【実施例】
【0026】
(実施例)
上記電気接点材料の製造方法の実施例について、図を用いて説明する。まず、
図1に示すように、金属よりなる基材2上に、Snめっき膜31と、Snめっき膜31上に積層され表面300に露出したPdめっき膜32とを含む多層金属膜3を形成する。その後、多層金属膜3を加熱するリフロー処理を施して、
図2または
図3に示すようにSn−Pd合金を含む被覆層4(4a、4b)を形成する。以上により電気接点材料1を作製することができる。以下、詳説する。
【0027】
まず、基材2として、Cu、Al、Fe及びこれらの合金等からなる金属部材を準備し、必要に応じて前処理を実施した。本例においては、Cu合金よりなる板材を基材2として用いた。なお、前処理には、例えば、加工油を除去するための脱脂洗浄や、自然酸化膜を除去するための酸洗浄等の処理が含まれており、用いる基材2の材質等に応じて適宜組み合わせることができる。
【0028】
次いで、電気めっき法により基材2上に多層金属膜3を形成した。本例の多層金属膜3は、
図1に示すように3層構造を有しており、基材2上に下地めっき膜としてのNiめっき膜5、Snめっき膜31及びPdめっき膜32が順次積層されている。Niめっき膜5、Snめっき膜31及びPdめっき膜32の膜厚は、それぞれ、3μm、1.0μm及び0.02μmとした。また、めっき膜を形成する際の浴組成及び析出条件は、従来公知の条件から適宜選択した。
【0029】
その後、多層金属膜3を280℃で1分程度加熱するリフロー処理を施し、Sn−Pd合金を含む被覆層4を形成した。以上により、電気接点材料1を得た。
【0030】
図2及び
図3に、リフロー処理後の電気接点材料1における、基材2上に存在する被覆層4a、4bの構造の例を示す。電気接点材料1は、例えば
図2に示すように、基材2上に、Ni層41、Sn−Ni合金層42及び合金分散層43が順次積層された被覆層4aを有することがある。合金分散層43の表面には、リフロー処理の際に形成された不導体皮膜431が存在している。合金分散層43は、Snめっき膜31とPdめっき膜32とが合金化して形成された層であり、Sn系母相432中にSn−Pd合金相433が分散した海島構造を有している。
【0031】
Ni層41及びSn−Ni合金層42は、多層金属膜3中のNiめっき膜5に由来する層である。Ni層41は、基材2のCuが合金分散層43へ拡散することを防止する作用を有する。また、Sn−Ni合金層42は、Niめっき膜5の一部とSnめっき膜31の一部とが合金化して形成された層であり、合金分散層43の密着性を向上させる作用を有する。
【0032】
また、電気接点材料1は、例えば
図3に示すように、基材2上に、Ni層41、Sn−Ni合金層42、Sn層44及びSn−Pd合金層45が順次積層された被覆層4bを有することがある。Sn−Pd合金層45は、Snめっき膜31とPdめっき膜32とが合金化して形成された層であり、全面がSn−Pd合金より構成されている。Sn−Pd合金層45の表面には、リフロー処理の際に形成された不導体皮膜451が存在している。また、Sn層44は、Pdと合金化しなかったSnめっき膜31よりなる層である。なお、Ni層41及びSn−Ni合金層42については、上述と同様である。
【0033】
図2及び
図3に例示するように、上記電気接点材料1の製造方法によれば、多層金属膜3にリフロー処理を施すことにより、基材2上にSn−Pd合金を含む被覆層4を形成することができる。それ故、上述したように、接触抵抗及び摩擦係数の低い電気接点材料1を容易に作製することができる。
【0034】
(実験例)
本例は、上記の製造方法により作製した電気接点材料1の性能評価を行った例である。本例においては、実施例の製造方法により作製した電気接点材料1から採取した試料(以下、「試料E1」という。)を用いて、以下の方法により摩擦係数及び接触抵抗の測定を行った。
【0035】
本例においては、試料E1との比較のために、試料C1及び試料C2を作製し、測定に供した。試料C1は、Snめっき膜31とPdめっき膜32との積層順を入れ替えた以外は、実施例と同様の手順により作製した電気接点材料1から採取した試料である。また、試料C2は、Snめっき膜を表面に有する従来の電気接点材料1から採取した試料である。
【0036】
<接触抵抗測定>
実施例の電気接点材料1から採取した板状材にプレス加工を施し、半径1mmの半球状エンボス部を有する相手部材を準備した。次いで、試料E1に相手部材の半球状エンボス部を当接させ、被覆層4同士を接触させた。この状態から相手部材に加える荷重を徐々に大きくし、40Nまで印加した。その後、相手部材に加える荷重を徐々に小さくした。そして、相手部材に荷重が印加されている間の、試料E1と相手部材との間の接触抵抗を測定した。
【0037】
