特許第6283954号(P6283954)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 宇部興産株式会社の特許一覧

特許6283954ポリイミド前駆体、ポリイミド、ワニス、ポリイミドフィルム、及び基板
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6283954
(24)【登録日】2018年2月9日
(45)【発行日】2018年2月28日
(54)【発明の名称】ポリイミド前駆体、ポリイミド、ワニス、ポリイミドフィルム、及び基板
(51)【国際特許分類】
   C08G 73/10 20060101AFI20180215BHJP
   C08J 5/18 20060101ALI20180215BHJP
   B32B 27/00 20060101ALI20180215BHJP
   B32B 17/10 20060101ALI20180215BHJP
   H05K 1/03 20060101ALI20180215BHJP
【FI】
   C08G73/10
   C08J5/18CFG
   B32B27/00 A
   B32B17/10
   H05K1/03 630G
【請求項の数】16
【全頁数】39
(21)【出願番号】特願2014-534444(P2014-534444)
(86)(22)【出願日】2013年9月10日
(86)【国際出願番号】JP2013074428
(87)【国際公開番号】WO2014038715
(87)【国際公開日】20140313
【審査請求日】2016年7月8日
(31)【優先権主張番号】特願2012-198925(P2012-198925)
(32)【優先日】2012年9月10日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000000206
【氏名又は名称】宇部興産株式会社
(74)【代理人】
【識別番号】100106297
【弁理士】
【氏名又は名称】伊藤 克博
(74)【代理人】
【識別番号】100129610
【弁理士】
【氏名又は名称】小野 暁子
(72)【発明者】
【氏名】岡 卓也
(72)【発明者】
【氏名】小濱 幸徳
(72)【発明者】
【氏名】渡辺 祥行
(72)【発明者】
【氏名】久野 信治
【審査官】 小出 直也
(56)【参考文献】
【文献】 特開平06−051316(JP,A)
【文献】 特開2007−002023(JP,A)
【文献】 特開2013−166929(JP,A)
【文献】 国際公開第2014/038714(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08G 73/10
C08J 5/18
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記化学式(1)で表される繰り返し単位を、合計で、全繰り返し単位中の70モル%以上含むポリイミド前駆体であって、
Aが下記化学式(2−1)、(2−2)、(3)または(4)のいずれかで表される基である化学式(1)で表される繰り返し単位を少なくとも2種含み(但し、Aが化学式(2−1)で表される基である化学式(1)で表される繰り返し単位およびAが化学式(2−2)で表される基である化学式(1)で表される繰り返し単位を含み、Aが化学式(3)で表される基である化学式(1)で表される繰り返し単位およびAが化学式(4)で表される基である化学式(1)で表される繰り返し単位を含まない場合は除く。)
化学式(1)で表される繰り返し単位100モル%中、Aが化学式(2−1)、(2−2)、(3)または(4)のいずれかで表される基である化学式(1)で表される繰り返し単位の割合が、合計で、70モル%以上であり
化学式(1)で表される繰り返し単位100モル%中、下記化学式(1’)で表される繰り返し単位の割合が、70モル%以上であり、
このポリイミド前駆体から得られるポリイミドが、50〜200℃の線熱膨張係数が50ppm/K以下であり、且つポリイミドフィルムの厚み10μmでの波長400nmにおける透過率が75%以上であることを特徴とするポリイミド前駆体。
【化1】
(式中、Aは芳香族ジアミンまたは脂肪族ジアミンからアミノ基を除いた2価の基であり、X、Xはそれぞれ独立に水素、炭素数1〜6のアルキル基、または炭素数3〜9のアルキルシリル基である。)
【化2】
【化1A】
(式中、A、X、およびXは前記と同義である。)
【請求項2】
さらに、Aが4,4’−オキシジアニリン、3,4’−オキシジアニリン、3,3’−オキシジアニリン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、または4,4’−ビス(3−アミノフェノキシ)ビフェニルからアミノ基を除いた2価の基である化学式(1)で表される繰り返し単位1種以上を含み、
この繰り返し単位の割合が、合計で、化学式(1)で表される繰り返し単位100モル%中、30モル%以下であることを特徴とする請求項1に記載のポリイミド前駆体。
【請求項3】
下記化学式(5)で表される繰り返し単位を、合計で、全繰り返し単位中の70モル%以上含むポリイミドであって、
Bが下記化学式(6−1)、(6−2)、(7)または(8)のいずれかで表される基である化学式(5)で表される繰り返し単位を少なくとも2種含み(但し、Bが化学式(6−1)で表される基である化学式(5)で表される繰り返し単位およびBが化学式(6−2)で表される基である化学式(5)で表される繰り返し単位を含み、Bが化学式(7)で表される基である化学式(5)で表される繰り返し単位およびBが化学式(8)で表される基である化学式(5)で表される繰り返し単位を含まない場合は除く。)
化学式(5)で表される繰り返し単位100モル%中、Bが化学式(6−1)、(6−2)、(7)または(8)のいずれかで表される基である化学式(5)で表される繰り返し単位の割合が、合計で、70モル%以上であり
化学式(5)で表される繰り返し単位100モル%中、下記化学式(5’)で表される繰り返し単位の割合が、70モル%以上であり、
このポリイミドの50〜200℃の線熱膨張係数が50ppm/K以下であり、且つポリイミドフィルムの厚み10μmでの波長400nmにおける透過率が75%以上であることを特徴とするポリイミド。
【化3】
(式中、Bは芳香族ジアミンまたは脂肪族ジアミンからアミノ基を除いた2価の基である。)
【化4】
【化3A】
(式中、Bは前記と同義である。)
【請求項4】
さらに、Bが4,4’−オキシジアニリン、3,4’−オキシジアニリン、3,3’−オキシジアニリン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、または4,4’−ビス(3−アミノフェノキシ)ビフェニルからアミノ基を除いた2価の基である化学式(5)で表される繰り返し単位1種以上を含み、
この繰り返し単位の割合が、合計で、化学式(5)で表される繰り返し単位100モル%中、30モル%以下であることを特徴とする請求項3に記載のポリイミド。
【請求項5】
請求項1又は2に記載のポリイミド前駆体から得られるポリイミド。
【請求項6】
請求項1又は2に記載のポリイミド前駆体、又は請求項3〜5のいずれかに記載のポリイミドを含むワニス。
【請求項7】
請求項1又は2に記載のポリイミド前駆体、又は請求項3〜5のいずれかに記載のポリイミドを含むワニスを用いて得られたポリイミドフィルム。
【請求項8】
請求項1又は2に記載のポリイミド前駆体から得られるポリイミド、又は請求項3又は4に記載のポリイミドによって形成されたことを特徴とするディスプレイ用、タッチパネル用、または太陽電池用の基板。
【請求項9】
請求項1又は2に記載のポリイミド前駆体から得られるポリイミド、又は請求項3又は4に記載のポリイミドを含むポリイミドフィルムがガラス基材上に形成されていることを特徴とするポリイミドフィルム/ガラス基材積層体。
【請求項10】
前記ポリイミドフィルムの厚さが1〜150μmであることを特徴とする請求項9に記載のポリイミドフィルム/ガラス基材積層体。
【請求項11】
前記ポリイミドフィルムの表面に、さらにガスバリヤ層または無機層を有することを特徴とする請求項9又は10に記載のポリイミドフィルム/ガラス基材積層体。
【請求項12】
さらに導電層を有することを特徴とする請求項9〜11のいずれかに記載のポリイミドフィルム/ガラス基材積層体。
【請求項13】
前記導電層が回路であることを特徴とする請求項12に記載のポリイミドフィルム/ガラス基材積層体。
【請求項14】
さらにトランジスタを有することを特徴とする請求項13に記載のポリイミドフィルム/ガラス基材積層体。
【請求項15】
請求項1又は2に記載のポリイミド前駆体から得られるポリイミド、又は請求項3又は4に記載のポリイミドによって構成されたポリイミドフィルム上に、導電層の回路を有することを特徴とするフレキシブル基板。
【請求項16】
さらにガスバリヤ層、無機層、およびトランジスタから選ばれる少なくとも1つを有することを特徴とする請求項15に記載のフレキシブル基板。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高耐熱性、折り曲げ耐性などの優れた特性を有し、さらに高い透明性と極めて低い線熱膨張係数を兼ね備えたポリイミド、その前駆体等に関するものである。
【背景技術】
【0002】
近年、高度情報化社会の到来に伴い、光通信分野の光ファイバーや光導波路等、表示装置分野の液晶配向膜やカラーフィルター用保護膜等の光学材料の開発が進んでいる。特に表示装置分野で、ガラス基板の代替として軽量でフレキシブル性に優れたプラスチック基板の検討や、曲げたり丸めたりすることが可能なディスプレイの開発が盛んに行われている。このため、その様な用途に用いることができる、より高性能の光学材料が求められている。
【0003】
芳香族ポリイミドは、分子内共役や電荷移動錯体の形成により、本質的に黄褐色に着色する。このため着色を抑制する手段として、例えば分子内へのフッ素原子の導入、主鎖への屈曲性の付与、側鎖として嵩高い基の導入などによって、分子内共役や電荷移動錯体の形成を阻害して、透明性を発現させる方法が提案されている。また、原理的に電荷移動錯体を形成しない半脂環式または全脂環式ポリイミドを用いることにより透明性を発現させる方法も提案されている。
