材10としてベース基板2又は蓋体6のいずれかの接合領域にアルミニウム膜、シリコン膜等からなる導電膜を形成する。そして、ベース蓋体6を基板2に加圧しながら300℃〜450℃に加熱し、接合部に数100Vの高電圧を印加して行うことができる。
【0026】
また、超音波接合の場合は、ベース基板2と蓋体6にガラス材料、セラミックス、プラスチック材料を使用し、ベース基板2の表面外周に金属接合材10としての第一金属膜10aを形成し、蓋体6の凹部5を形成する側壁の上面に金属接合材10としての第二金属膜10bを形成する。そして、ベース基板2に蓋体6を載置し第一金属膜10aと第二金属膜10bを密着させて、加熱及び加圧しながら超音波を印加して接合することができる。ここで、第一金属膜10aや第二金属膜10bとして、例えばAg、Cu、Ni、Au、Cr、Al等の単体層、或いはこれらの積層構成を用いることができる。また、第一金属膜10aや第二金属膜10bは、下地のベース基板2又は蓋体6に対して密着性の良い材料からなる下地層と、金属間接合の容易な表面層とからなる積層構造とすることができる。下地層は、例えばCr、Ni、Ta、Al、Cuのいずれかを含み、表面層は、例えばAu、Snのいずれかを含むようにする。例えば、下地層としてCuを約2wt%含むAlとすれば、下地に対する密着性を向上させることができる。また、第一又は第二金属膜10a、10bとして、或いは第一及び第二金属膜10a、10bとしてナノ銀粒子からなる層を形成することができる。ナノ銀粒子は直径が1nm〜10nmの銀粒子からなり、温度100℃〜200℃の比較的低い温度で高い反応性を有する。従って、ベース基板2と蓋体6とを比較的低温で接合することができる。
【0027】
このように、光学チップ3が実装されるベース基板2に蓋体6を被せる構造なので、温度設定や加圧の大きさによって内部空間が潰れることがなく、光学チップ3を確実に収納することができる。また、簡素な構造なので低コストで製造することができる。更に、ベース基板2と蓋体6とを金属接合材10を用いて接合するので、気密性が高く耐湿性、耐海水性、耐温度性等の耐候性に優れた光学デバイス1を提供することができる。
【0028】
また、母材たるベース基板2と蓋体6とを金属接合材10を用いて接合するため、母材の融点温度よりも低い温度で接合できることとなり、高精度な製品の出来上がり寸法を実現することができる。さらに、母材たるベース基板2と蓋体6とを金属接合材10を用いて接合するため、母材の融点温度よりも低い温度で接合できることとなり、例えば、非常に薄い厚さの蓋体6を適用することもできる。また、金属接合材10が、ベース基板2と蓋体6の間に浸透するため、気密性が高いとともに、接合面が複雑な形状であっても接合することができる。
【0029】
(第二実施形態)
図2は、本発明の第二実施形態に係る光学デバイスの製造方法を表す工程図である。図3及び図4は、本発明の第二実施形態に係る光学デバイスの製造工程の説明図である。同一の部分又は同一の機能を有する部分には同一の符号を付している。
【0030】
まず、ベース基板準備工程S1において、表面から反対側の裏面に貫通する貫通電極11を備えるベース基板2を準備する。次に、光学チップ実装工程S2において、表面に光学活性領域4を有する光学チップ3をベース基板2の表面に実装する。また、蓋体準備工程S3において、凹部5が形成される蓋体6を準備する。次に、蓋体設置工程S4において、光学チップ3を凹部5に収納して蓋体6をベース基板2に設置する。次に、接合工程S5において、凹部5を形成する側壁の上面とベース基板2の表面とを金属接合材10を介在させて接合する。接合は、陽極接合、超音波接合又は半田接合により行うことができる。次に、外部電極形成工程S6において、ベース基板2の裏面に、貫通電極11と電気的に接続する外部電極8を形成する。
【0031】