また、試料E1に替えて試料C1を用い、上述と同様の手順により、試料C1と相手部材との間の接触抵抗を測定した。
【0038】
図4及び
図5に、試料E1の測定結果及び試料C1の測定結果をそれぞれ示す。なお、
図4及び
図5の縦軸は接触抵抗(mΩ)の値であり、横軸は相手部材に加えた荷重(N)である。また、縦軸及び横軸の目盛りは対数表示とした。
【0039】
図4及び
図5より知られるように、試料E1は、荷重を増加させて1Nに達した時点(符号P)での接触抵抗の値が10mΩ以下であった。この結果は、コネクタ端子に要求される特性を十分に満足できる結果である。一方、試料C1は、荷重を増加させて1Nに達した時点(符号P)での接触抵抗の値が10mΩ以下であったものの、試料E1に比べて測定初期における接触抵抗が大きかった。
【0040】
また、
図4においては、荷重を増加させる際に接触抵抗が一定の傾きで直線的に減少する傾向があったが、
図5においては、2N程度の荷重を境界(符号Q)として、低荷重領域(符号Q1)における接触抵抗の傾きが高荷重領域(符号Q2)における接触抵抗の傾きよりも大きくなる傾向があった。この結果は、以下のように解釈することができる。
【0041】
導体間の接触抵抗は、主に、不導体皮膜の存在に由来する皮膜抵抗と、導体間の真実接触面積に由来する集中抵抗とに分けることができる。皮膜抵抗及び接触抵抗は、特開2002−5141号公報等に示されているように、既にモデルを用いて定式化されている。例えば、平坦な接触面を有する導体同士を接触させた場合に、接触抵抗R
kは、下記式(1)により表すことができる。なお、下記式(1)の第1項は集中抵抗を表し、第2項は皮膜抵抗を表す項である。
【0042】
【数1】
【0043】
ここで、上記式(1)におけるFは接触荷重、Sは見かけの接触面積、Kは表面粗度、Hは硬度、ρは金属抵抗率、ρ
fは皮膜抵抗率、dは不導体皮膜の厚さである。
【0044】
上記式(1)より知られるように、集中抵抗は荷重の−1/2乗に比例し、皮膜抵抗は荷重の−1乗に比例する。それ故、低荷重領域においては皮膜抵抗の寄与が大きく、荷重の増大に伴う接触抵抗の減少割合が比較的大きくなる。一方、高荷重領域においては集中抵抗の寄与が大きくなり、低荷重領域に比べて接触抵抗の減少割合が小さくなる。接触抵抗の値を縦軸にとり、荷重の値を横軸にとった両対数プロットにおいて、集中抵抗の寄与が支配的な場合のプロット点の近似直線の傾きは、理想的には−0.5となる。同様に、皮膜抵抗の寄与が支配的な場合のプロット点の近似直線の傾きは、理想的には−1となる。
【0045】
図4においては、荷重を増加させる際の近似直線の傾きは、約−0.5であった。このことは、試料E1においては、測定開始直後から集中抵抗の寄与が支配的であることを示している。一方、
図5においては、荷重が2N以下の低荷重領域における近似直線の傾きは約−1であり、2N以上の高荷重領域における近似直線の傾きは約−0.5であった。このことは、低荷重領域においては皮膜抵抗の寄与が支配的であり、高荷重領域においては集中抵抗の寄与が支配的であることを示している。以上の結果から、試料E1は、試料C1に比べて、接触抵抗への不導体皮膜の寄与が小さいことが理解できる。これは、例えば、試料E1の不導体皮膜の膜厚が試料C1よりも薄いなどの原因によるものと考えられる。
【0046】
<摩擦係数測定>
上記の相手部材における半球状エンボス部と試料E1の被覆層4とを当接させ、両者の間に3Nの荷重を印加した。そして、この荷重を維持しつつ、半球状エンボス部を試料E1に対して6mm/秒の速度で移動させ、試料E1の動摩擦係数を測定した。
【0047】
また、試料E1に替えて試料C2を用い、上述と同様の手順により、試料C2の動摩擦係数を測定した。
【0048】
動摩擦係数の測定結果を
図6に示す。
図6の縦軸は動摩擦係数の値であり、横軸は半球状エンボス部の移動距離(mm)である。なお、
図6においては、試料E1の測定結果を実線(符号R)により示し、試料C2の測定結果を破線(符号S)により示した。
【0049】
図6より知られるように、試料E1の動摩擦係数は、半球状エンボス部の移動を開始した直後に0.35程度まで上昇し、その後、さらに上昇することなく、0.35程度の値を維持した。一方、試料C2の動摩擦係数は、半球状エンボス部の移動を開始した直後に0.35程度まで上昇した後、移動距離が大きくなるにつれて徐々に増加した。この結果から、試料E1は、従来の電気接点材料に比べて摩擦係数を長期間に亘って低い値に保つことができ、摺動に伴う摩耗等を抑制できることが理解できる。
【0050】
本例より知られるように、上記製造方法により作製した電気接点材料1は、接触抵抗及び摩擦係数の両方が低い。また、電気接点材料1は、端子に要求される特性を容易に満足することができ、端子の素材として好適である。