【0004】
特許文献1には、薄く、軽く、割れ難いアクティブマトリックス表示装置を得るために、テトラカルボン酸成分残基が脂肪族基である透明なポリイミドのフィルムの基板上に通常の成膜プロセスを用いて薄膜トランジスタを形成して薄膜トランジスタ基板を得ることが開示されている。ここで具体的に用いられたポリイミドは、テトラカルボン酸成分の1,2,4,5−シクロへキサンテトラカルボン酸二無水物と、ジアミン成分の4,4’−ジアミノジフェニルエーテルとから調製されたものである。
【0005】
特許文献2には、液晶表示素子、有機EL表示素子の透明基板や薄膜トランジスタ基板、フレキシブル配線基板などに利用される、無色透明性、耐熱性及び平坦性に優れるポリイミドからなる無色透明樹脂フィルムを、特定の乾燥工程を用いた溶液流延法によって得る製造方法が開示されている。ここで用いられたポリイミドは、テトラカルボン酸成分の1,2,4,5−シクロへキサンテトラカルボン酸二無水物と、ジアミン成分のα,α’−ビス(4−アミノフェニル)−1,4−ジイソプロピルベンゼンと4,4’−ビス(4−アミノフェノキシ)ビフェニルとから調製されたもの等である。
【0006】
特許文献3,4には、テトラカルボン酸成分として、ジシクロヘキシルテトラカルボン酸と、ジアミン成分として、ジアミノジフェニルエ−テル、ジアミノジフェニルメタン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]エ−テル、メタフェニレンジアミンを用いた有機溶剤に可溶なポリイミドが記載されている。
【0007】
この様なテトラカルボン酸成分として脂環式テトラカルボン酸二無水物、ジアミン成分として芳香族ジアミンを用いた半脂環式ポリイミドは、高い透明性、折り曲げ耐性、高耐熱性を兼ね備えている。しかしながら、この様な半脂環式ポリイミドは、一般に、線熱膨張係数が50ppm/K以上と大きいために、金属などの導体との線熱膨張係数の差が大きく、回路基板を形成する際に反りが増大するなどの不具合が生じることがあり、特にディスプレイ用途などの微細な回路形成プロセスが容易ではないという問題があった。
【0008】
特許文献5には、テトラカルボン酸成分として、デカヒドロ−1,4:5,8−ジメタノナフタレン−2,3,6,7−テトラカルボン酸類と、ジアミン成分として、2,2’−ビス(トリフルオロメチル)ベンジジン、2,2’−ジクロロベンジジンまたは4,4’−オキシジアニリンを用いたポリイミドが記載されている。しかしながら、得られたポリイミドの線熱膨張係数については記載されていない。また、実施例はないが、特許文献5には、テトラカルボン酸成分として、デカヒドロ−1,4:5,8−ジメタノナフタレン−2,3,6,7−テトラカルボン酸類と、ジアミン成分として、p−フェニレンジアミンを用いたポリイミドが例示されている。
【0009】
特許文献6には、テトラカルボン酸成分として、デカヒドロ−1,4:5,8−ジメタノナフタレン−2,3,6,7−テトラカルボン酸類と、ジアミン成分として、4,4’−ジアミノジフェニルメタン、p−フェニレンジアミンまたは4,4’−メチレンビス(シクロヘキシルアミン)を用いたポリイミドを含有する液晶配向剤が記載されている。しかしながら、得られたポリイミドの透明性や線熱膨張係数に関する記載はない。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2003−168800号公報
【特許文献2】国際公開第2008/146637号
【特許文献3】特開2002−69179号公報
【特許文献4】特開2002−146021号公報
【特許文献5】特開2007−2023号公報
【特許文献6】特開平6−51316号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明は、以上のような状況に鑑みてなされたものであり、テトラカルボン酸成分として脂環式テトラカルボン酸二無水物、ジアミン成分として芳香族ジアミンを用いたポリイミドにおいて、高い透明性と低い線熱膨張係数を両立させることを目的とする。
【0012】
すなわち、本発明は、高耐熱性、折り曲げ耐性などの優れた特性を有し、さらに高い透明性と極めて低い線熱膨張係数の両方を兼ね備えたポリイミド、及びその前駆体を提供することを目的とする。
【課題を解決するための手段】
【0013】
本発明は、以下の各項に関する。
【0014】
1.下記化学式(1)で表される繰り返し単位を含むポリイミド前駆体であって、
Aが下記化学式(2−1)、(2−2)、(3)または(4)のいずれかで表される基である化学式(1)で表される繰り返し単位を少なくとも2種含み、
化学式(1)で表される繰り返し単位100モル%中、Aが化学式(2−1)、(2−2)、(3)または(4)のいずれかで表される基である化学式(1)で表される繰り返し単位の割合が、合計で、50モル%を超え、
このポリイミド前駆体から得られるポリイミドが、50〜200℃の線熱膨張係数が50ppm/K以下であり、且つポリイミドフィルムの厚み10μmでの波長400nmにおける透過率が75%以上であることを特徴とするポリイミド前駆体。
【0015】
【化1】
(式中、Aは芳香族ジアミンまたは脂肪族ジアミンからアミノ基を除いた2価の基であり、X、Xはそれぞれ独立に水素、炭素数1〜6のアルキル基、または炭素数3〜9のアルキルシリル基である。)
【0016】
【化2】
【0017】
2.前記化学式(1)で表される繰り返し単位100モル%中、Aが前記化学式(2−1)、(2−2)、(3)または(4)のいずれかで表される基である化学式(1)で表される繰り返し単位の割合が、合計で、70モル%以上であることを特徴とする前記項1に記載のポリイミド前駆体。
【0018】
3.前記化学式(1)で表される繰り返し単位を、合計で、全繰り返し単位中の50モル%を超える割合で含むことを特徴とする前記項1又は2に記載のポリイミド前駆体。
【0019】
4.前記化学式(1)で表される繰り返し単位を、合計で、全繰り返し単位中の70モル%以上含むことを特徴とする前記項1〜3のいずれかに記載のポリイミド前駆体。
【0020】
5.下記化学式(5)で表される繰り返し単位を含むポリイミドであって、
Bが下記化学式(6−1)、(6−2)、(7)または(8)のいずれかで表される基である化学式(5)で表される繰り返し単位を少なくとも2種含み、
化学式(5)で表される繰り返し単位100モル%中、Bが化学式(6−1)、(6−2)、(7)または(8)のいずれかで表される基である化学式(5)で表される繰り返し単位の割合が、合計で、50モル%を超え、
このポリイミドの50〜200℃の線熱膨張係数が50ppm/K以下であり、且つポリイミドフィルムの厚み10μmでの波長400nmにおける透過率が75%以上であることを特徴とするポリイミド。
【0021】
【化3】
(式中、Bは芳香族ジアミンまたは脂肪族ジアミンからアミノ基を除いた2価の基である。)
【0022】
【化4】
【0023】
6.前記化学式(5)で表される繰り返し単位を、合計で、全繰り返し単位中の50モル%を超える割合で含むことを特徴とする前記項5に記載のポリイミド。
【0024】
7.前記化学式(5)で表される繰り返し単位を、合計で、全繰り返し単位中の70モル%以上含むことを特徴とする前記項5又は6に記載のポリイミド。
【0025】
8.前記項1〜4のいずれかに記載のポリイミド前駆体から得られるポリイミド。
【0026】
9.前記項1〜4のいずれかに記載のポリイミド前駆体、又は前記項5〜8のいずれかに記載のポリイミドを含むワニス。
【0027】
10.前記項1〜4のいずれかに記載のポリイミド前駆体、又は前記項5〜8のいずれかに記載のポリイミドを含むワニスを用いて得られたポリイミドフィルム。
【0028】
11.前記項1〜4のいずれかに記載のポリイミド前駆体から得られるポリイミド、又は前記項5〜8のいずれかに記載のポリイミドによって形成されたことを特徴とするディスプレイ用、タッチパネル用、または太陽電池用の基板。
【発明の効果】
【0029】
本発明によって、高耐熱性、折り曲げ耐性などの優れた特性を有し、さらに高い透明性と極めて低い線熱膨張係数を兼ね備えたポリイミド、及びその前駆体を提供することができる。本発明のポリイミド前駆体から得られるポリイミド、及び本発明のポリイミドは、透明性が高く、且つ低線熱膨張係数であるため、微細な回路の形成が容易であり、ディスプレイ用途などの基板を形成するために好適に用いることができる。また、本発明のポリイミドは、タッチパネル用、太陽電池用の基板を形成するためにも好適に用いることができる。
【発明を実施するための形態】
【0030】
本発明のポリイミド前駆体は、前記化学式(1)で表される繰り返し単位を含むポリイミド前駆体である。ただし、前記化学式(1)は、デカヒドロ−1,4:5,8−ジメタノナフタレン環の2位または3位の一方の酸基がアミノ基と反応してアミド結合(−CONH−)を形成しており、一方がアミド結合を形成していない−COOXで表される基であり、6位または7位の一方の酸基がアミノ基と反応してアミド結合(−CONH−)を形成しており、一方がアミド結合を形成していない−COOXで表される基であることを示す。すなわち、前記化学式(1)には、4つの構造異性体、すなわち(i)2位に−COOXで表される基を、3位に−CONH−で表される基を有し、6位に−COOXで表される基を、7位に−CONH−A−で表される基を有するもの、(ii)3位に−COOXで表される基を、2位に−CONH−で表される基を有し、6位に−COOXで表される基を、7位に−CONH−A−で表される基を有するもの、(iii)2位に−COOXで表される基を、3位に−CONH−で表される基を有し、7位に−COOXで表される基を、6位に−CONH−A−で表される基を有するもの、(iv)3位に−COOXで表される基を、2位に−CONH−で表される基を有し、7位に−COOXで表される基を、6位に−CONH−A−で表される基を有するもの全てが含まれる。
【0031】
さらに、本発明のポリイミド前駆体は、Aが前記化学式(2−1)、(2−2)、(3)または(4)のいずれかで表される基である化学式(1)で表される繰り返し単位を少なくとも2種含む。
【0032】