このように、凹部5が形成される蓋体6を、光学チップ3を実装したベース基板2に、金属接合材10を介して接合する。そのため、構造が簡素であり、光学チップ3を確実に収納することができ、気密性が高く、耐候性に優れた光学デバイス1を低コストで製造することができる。なお、ベース基板2、蓋体6、金属接合材10、ベース基板2のそれぞれの材料については第一実施形態において説明したと同様なので説明を省略する。また、外部電極形成工程S6は、ベース基板準備工程S1の際に形成しておくことができるので、本発明の必須要件でない。また、S1〜S6は必ずしも製造工程の順番を表すものではなく、蓋体準備工程S3は蓋体設置工程S4の前であればよく、外部電極形成工程S6はどの段階で実施してもよい。
【0032】
以下、図3及び図4を参照して具体的に説明する。以下、ベース基板2としてソーダ石灰ガラスを使用し、蓋体6として粉砕したリン酸塩ガラスが混入するソーダ石灰ガラスを使用する。また、光学チップ3としてフォトダイオードを使用し、ベース基板2と蓋体6との間を超音波接合による封止する例である。
【0033】
図3(S1)は、ベース基板準備工程S1におけるベース基板2の断面模式図である。まず、型成形法によりベース基板2を軟化させて貫通孔を形成する。次に、貫通孔に貫通電極11を挿入して貫通電極11とベース基板2とを熱溶着する。貫通電極11は、金属材料、例えばコバール、ステンレス、42アロイ等を使用することができる。次に、ベース基板2を研削又は研磨して、少なくとも蓋体6を接合する側の表面を平坦化する。次に、内部電極9を貫通電極11と重なるように形成して貫通電極11に導通させる。内部電極9は、金属等からなる導電体を蒸着法、スパッタリング法、ディスペンス法或いは印刷法により形成することができる。更に、ベース基板2の蓋体6が接合される領域の表面に第一金属膜10aを形成する。
【0034】
第一金属膜10aは、光学チップ3や貫通電極11が形成される領域を取り囲むように形成する。蒸着法、スパッタリング法等により金属膜をベース基板2の表面に堆積し、フォトリソグラフィ及びエッチング法により第一金属膜10aのパターンを形成することができる。また、ディスペンス法や印刷法によりナノ銀粒子膜のパターンを形成し、乾燥・焼成してナノ銀粒子から第一金属膜10aを形成することができる。なお、第一金属膜10aを形成する工程で同時に内部電極9を形成してもよい。
【0035】
第一金属膜10aは、ベース基板2側に形成する下地層と、その上面に形成する表面層との積層構造とする。例えば、表面層としてAu、Snなどの比較的低温で接合可能な材料を使用し、下地層としてCr、Ni、Ta、Al,Cuのいずれかを含み、下地に対する密着性の高い材料を使用する。第一金属膜10aを、例えば、表面側からAu/Ni/Crの積層構造とすることができる。また、下地層としてCuを約2wt%を含むAl層を約1000Å形成すれば、ガラスに対して密着性を高めることができる。
【0036】
図3(S2)は、光学チップ実装工程S2におけるベース基板2及び光学チップ3の断面模式図である。表面に光学活性領域4を有する光学チップ3を光学活性領域4が形成される表面とは反対側の裏面をベース基板2の表面に向けて実装する。本実施形態においては、光学チップ3としてフォトダイオードチップを用い、光学活性領域4が受光面となる。光学チップ3の表面の光学活性領域4より外側には電極パッド12が形成され、この電極パッド12とベース基板2の表面に形成される内部電極9との間をワイヤーボンディングにより金線などからなるワイヤー7を接続する。これにより、光学チップ3と貫通電極11とが電気的に接続される。
【0037】
図3(S3)は、蓋体準備工程S3における蓋体6の断面模式図である。ガラス板を軟化点以上に加熱し型成形により中央部に凹部5を形成する。次に、凹部5を形成する側壁の上面を研削又は研磨して平坦化する。次に、スパッタリング法又は蒸着法により金属膜を堆積し、パターニングを行って凹部5を形成する側壁の上面に第二金属膜10bを形成する。また、ナノ銀粒子が分散する溶液をディスペンス法やインクジェット印刷法により側壁上面に塗布し、乾燥・焼成を行ってナノ銀粒子による第二金属膜10bを形成することができる。
【0038】