換言すれば、本発明のポリイミド前駆体は、テトラカルボン酸成分であるデカヒドロ−1,4:5,8−ジメタノナフタレン−2,3,6,7−テトラカルボン酸類等(テトラカルボン酸類等とは、テトラカルボン酸と、テトラカルボン酸二無水物、テトラカルボン酸シリルエステル、テトラカルボン酸エステル、テトラカルボン酸クロライド等のテトラカルボン酸誘導体を表す)を含むテトラカルボン酸成分と、4,4’−ジアミノベンズアニリド、p−フェニレンジアミン、2,2’-ビス(トリフルオロメチル)ベンジジンの少なくとも2種類を含むジアミン成分とから得られるポリイミド前駆体である。
【0033】
さらに、本発明のポリイミド前駆体は、このポリイミド前駆体から得られるポリイミドが、50〜200℃の線熱膨張係数が50ppm/K以下であり、且つポリイミドフィルムの厚み10μmでの波長400nmにおける透過率が75%以上であることを特徴とするポリイミド前駆体である。
【0034】
前記化学式(1)の繰り返し単位を与えるテトラカルボン酸成分としては、デカヒドロ−1,4:5,8−ジメタノナフタレン−2,3,6,7−テトラカルボン酸類等の、1種を単独で使用してもよく、また複数種を組み合わせて使用することもできる。
【0035】
前記化学式(1)の繰り返し単位を与えるジアミン成分は、Aが前記化学式(2−1)、(2−2)、(3)または(4)で表される基である前記化学式(1)の繰り返し単位を与えるジアミン(すなわち、4,4’−ジアミノベンズアニリド、p−フェニレンジアミン、2,2’−ビス(トリフルオロメチル)ベンジジン)から選択される2種類以上を含む。なお、Aが前記化学式(2−1)または前記化学式(2−2)で表される基である前記化学式(1)の繰り返し単位を与えるジアミン成分は4,4’−ジアミノベンズアニリドであり、Aが前記化学式(3)で表される基である前記化学式(1)の繰り返し単位を与えるジアミン成分はp−フェニレンジアミンであり、Aが前記化学式(4)で表される基である前記化学式(1)の繰り返し単位を与えるジアミン成分は2,2’−ビス(トリフルオロメチル)ベンジジンである。前記化学式(1)中のAを与えるジアミン成分(すなわち、前記化学式(1)の繰り返し単位を与えるジアミン成分)として、前記化学式(2−1)、(2−2)、(3)または(4)の構造のものを与えるジアミン成分(すなわち、4,4’−ジアミノベンズアニリド、p−フェニレンジアミン、2,2’−ビス(トリフルオロメチル)ベンジジン)から選択される2種類以上を含むことで、得られるポリイミドの高透明性と低線熱膨張性のバランスが優れる(すなわち、透明性が高く、且つ、低線熱膨張係数であるポリイミドが得られる)。
【0036】
前記化学式(1)中のAを与えるジアミン成分(すなわち、前記化学式(1)の繰り返し単位を与えるジアミン成分)としては、Aが前記化学式(2−1)、(2−2)、(3)または(4)の構造のものを与えるジアミン成分以外の、他のジアミン成分を併用することができる。他のジアミン成分としては、他の芳香族または脂肪族ジアミン類を使用することができる。例えば、m−フェニレンジアミン、ベンジジン、3,3'−ジアミノ−ビフェニル、3,3’−ビス(トリフルオロメチル)ベンジジン、o−トリジン、m−トリジン、3,4’−ジアミノベンズアニリド、N,N’−ビス(4−アミノフェニル)テレフタルアミド、N,N’−p−フェニレンビス(p−アミノベンズアミド)、4−アミノフェノキシ−4−ジアミノベンゾエート、ビス(4−アミノフェニル)テレフタレート、ビフェニル−4,4’−ジカルボン酸ビス(4−アミノフェニル)エステル、p−フェニレンビス(p−アミノベンゾエート)、ビス(4−アミノフェニル)-[1,1'-ビフェニル]-4,4'-ジカルボキシレート、[1,1'-ビフェニル]-4,4'-ジイルビス(4-アミノベンゾエート)、4,4’−オキシジアニリン、3,4’−オキシジアニリン、3,3’−オキシジアニリン、p−メチレンビス(フェニレンジアミン)、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、ビス(4−アミノフェニル)スルホン、3,3'−ビス((アミノフェノキシ)フェニル)プロパン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4−(4−アミノフェノキシ)ジフェニル)スルホン、ビス(4−(3−アミノフェノキシ)ジフェニル)スルホン、オクタフルオロベンジジン、3,3'−ジメトキシ−4,4'−ジアミノビフェニル、3,3'−ジクロロ−4,4'−ジアミノビフェニル、3,3'−ジフルオロ−4,4'−ジアミノビフェニル、1,4−ジアミノシクロへキサン、1,4−ジアミノ−2−メチルシクロヘキサン、1,4−ジアミノ−2−エチルシクロヘキサン、1,4−ジアミノ−2−n−プロピルシクロヘキサン、1,4−ジアミノ−2−イソプロピルシクロヘキサン、1,4−ジアミノ−2−n−ブチルシクロヘキサン、1,4−ジアミノ−2−イソブチルシクロヘキサン、1,4−ジアミノ−2―sec―ブチルシクロヘキサン、1,4−ジアミノ−2―tert―ブチルシクロヘキサン、1,2−ジアミノシクロへキサン、1,4−ジアミノシクロへキサン等やこれらの誘導体が挙げられ、単独で使用してもよく、また複数種を組み合わせて使用することもできる。これらのうち、4,4’−オキシジアニリン、3,4’−オキシジアニリン、3,3’−オキシジアニリン、p−メチレンビス(フェニレンジアミン)、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニルが好ましく、特に4,4’−ビス(4−アミノフェノキシ)ビフェニルが好ましい。
【0037】
本発明のポリイミド前駆体は、前記化学式(1)で表される繰り返し単位100モル%中、Aが前記化学式(2−1)、(2−2)、(3)または(4)のいずれかで表される基である化学式(1)で表される繰り返し単位の割合が、合計で、50モル%を超え、より好ましくは70モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。換言すれば、前記化学式(1)の繰り返し単位を与えるジアミン成分100モル%中、前記化学式(2−1)、(2−2)、(3)または(4)の構造を与えるジアミン成分の割合が、合計で、50モル%を超え、より好ましくは70モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%である。Aが前記化学式(2−1)、(2−2)、(3)または(4)のいずれかで表される基である化学式(1)で表される繰り返し単位の割合が、50モル%以下、または50モル%より小さい場合、得られるポリイミドの線熱膨張係数が大きくなることがある。
【0038】
ある実施態様においては、得られるポリイミドの特性の点から、前記化学式(1)の繰り返し単位を与えるジアミン成分100モル%中、前記化学式(2−1)、(2−2)、(3)または(4)の構造を与えるジアミン成分の割合が、合計で、好ましくは70モル%以下、より好ましくは80モル%以下、さらに好ましくは90モル%以下であることが好ましいことがある。例えば、4,4’−オキシジアニリン、4,4’−ビス(4−アミノフェノキシ)ビフェニル等のエーテル結合(−O−)を有するジアミン等の、他のジアミン類を、前記化学式(1)の繰り返し単位を与えるジアミン成分100モル%中、好ましくは30モル%以下、より好ましくは20モル%以下、さらに好ましくは10モル%以下で使用することが好ましいことがある。
【0039】
本発明のポリイミド前駆体において、前記化学式(1)中のAは、前記化学式(2−1)及び(2−2)から選択される少なくとも1種を必須成分とし、前記化学式(3)及び(4)から選択される少なくとも1種を含むことが好ましい。換言すれば、前記化学式(1)の繰り返し単位を与えるジアミン成分としては、4,4’−ジアミノベンズアニリド、p−フェニレンジアミン、2,2’−ビス(トリフルオロメチル)ベンジジンを使用し、4,4’−ジアミノベンズアニリドと、p−フェニレンジアミン及び2,2’−ビス(トリフルオロメチル)ベンジジンから選択される少なくとも1種とを使用することが好ましい。前記化学式(1)中のAが、前記化学式(2−1)及び(2−2)から選択される少なくとも1種を必須成分とし、前記化学式(3)及び(4)から選択される少なくとも1種を含む場合、高透明性と低線熱膨張性に加え、高い耐熱性も兼ね備えたポリイミドが得られる。
【0040】
前記化学式(1)中のAを与えるジアミン成分(すなわち、前記化学式(1)の繰り返し単位を与えるジアミン成分)は、Aが前記化学式(2−1)、(2−2)、(3)または(4)で表される基である前記化学式(1)の繰り返し単位を与えるジアミンからなり、Aが前記化学式(2−1)または前記化学式(2−2)で表される基である前記化学式(1)の繰り返し単位を与えるジアミン成分(すなわち、4,4’−ジアミノベンズアニリド)を20モル%以上、80モル%以下で含み、且つ、Aが前記化学式(3)または前記化学式(4)で表される基である前記化学式(1)の繰り返し単位を与えるジアミン成分(すなわち、p−フェニレンジアミン、2,2’−ビス(トリフルオロメチル)ベンジジン)のどちらか一方、又は両方で20モル%以上、80モル%以下で含むことが好ましく、さらに好ましくはAが前記化学式(2−1)または前記化学式(2−2)で表される基である前記化学式(1)の繰り返し単位を与えるジアミン成分(すなわち、4,4’−ジアミノベンズアニリド)を30モル%以上、70モル%以下で含み、且つ、Aが前記化学式(3)または前記化学式(4)で表される基である前記化学式(1)の繰り返し単位を与えるジアミン成分(すなわち、p−フェニレンジアミン、2,2’−ビス(トリフルオロメチル)ベンジジン)のどちらか一方、又は両方で30モル%以上、70モル%以下で含むことがより好ましい。
【0041】
本発明のポリイミド前駆体は、前記化学式(1)で表される繰り返し単位以外の、他の繰り返し単位を含むことができる。
【0042】
他の繰り返し単位を与えるテトラカルボン酸成分としては、他の芳香族または脂肪族テトラカルボン酸類を使用することができる。例えば、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン、4−(2,5−ジオキソテトラヒドロフラン−3−イル)−1,2,3,4−テトラヒドロナフタレン−1,2−ジカルボン酸、ピロメリット酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸、2,3,3’,4’−ビフェニルテトラカルボン酸、4,4’−オキシジフタル酸、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、m−ターフェニル−3,4,3’,4’−テトラカルボン酸二無水物、p−ターフェニル−3,4,3’,4’−テトラカルボン酸二無水物、ビスカルボキシフェニルジメチルシラン、ビスジカルボキシフェノキシジフェニルスルフィド、スルホニルジフタル酸、1,2,3,4−シクロブタンテトラカルボン酸、イソプロピリデンジフェノキシビスフタル酸、シクロヘキサン−1,2,4,5−テトラカルボン酸、[1,1’−ビ(シクロヘキサン)]−3,3’,4,4’−テトラカルボン酸、[1,1’−ビ(シクロヘキサン)]−2,3,3’,4’−テトラカルボン酸、[1,1’−ビ(シクロヘキサン)]−2,2’,3,3’−テトラカルボン酸、4,4’−メチレンビス(シクロヘキサン−1,2−ジカルボン酸)、4,4’−(プロパン−2,2−ジイル)ビス(シクロヘキサン−1,2−ジカルボン酸)、4,4’−オキシビス(シクロヘキサン−1,2−ジカルボン酸)、4,4’−チオビス(シクロヘキサン−1,2−ジカルボン酸)、4,4’−スルホニルビス(シクロヘキサン−1,2−ジカルボン酸)、4,4’−(ジメチルシランジイル)ビス(シクロヘキサン−1,2−ジカルボン酸)、4,4’−(テトラフルオロプロパン−2,2−ジイル)ビス(シクロヘキサン−1,2−ジカルボン酸)、オクタヒドロペンタレン−1,3,4,6−テトラカルボン酸、ビシクロ[2.2.1]ヘプタン−2,3,5,6−テトラカルボン酸、6−(カルボキシメチル)ビシクロ[2.2.1]ヘプタン−2,3,5−トリカルボン酸、ビシクロ[2.2.2]オクタン−2,3,5,6−テトラカルボン酸、ビシクロ[2.2.2]オクタ−5−エン−2,3,7,8−テトラカルボン酸、トリシクロ[4.2.2.02,5]デカン−3,4,7,8−テトラカルボン酸、トリシクロ[4.2.2.02,5]デカ−7−エン−3,4,9,10−テトラカルボン酸、9−オキサトリシクロ[4.2.1.02,5]ノナン−3,4,7,8−テトラカルボン酸、ノルボルナン−2−スピロ−α−シクロペンタノン−α’−スピロ−2’’−ノルボルナン5,5’’,6,6’’−テトラカルボン酸等の誘導体や、これらの酸二無水物が挙げられ、単独で使用してもよく、また複数種を組み合わせて使用することもできる。これらのうちでは、ビシクロ[2.2.1]ヘプタン−2,3,5,6−テトラカルボン酸、ビシクロ[2.2.2]オクタン−2,3,5,6−テトラカルボン酸、ノルボルナン−2−スピロ−α−シクロペンタノン−α’−スピロ−2’’−ノルボルナン5,5’’,6,6’’−テトラカルボン酸等の誘導体や、これらの酸二無水物が、ポリイミドの製造が容易であり、得られるポリイミドの耐熱性に優れることからより好ましい。
【0043】
他の繰り返し単位を与えるジアミン成分は、Aが前記化学式(2−1)、(2−2)、(3)または(4)で表される基である前記化学式(1)の繰り返し単位を与えるジアミン成分として例示したジアミン、すなわち、4,4’−ジアミノベンズアニリド、p−フェニレンジアミン、2,2’−ビス(トリフルオロメチル)ベンジジンであってもよい。
【0044】
他の繰り返し単位を与えるジアミン成分としては、他の芳香族または脂肪族ジアミン類を使用することができる。例えば、4,4’−オキシジアニリン、3,4’−オキシジアニリン、3,3’−オキシジアニリン、m−フェニレンジアミン、ベンジジン、3,3'−ジアミノ−ビフェニル、3,3’−ビス(トリフルオロメチル)ベンジジン、p−メチレンビス(フェニレンジアミン)、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、ビス(4−アミノフェニル)スルホン、3,3'−ビス(トリフルオロメチル)ベンジジン、3,3’−ビス((アミノフェノキシ)フェニル)プロパン、2,2’−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4−(4−アミノフェノキシ)ジフェニル)スルホン、ビス(4−(3−アミノフェノキシ)ジフェニル)スルホン、o−トリジン、m−トリジン、オクタフルオロベンジジン、3,3'−ジメチル−4,4'−ジアミノビフェニル、3,3'−ジメトキシ−4,4'−ジアミノビフェニル、3,3'−ジクロロ−4,4'−ジアミノビフェニル、3,3'−ジフルオロ−4,4'−ジアミノビフェニル、3,3'−ジアミノ−ビフェニル、N,N’−ビス(4−アミノフェニル)テレフタルアミド、N,N’−p−フェニレンビス(p−アミノベンズアミド)、4−アミノフェノキシ−4−ジアミノベンゾエート、3,4’−ジアミノベンズアニリド、ビス(4−アミノフェニル)テレフタレート、ビフェニル−4,4’−ジカルボン酸ビス(4−アミノフェニル)エステル、p−フェニレンビス(p−アミノベンゾエート)、ビス(4−アミノフェニル)-[1,1'-ビフェニル]-4,4'-ジカルボキシレート、[1,1'-ビフェニル]-4,4'-ジイルビス(4-アミノベンゾエート)等やこれらの誘導体が挙げられ、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
【0045】
本発明のポリイミド前駆体は、前記化学式(1)で表される繰り返し単位を、合計で、全繰り返し単位中に、好ましくは50モル%を超え、より好ましくは70モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%含むことが好ましい。前記化学式(1)で表される繰り返し単位の割合が50モル%を超える場合、高い耐熱性が得られる。
【0046】
本発明で用いるテトラカルボン酸成分は、特に限定されないが、純度(複数の構造異性体を含む場合は、それらを区別せず同一成分と見なした場合の純度であり、複数種のテトラカルボン酸成分を用いる場合には、最も純度の高いテトラカルボン酸成分の値、もしくは用いるすべてのテトラカルボン酸成分の純度を個別に求め、用いる質量比で重みをつけた純度の平均値、例えば、純度100%のテトラカルボン酸成分を70質量部、純度90%のテトラカルボン酸成分を30質量部使用したとき、使用されるテトラカルボン酸成分の純度は、97%と計算される。)が99%以上、好ましくは99.5%以上であることが好ましい。純度が98%未満の場合、ポリイミド前駆体の分子量が十分にあがらず、得られるポリイミドの耐熱性が劣ることがある。純度は、ガスクロマトグラフィー分析やH−NMR分析等から求められる値であり、テトラカルボン酸二無水物の場合、加水分解の処理を行い、テトラカルボン酸として、その純度を求めることもできる。
【0047】
本発明で用いるジアミン成分は、特に限定されないが、純度(複数種のジアミン成分を用いる場合には、最も純度の高いジアミン成分の値、もしくは用いるすべてのジアミン成分の純度を個別に求め、用いる質量比で重みをつけた純度の平均値、例えば、純度100%のジアミン成分を70質量部、純度90%のジアミン成分を30質量部使用したとき、使用されるジアミン成分の純度は、97%と計算される。)が99%以上、更に好ましくは99.5%以上であることが好ましい。純度が98%未満の場合、ポリイミド前駆体の分子量が十分にあがらず、得られるポリイミドの耐熱性が劣ることがある。純度は、ガスクロマトグラフィー分析等から求められる値である。
【0048】
本発明のポリイミド前駆体において、前記化学式(1)のX、Xはそれぞれ独立に水素、炭素数1〜6、好ましくは炭素数1〜3のアルキル基、または炭素数3〜9のアルキルシリル基のいずれかである。X、Xは、後述する製造方法によって、その官能基の種類、及び、官能基の導入率を変化させることができる。
【0049】
、Xが水素である場合、ポリイミドの製造が容易である傾向がある。
【0050】
また、X、Xが炭素数1〜6、好ましくは炭素数1〜3のアルキル基である場合、ポリイミド前駆体の保存安定性に優れる傾向がある。この場合、X、Xはメチル基もしくはエチル基であることがより好ましい。
【0051】
更に、X、Xが炭素数3〜9のアルキルシリル基である場合、ポリイミド前駆体の溶解性が優れる傾向がある。この場合、X、Xはトリメチルシリル基もしくはt−ブチルジメチルシリル基であることがより好ましい。
【0052】
官能基の導入率は、特に限定されないが、アルキル基もしくはアルキルシリル基を導入する場合、X、Xはそれぞれ、25%以上、好ましくは50%以上、より好ましくは75%以上をアルキル基もしくはアルキルシリル基にすることができる。
【0053】
本発明のポリイミド前駆体は、X及びXが取る化学構造によって、1)ポリアミド酸(X、Xが水素)、2)ポリアミド酸エステル(X、Xの少なくとも一部がアルキル基)、3)4)ポリアミド酸シリルエステル(X、Xの少なくとも一部がアルキルシリル基)に分類することができる。そして、本発明のポリイミド前駆体は、この分類ごとに、以下の製造方法により容易に製造することができる。ただし、本発明のポリイミド前駆体の製造方法は、以下の製造方法に限定されるものではない。
【0054】
1)ポリアミド酸
本発明のポリイミド前駆体は、溶媒中でテトラカルボン酸成分としてのテトラカルボン酸二無水物とジアミン成分とを略等モル、好ましくはテトラカルボン酸成分に対するジアミン成分のモル比[ジアミン成分のモル数/テトラカルボン酸成分のモル数]が好ましくは0.90〜1.10、より好ましくは0.95〜1.05の割合で、例えば120℃以下の比較的低温度でイミド化を抑制しながら反応することによって、ポリイミド前駆体溶液組成物として好適に得ることができる。
【0055】
限定するものではないが、より具体的には、有機溶剤にジアミンを溶解し、この溶液に攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0〜120℃、好ましくは5〜80℃の範囲で1〜72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。上記製造方法でのジアミンとテトラカルボン酸二無水物の添加順序は、ポリイミド前駆体の分子量が上がりやすいため、好ましい。また、上記製造方法のジアミンとテトラカルボン酸二無水物の添加順序を逆にすることも可能であり、析出物が低減することから、好ましい。