第二金属膜10bは、蓋体6側に形成する下地層と、その上面に形成する表面層との積層構造とする。例えば、表面層としてAu、Snなどの比較的低温で接合可能な材料を使用し、下地層としてCr、Ni、Ta、Al,Cuのいずれかを含み、下地に対する密着性の高い材料を使用する。また、下地層としてCuを約2wt%を含むAl層を約1000Å形成すれば、ガラスに対して高い密着性を確保することができる。
【0039】
図3(S4)は、蓋体設置工程S4における蓋体6とベース基板2の断面模式図である。光学チップ3を凹部5に収納して蓋体6をベース基板2に設置する。このとき、ベース基板2に形成した第一金属膜10aと蓋体6の凹部5を形成する側壁の上面に形成した第二金属膜10bとを密着させる。
【0040】
図4(S5)は、接合工程S5を説明するための図である。蓋体6を設置したベース基板2をステージ16に設置し、蓋体6側を加圧ヘッド15により加圧し、温度250℃〜300℃に昇温する。そして、ステージ16又は加圧ヘッド15に超音波を印加して第一及び第二金属膜10a、10bに超音波振動を伝達する。これにより、蓋体6の凹部5を形成する側壁の上面とベース基板2の表面とを第一金属膜10a及び第二金属膜10bからなる金属接合材10を介在させて超音波接合する。これにより第一金属膜10aの表面層と第二金属膜10bの表面層とが金属間接合する。なお、超音波接合に代えて表面層どうしを熱溶着させることにより接合してもよいし、第一金属膜10aの表面層と第二金属膜10bの表面層とを半田により接合してもよい。また、ナノ銀粒子により第一又は第二金属膜10a、10b、或いは第一及び第二金属膜10a、10bを形成し、加熱圧着することにより溶着することができる。ナノ銀粒子は反応性が高いので、100℃〜200℃の比較的低温度で接合することができる。
【0041】
図4(S6)は、外部電極形成工程S6における蓋体6とベース基板2の断面模式図である。ベース基板2の外表面に貫通電極11と電気的に接続する外部電極8を形成する。外部電極8は、蒸着法やスパッタリング法により金属膜を堆積し、これをパターニングして形成してもよいし、印刷法により外部電極8のパターンを印刷し、焼成して形成してもよい。
【0042】
以上の通り、ベース基板2と蓋体6とを金属接合材10を介在させて接合したので、気密性の高い高信頼性の光学デバイス1を簡便な製造プロセスにより低コストで製造することができる。
【0043】
なお、上記実施形態では金属接合材10としてベース基板2に形成した第一金属膜10aと蓋体6に形成した第二金属膜10bとを、超音波接合や半田接合による例について説明したが、本発明はこれに限定されない。金属接合材10として、ベース基板2に形成する第一金属膜10aのみ、又は蓋体6に形成する第二金属膜10bのみとし、金属接合材10を形成した側を陽極に、金属接合材10を形成しない側を陰極にして陽極接合することができる。陽極接合は、接合面を350℃〜450℃に加熱、及び加圧し、400V〜600Vの電圧を印加して行う。金属接合材10として、Al、シリコン等の導電膜を使用することができる。
【0044】
また、上記実施形態は、一個の光学デバイス1を製造する例について説明したが、多数個同時に形成する多数個取りの製造工程とすることができる。即ち、光学チップ実装工程S2は、ベース基板2に複数の光学チップ3を実装する。蓋体準備工程S3は、蓋体6に複数の凹部5を形成する。蓋体設置工程S4は、複数の光学チップ3を複数の凹部5にそれぞれ収納して蓋体6をベース基板2に設置する。そして、接合工程S5の後に、個々の光学デバイス1に分離する分離工程を備える。これにより、多数個の光学デバイス1を同時に製造することができる。
【0045】
また、上記実施形態において、ベース基板2及び蓋体6としてガラス材料を用いる例について説明したが、本発明はこれに限定されず、ベース基板2及び蓋体6としてガラスエポキシ樹脂やプラスチック材料等を使用することができる。
【符号の説明】
【0046】
1 光学デバイス
2 ベース基板
3 光学チップ
4 光学活性領域
5 凹部
6 蓋体
7 ワイヤー
8 外部電極
9 内部電極
10 金属接合材、10a 第一金属膜、10b 第二金属膜
11 貫通電極
12 電極パッド
図1
図2
図3
図4
図5
図6