【0056】
また、テトラカルボン酸成分とジアミン成分のモル比がジアミン成分過剰である場合、必要に応じて、ジアミン成分の過剰モル数に略相当する量のカルボン酸誘導体を添加し、テトラカルボン酸成分とジアミン成分のモル比を略当量に近づけることができる。ここでのカルボン酸誘導体としては、実質的にポリイミド前駆体溶液の粘度を増加させない、つまり実質的に分子鎖延長に関与しないテトラカルボン酸、もしくは末端停止剤として機能するトリカルボン酸とその無水物、ジカルボン酸とその無水物などが好適である。
【0057】
2)ポリアミド酸エステル
テトラカルボン酸二無水物を任意のアルコールと反応させ、ジエステルジカルボン酸を得た後、塩素化試薬(チオニルクロライド、オキサリルクロライドなど)と反応させ、ジエステルジカルボン酸クロライドを得る。このジエステルジカルボン酸クロライドとジアミンを−20〜120℃、好ましくは−5〜80℃の範囲で1〜72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。また、ジエステルジカルボン酸とジアミンを、リン系縮合剤や、カルボジイミド縮合剤などを用いて脱水縮合することでも、簡便にポリイミド前駆体が得られる。
【0058】
この方法で得られるポリイミド前駆体は、安定なため、水やアルコールなどの溶剤を加えて再沈殿などの精製を行うこともできる。
【0059】
3)ポリアミド酸シリルエステル(間接法)
あらかじめ、ジアミンとシリル化剤を反応させ、シリル化されたジアミンを得る。必要に応じて、蒸留等により、シリル化されたジアミンの精製を行う。そして、脱水された溶剤中にシリル化されたジアミンを溶解させておき、攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0〜120℃、好ましくは5〜80℃の範囲で1〜72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。
【0060】
ここで用いるシリル化剤として、塩素を含有しないシリル化剤を用いることは、シリル化されたジアミンを精製する必要がないため、好適である。塩素原子を含まないシリル化剤としては、N,O−ビス(トリメチルシリル)トリフルオロアセトアミド、N,O−ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。フッ素原子を含まず低コストであることから、N,O−ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが特に好ましい。
【0061】
また、ジアミンのシリル化反応には、反応を促進するために、ピリジン、ピペリジン、トリエチルアミンなどのアミン系触媒を用いることができる。この触媒はポリイミド前駆体の重合触媒として、そのまま使用することができる。
【0062】
4)ポリアミド酸シリルエステル(直接法)
1)の方法で得られたポリアミド酸溶液とシリル化剤を混合し、0〜120℃、好ましくは5〜80℃の範囲で1〜72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。
【0063】
ここで用いるシリル化剤として、塩素を含有しないシリル化剤を用いることは、シリル化されたポリアミド酸、もしくは、得られたポリイミドを精製する必要がないため、好適である。塩素原子を含まないシリル化剤としては、N,O−ビス(トリメチルシリル)トリフルオロアセトアミド、N,O−ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。フッ素原子を含まず低コストであることから、N,O−ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが特に好ましい。
【0064】
前記製造方法は、いずれも有機溶媒中で好適に行なうことができるので、その結果として、本発明のポリイミド前駆体のワニスを容易に得ることができる。
【0065】
ポリイミド前駆体を調製する際に使用する溶媒は、例えばN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、ジメチルスルホキシド等の非プロトン性溶媒が好ましく、特にN,N−ジメチルアセトアミドが好ましいが、原料モノマー成分と生成するポリイミド前駆体が溶解すれば、どんな種類の溶媒であっても問題なく使用できるので、特にその構造は限定されない。溶媒として、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド溶媒、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン、α−メチル−γ−ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m−クレゾール、p−クレゾール、3−クロロフェノール、4−クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3−ジメチル−2−イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフェノール、o−クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2−メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用できる。なお、溶媒は、複数種を組み合わせて使用することもできる。
【0066】
本発明において、ポリイミド前駆体の対数粘度は、特に限定されないが、30℃での濃度0.5g/dLのN,N−ジメチルアセトアミド溶液における対数粘度が0.2dL/g以上、より好ましくは0.3dL/g以上、特に好ましくは0.4dL/g以上であることが好ましい。対数粘度が0.2dL/g以上では、ポリイミド前駆体の分子量が高く、得られるポリイミドの機械強度や耐熱性に優れる。
【0067】
本発明において、ポリイミド前駆体のワニスは、少なくとも本発明のポリイミド前駆体と溶媒とを含み、溶媒とテトラカルボン酸成分とジアミン成分との合計量に対して、テトラカルボン酸成分とジアミン成分との合計量が5質量%以上、好ましくは10質量%以上、より好ましくは15質量%以上の割合であることが好適である。なお、通常は60質量%以下、好ましくは50質量%以下であることが好適である。この濃度は、ポリイミド前駆体に起因する固形分濃度にほぼ近似される濃度であるが、この濃度が低すぎると、例えばポリイミドフィルムを製造する際に得られるポリイミドフィルムの膜厚の制御が難しくなることがある。
【0068】
本発明のポリイミド前駆体のワニスに用いる溶媒としては、ポリイミド前駆体が溶解すれば問題はなく、特にその構造は限定されない。溶媒として、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド溶媒、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン、α−メチル−γ−ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m−クレゾール、p−クレゾール、3−クロロフェノール、4−クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3−ジメチル−2−イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフェノール、o−クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2−メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用できる。また、これらを複数種組み合わせて使用することもできる。
【0069】
本発明において、ポリイミド前駆体のワニスの粘度(回転粘度)は、特に限定されないが、E型回転粘度計を用い、温度25℃、せん断速度20sec−1で測定した回転粘度が、0.01〜1000Pa・secが好ましく、0.1〜100Pa・secがより好ましい。また、必要に応じて、チキソ性を付与することもできる。上記範囲の粘度では、コーティングや製膜を行う際、ハンドリングしやすく、また、はじきが抑制され、レベリング性に優れるため、良好な被膜が得られる。
【0070】
本発明のポリイミド前駆体のワニスは、必要に応じて、化学イミド化剤(無水酢酸などの酸無水物や、ピリジン、イソキノリンなどのアミン化合物)、酸化防止剤、フィラー、染料、顔料、シランカップリング剤などのカップリング剤、プライマー、難燃材、消泡剤、レベリング剤、レオロジーコントロール剤(流動補助剤)、剥離剤などを添加することができる。
【0071】
本発明のポリイミドは、前記化学式(5)で表される繰り返し単位を含み、さらに、Bが前記化学式(6−1)、(6−2)、(7)または(8)のいずれかで表される基である化学式(5)で表される繰り返し単位を少なくとも2種含むことを特徴とする。そして、本発明のポリイミドは、50〜200℃の線熱膨張係数が50ppm/K以下、好ましくは50ppm/K未満であり、且つポリイミドフィルムの厚み10μmでの波長400nmにおける透過率が75%以上であることを特徴とする。
【0072】
すなわち、本発明のポリイミドは、本発明のポリイミド前駆体を得るために使用した、前記のテトラカルボン酸成分とジアミン成分とから得られるポリイミドである。この本発明のポリイミドは、前記のような本発明のポリイミド前駆体を脱水閉環反応(イミド化反応)することで好適に製造することができる。イミド化の方法は特に限定されず、公知の熱イミド化、または化学イミド化の方法を好適に適用することができる。得られるポリイミドの形態は、フィルム、ポリイミドフィルムと他の基材との積層体、コーティング膜、粉末、ビーズ、成型体、発泡体およびワニスなどを好適に挙げることができる。
【0073】
なお、本発明のポリイミドの前記化学式(5)は本発明のポリイミド前駆体の前記化学式(1)に対応する。
【0074】
本発明において、ポリイミドの対数粘度は、特に限定されないが、30℃での濃度0.5g/dLのN,N−ジメチルアセトアミド溶液における対数粘度が0.2dL/g以上、より好ましくは0.3dL/g以上、特に好ましくは0.4dL/g以上であることが好ましい。対数粘度が0.2dL/g以上では、得られるポリイミドの機械強度や耐熱性に優れる。
【0075】
本発明において、ポリイミドのワニスは、少なくとも本発明のポリイミドと溶媒とを含み、溶媒とポリイミドの合計量に対して、ポリイミドが5質量%以上、好ましくは10質量%以上、より好ましくは15質量%以上、特に好ましくは20質量%以上の割合であることが好適である。この濃度が低すぎると、例えばポリイミドフィルムを製造する際に得られるポリイミドフィルムの膜厚の制御が難しくなることがある。
【0076】
本発明のポリイミドのワニスに用いる溶媒としては、ポリイミドが溶解すれば問題はなく、特にその構造は限定されない。溶媒としては、前記の本発明のポリイミド前駆体のワニスに用いる溶媒を同様に用いることができる。
【0077】
本発明において、ポリイミドのワニスの粘度(回転粘度)は、特に限定されないが、E型回転粘度計を用い、温度25℃、せん断速度20sec−1で測定した回転粘度が、0.01〜1000Pa・secが好ましく、0.1〜100Pa・secがより好ましい。また、必要に応じて、チキソ性を付与することもできる。上記範囲の粘度では、コーティングや製膜を行う際、ハンドリングしやすく、また、はじきが抑制され、レベリング性に優れるため、良好な被膜が得られる。
【0078】
本発明のポリイミドのワニスは、必要に応じて、酸化防止剤、フィラー、染料、顔料、シランカップリング剤などのカップリング剤、プライマー、難燃材、消泡剤、レベリング剤、レオロジーコントロール剤(流動補助剤)、剥離剤などを添加することができる。
【0079】
本発明のポリイミド前駆体から得られるポリイミド及び本発明のポリイミドは、必要に応じて、シリカ等の無機粒子を混合することもできる。混合のさせ方としては特に限定されるものではないが、重合溶媒に無機粒子を分散させその溶媒中でポリイミド前駆体を重合する方法、ポリイミド前駆体溶液と無機粒子を混合する方法、ポリイミド前駆体溶液と無機粒子分散溶液を混合する方法、ポリイミド溶液に無機粒子を混合する方法、ポリイミド溶液に無機粒子分散溶液を混合する方法等がある。それらの方法で分散させた無機粒子分散ポリイミド前駆体溶液中のポリイミド前駆体をイミド化することで、または、ポリイミド溶液と無機粒子や無機粒子分散溶液を混合させた後に加熱乾燥し溶媒を除去することで、無機粒子含有ポリイミドが得られる。
【0080】
本発明のポリイミド前駆体から得られるポリイミド及び本発明のポリイミドは、フィルムにしたときの50〜200℃の線熱膨張係数が、50ppm/K以下、好ましくは50ppm/K未満、より好ましくは45ppm/K以下、特に好ましくは43ppm/K以下であり、極めて低い線熱膨張係数を有する。線熱膨張係数が大きいと、金属などの導体との線熱膨張係数の差が大きく、回路基板を形成する際に反りが増大するなどの不具合が生じることがある。
【0081】
本発明のポリイミド前駆体から得られるポリイミド及び本発明のポリイミドは、特に限定されないが、厚さ10μmのフィルムでの全光透過率(波長380nm〜780nmの平均光透過率)が、好ましくは80%以上、より好ましくは85%以上であり、優れた光透過性を有する。ディスプレイ用途など、波長380nm〜780nmの光がポリイミドを透過する用途等で使用する場合、全光透過率が低いと光源を強くする必要があり、エネルギーがかかるといった問題等を生じることがある。
【0082】
本発明のポリイミド前駆体から得られるポリイミド及び本発明のポリイミドは、膜厚10μmのフィルムにしたとき、波長400nmにおける光透過率が、好ましくは75%以上、より好ましくは77%以上、より好ましくは80%以上、特に好ましくは82%以上であり、優れた透明性を有する。波長400nmの光がポリイミドを透過する用途等で使用する場合、波長400nmにおける光透過率が低いと光源を強くする必要があり、エネルギーがかかるといった問題や、画像が黄色みを帯びて見えるといった問題等を生じることがある。
【0083】
なお、本発明のポリイミド前駆体から得られるポリイミド及び本発明のポリイミドからなるフィルムは、用途にもよるが、フィルムの厚みとしては、好ましくは1μm〜250μm、さらに好ましくは1μm〜150μm、さらに好ましくは1μm〜50μm、特に好ましくは1μm〜30μmである。ポリイミドフィルムを光が透過する用途に使用する場合、ポリイミドフィルムが厚すぎると光透過率が低くなる恐れがある。
【0084】
本発明のポリイミド前駆体から得られるポリイミド及び本発明のポリイミドは、特に限定されないが、5%重量減少温度は、好ましくは495℃以上であり、より好ましくは500℃以上であり、さらに好ましくは505℃以上であり、特に好ましくは510℃以上である。ポリイミド上にトランジスタを形成する等で、ポリイミド上にガスバリア膜等を形成する場合、耐熱性が低いと、ポリイミドとガスバリア膜との間で、ポリイミドの分解等に伴うアウトガスにより膨れが生じることがある。
【0085】
本発明のポリイミド前駆体から得られるポリイミド及び本発明のポリイミドは、高耐熱性、折り曲げ耐性などの優れた特性を有し、さらに高い透明性と低い線熱膨張係数を兼ね備えていることから、ディスプレイ用透明基板、タッチパネル用透明基板、或いは太陽電池用基板の用途において、好適に用いることができる。
【0086】
以下では、本発明のポリイミド前駆体を用いた、ポリイミドフィルム/基材積層体、もしくはポリイミドフィルムの製造方法の一例について述べる。ただし、以下の方法に限定されるものではない。
【0087】
例えばセラミック(ガラス、シリコン、アルミナ)、金属(銅、アルミニウム、ステンレス)、耐熱プラスチックフィルム(ポリイミド)などの基材に、本発明のポリイミド前駆体のワニスを流延し、真空中、窒素等の不活性ガス中、或いは空気中で、熱風もしくは赤外線を用いて、20〜180℃、好ましくは20〜150℃の温度範囲で乾燥する。次いで、得られたポリイミド前駆体フィルムを基材上で、もしくはポリイミド前駆体フィルムを基材上から剥離し、そのフィルムの端部を固定した状態で、真空中、窒素等の不活性ガス中、或いは空気中で、熱風もしくは赤外線を用い、200〜500℃、より好ましくは250〜450℃程度の温度で加熱イミド化することでポリイミドフィルム/基材積層体、もしくはポリイミドフィルムを製造することができる。なお、得られるポリイミドフィルムが酸化劣化するのを防ぐため、加熱イミド化は、真空中、或いは不活性ガス中で行うことが望ましい。加熱イミド化の温度が高すぎなければ空気中で行なっても差し支えない。ここでのポリイミドフィルム(ポリイミドフィルム/基材積層体の場合は、ポリイミドフィルム層)の厚さは、以後の工程の搬送性のため、好ましくは1〜250μm、より好ましくは1〜150μmである。
【0088】
また、ポリイミド前駆体のイミド化反応は、前記のような加熱処理による加熱イミド化に代えて、ポリイミド前駆体をピリジンやトリエチルアミン等の3級アミン存在下、無水酢酸等の脱水環化試薬を含有する溶液に浸漬するなどの化学的処理によって行うことも可能である。また、これらの脱水環化試薬をあらかじめ、ポリイミド前駆体のワニス中に投入・攪拌し、それを基材上に流延・乾燥することで、部分的にイミド化したポリイミド前駆体を作製することもでき、これを更に前記のような加熱処理することで、ポリイミドフィルム/基材積層体、もしくはポリイミドフィルムを得ることができる。
【0089】
この様にして得られたポリイミドフィルム/基材積層体、もしくはポリイミドフィルムは、その片面もしくは両面に導電性層を形成することによって、フレキシブルな導電性基板を得ることができる。
【0090】
フレキシブルな導電性基板は、例えば次の方法によって得ることができる。すなわち、第一の方法としては、ポリイミドフィルム/基材積層体を基材からポリイミドフィルムを剥離せずに、そのポリイミドフィルム表面に、スパッタ、蒸着、印刷などによって、導電性物質(金属もしくは金属酸化物、導電性有機物、導電性炭素など)の導電層を形成させ、導電性層/ポリイミドフィルム/基材の導電性積層体を製造する。その後必要に応じて、基材より導電性層/ポリイミドフィルム積層体を剥離することによって、導電性層/ポリイミドフィルム積層体、導電性層/ポリイミドフィルム積層体/導電性層からなる透明でフレキシブルな導電性基板を得ることができる。
【0091】
第二の方法としては、ポリイミドフィルム/基材積層体の基材からポリイミドフィルムを剥離して、ポリイミドフィルムを得、そのポリイミドフィルム表面に、導電性物質(金属もしくは金属酸化物、導電性有機物、導電性炭素など)の導電層を、第一の方法と同様にして形成させ、導電性層/ポリイミドフィルム積層体からなる透明でフレキシブルな導電性基板を得ることができる。
【0092】
なお、第一、第二の方法において、必要に応じて、ポリイミドフィルムの表面に導電層を形成する前に、スパッタ、蒸着やゲル−ゾル法などによって、水蒸気、酸素などのガスバリヤ層、光調整層などの無機層を形成しても構わない。
【0093】
また、導電層は、フォトリソグラフィ法や各種印刷法、インクジェット法などの方法によって、回路が好適に形成される。
【0094】
本発明の基板は、本発明のポリイミドによって構成されたポリイミドフィルムの表面に、必要に応じてガスバリヤ層や無機層を介し、導電層の回路を有するものである。この基板は、フレキシブルであり、高い耐熱性、折り曲げ性を有し、さらに高い透明性と極めて低い線熱膨張係数を併せ有するので微細な回路の形成が容易である。したがって、この基板は、ディスプレイ用、タッチパネル用、または太陽電池用の基板として好適に用いることができる。
【0095】
すなわち、この基板に、蒸着、各種印刷法、或いはインクジェット法などによって、さらにトランジスタ(無機トランジスタ、有機トランジスタ)が形成されてフレキシブル薄膜トランジスタが製造され、そして、表示デバイス用の液晶素子、EL素子、光電素子として好適に用いられる。
【0096】
テトラカルボン酸成分の(4arH,8acH)−デカヒドロ−1t,4t:5c,8c−ジメタノナフタレン−2t,3t,6c,7c−テトラカルボン酸類の合成方法は、特に限定されないが、Macromolecules,Vol.27,No.5,P1117−1123,1994に記載の方法等がある。
【0097】
テトラカルボン酸成分の(4arH,8acH)−デカヒドロ−1t,4t:5c,8c−ジメタノナフタレン−2c,3c,6c,7c−テトラカルボン酸類の合成方法は、特に限定されないが、Macromolecules,Vol.32,No.15,P4933−4939,1999に記載の方法等がある。
【実施例】
【0098】
以下、実施例及び比較例によって本発明を更に説明する。尚、本発明は以下の実施例に限定されるものではない。
【0099】
以下の各例において評価は次の方法で行った。
【0100】
<ポリイミド前駆体のワニスの評価>
【0101】
[対数粘度]
重合に用いた溶媒で希釈し、濃度0.5g/dLのポリイミド前駆体溶液を調製し、ウベローデ粘度計を用いて、30℃で測定し、対数粘度を求めた。
【0102】
<ポリイミドフィルムの評価>
【0103】
[400nm光透過率、全光透過率]
大塚電子製MCPD−300を用いて、膜厚10μmのポリイミド膜の400nmにおける光透過率と、全光透過率(380nm〜780nmにおける平均透過率)を測定した。
【0104】
[弾性率、破断伸度、破断強度]
膜厚10μmのポリイミドフィルムをIEC450規格のダンベル形状に打ち抜いて試験片とし、ORIENTEC社製TENSILONを用いて、チャック間長30mm、引張速度2mm/分で、初期の弾性率、破断伸度及び破断強度を測定した。
【0105】
[線熱膨張係数(CTE)]
膜厚10μmのポリイミドフィルムを幅4mmの短冊状に切り取って試験片とし、TMA/SS6100 (エスアイアイ・ナノテクノロジー株式会社製)を用い、チャック間長15mm、荷重2g、昇温速度20℃/分で500℃まで昇温した。得られたTMA曲線から、50℃から200℃までの線熱膨張係数を求めた。
【0106】
[5%重量減少温度]
膜厚10μmのポリイミドフィルムを試験片とし、TAインスツルメント社製 熱量計測定装置(Q5000IR)を用い、窒素気流中、昇温速度10℃/分で25℃から600℃まで昇温した。得られた重量曲線から、5%重量減少温度を求めた。
【0107】
以下の各例で使用した原材料の略称、純度等は、次のとおりである。
【0108】
[ジアミン成分]
DABAN: 4,4’−ジアミノベンズアニリド〔純度:99.90%(GC分析)〕
TFMB: 2,2’-ビス(トリフルオロメチル)ベンジジン〔純度:99.83%(GC分析)〕
PPD: p−フェニレンジアミン〔純度:99.9%(GC分析)〕
m−TD: m−トリジン〔純度:99.84%(GC分析)〕
DAF: 2,7−ジアミノフルオレン〔純度:99.8%(HPLC)〕
ODA: 4,4’−オキシジアニリン〔純度:99.9%(GC分析)〕
FDA: 9,9−ビス(4−アミノフェニル)フルオレン
BAPB: 4,4’−ビス(4−アミノフェノキシ)ビフェニル
TPE−R: 1,3−ビス(4−アミノフェノキシ)ベンゼン
TPE−Q: 1,4−ビス(4−アミノフェノキシ)ベンゼン
[テトラカルボン酸成分]
DNDAxx:(4arH,8acH)−デカヒドロ−1t,4t:5c,8c−ジメタノナフタレン−2t,3t,6c,7c−テトラカルボン酸二無水物〔DNDAxxとしての純度:99.2%(GC分析)〕
DNDAdx:(4arH,8acH)−デカヒドロ−1t,4t:5c,8c−ジメタノナフタレン−2c,3c,6c,7c−テトラカルボン酸二無水物〔DNDAdxとしての純度:99.7%(GC分析)〕
CpODA:ノルボルナン−2−スピロ−α−シクロペンタノン−α’−スピロ−2’’−ノルボルナン−5,5’’,6,6’’−テトラカルボン酸二無水物
【0109】
[溶媒]
DMAc: N,N−ジメチルアセトアミド
NMP: N−メチル−2−ピロリドン
[溶媒の純度]
GC分析:
主成分の保持時間(分) 14.28
主成分の面積% 99.9929
短保持時間不純物のピーク面積% 0.0000
長保持時間不純物のピーク面積% 0.0071

不揮発分(質量%) <0.001
光透過率(光路長1cm 400nm):
加熱還流前光透過率(%) 92
窒素雰囲気下で3時間加熱還流後の光透過率(%) 92
金属分:
Na(ppb) 150
Fe(ppb) <2
Cu(ppb) <2
Mo(ppb) <1
【0110】
表1に実施例、比較例で使用したテトラカルボン酸成分、ジアミン成分の構造式を記す。
【0111】
【表1】
【0112】
〔実施例1〕
窒素ガスで置換した反応容器中にDABAN 0.68g(3ミリモル)とTFMB 2.24g(7ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の23.79gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.5dL/gであった。
【0113】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0114】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0115】
〔実施例2〕
窒素ガスで置換した反応容器中にDABAN 1.14g(5ミリモル)とTFMB 1.60g(5ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の23.04gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.6dL/gであった。
【0116】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0117】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0118】
〔実施例3〕
窒素ガスで置換した反応容器中にDABAN 1.59g(7ミリモル)とTFMB 0.96g(3ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の22.30gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.5dL/gであった。
【0119】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0120】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0121】
〔実施例4〕
窒素ガスで置換した反応容器中にDABAN 1.14g(5ミリモル)とPPD 0.54g(5ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の18.80gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.7dL/gであった。
【0122】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0123】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0124】
〔実施例5〕
窒素ガスで置換した反応容器中にDABAN 0.91g(4ミリモル)とTFMB 1.28g(4ミリモル)とPPD 0.22g(2ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の21.72gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.5dL/gであった。
【0125】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0126】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0127】
〔実施例6〕
窒素ガスで置換した反応容器中にDABAN 1.14g(5ミリモル)とPPD 0.43g(4ミリモル)とODA 0.20g(1ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の19.16gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.6dL/gであった。
【0128】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0129】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0130】
〔実施例7〕
窒素ガスで置換した反応容器中にDABAN 1.59g(7ミリモル)とTFMB 0.96g(3ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の22.32gを加え、室温で1時間攪拌した。この溶液にDNDAxx 2.12g(7ミリモル)とDNDAdx 0.91g(3ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.4dL/gであった。
【0131】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0132】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0133】
〔実施例8〕
窒素ガスで置換した反応容器中にDABAN 1.59g(7ミリモル)とTFMB 0.96g(3ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の23.28gを加え、室温で1時間攪拌した。この溶液にDNDAxx 2.12g(7ミリモル)とCpODA 1.15g(3ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.5dL/gであった。
【0134】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から400℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0135】
このポリイミドフィルムの特性を測定した結果を表2−1に示す。
【0136】
〔実施例9〕
窒素ガスで置換した反応容器中にDABAN 0.91g(4ミリモル)とTFMB 0.64g(2ミリモル)とPPD 0.43g(4ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の20.00gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0137】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0138】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0139】
〔実施例10〕
窒素ガスで置換した反応容器中にDABAN 0.91g(4ミリモル)とPPD 0.54g(5ミリモル)とODA 0.20g(1ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の18.68gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0140】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0141】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0142】
〔実施例11〕
窒素ガスで置換した反応容器中にDABAN 0.91g(4ミリモル)とTFMB 0.32g(1ミリモル)とPPD 0.54g(5ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の19.16gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0143】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0144】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0145】
〔実施例12〕
窒素ガスで置換した反応容器中にDABAN 1.02g(4.5ミリモル)とTFMB 0.16g(0.5ミリモル)とPPD 0.54g(5ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の18.96gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0146】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0147】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0148】
〔実施例13〕
窒素ガスで置換した反応容器中にDABAN 0.91g(4ミリモル)とPPD 0.54g(5ミリモル)とFDA 0.35g(1ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の19.28gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0149】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0150】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0151】
〔実施例14〕
窒素ガスで置換した反応容器中にDABAN 0.91g(4ミリモル)とPPD 0.54g(5ミリモル)とBAPB 0.37g(1ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の19.36gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0152】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0153】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0154】
〔実施例15〕
窒素ガスで置換した反応容器中にDABAN 1.59g(7ミリモル)とPPD 0.22g(2ミリモル)とBAPB 0.37g(1ミリモル)を入れ、N−メチル−2−ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の20.80gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0155】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0156】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0157】
〔実施例16〕
窒素ガスで置換した反応容器中にDABAN 0.45g(2ミリモル)とPPD 0.76g(7ミリモル)とBAPB 0.37g(1ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の19.36gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0158】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0159】
このポリイミドフィルムの特性を測定した結果を表2−2に示す。
【0160】
〔実施例17〕
窒素ガスで置換した反応容器中にDABAN 0.68g(3ミリモル)とPPD 0.43g(4ミリモル)とBAPB 1.11g(3ミリモル)を入れ、N−メチル−2−ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の20.96gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0161】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から440℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0162】
このポリイミドフィルムの特性を測定した結果を表2−3に示す。
【0163】
〔実施例18〕
窒素ガスで置換した反応容器中にDABAN 0.91g(4ミリモル)とPPD 0.54g(5ミリモル)とTPE−R 0.29g(1ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の19.04gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0164】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0165】
このポリイミドフィルムの特性を測定した結果を表2−3に示す。
【0166】
〔実施例19〕
窒素ガスで置換した反応容器中にDABAN 0.91g(4ミリモル)とPPD 0.54g(5ミリモル)とTPE−Q 0.29g(1ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の19.04gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0167】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0168】
このポリイミドフィルムの特性を測定した結果を表2−3に示す。
【0169】
〔実施例20〕
窒素ガスで置換した反応容器中にDABAN 0.91g(4ミリモル)とPPD 0.54g(5ミリモル)とm−TD 0.21g(1ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の18.72gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0170】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0171】
このポリイミドフィルムの特性を測定した結果を表2−3に示す。
【0172】
〔比較例1〕
窒素ガスで置換した反応容器中にDABAN 0.68g(3ミリモル)とTFMB 0.64g(2ミリモル)とDAF 0.98g(5ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の21.31gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.6dL/gであった。
【0173】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0174】
このポリイミドフィルムの特性を測定した結果を表2−4に示す。
【0175】
〔比較例2〕
窒素ガスで置換した反応容器中にTFMB 1.60g(5ミリモル)とm−TD 1.06g(5ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の22.74gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.5dL/gであった。
【0176】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0177】
このポリイミドフィルムの特性を測定した結果を表2−4に示す。
【0178】
〔比較例3〕
窒素ガスで置換した反応容器中にDABAN 1.14g(5ミリモル)とDAF 0.98g(5ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の20.56gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.6dL/gであった。
【0179】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0180】
このポリイミドフィルムの特性を測定した結果を表2−4に示す。
【0181】
〔比較例4〕
窒素ガスで置換した反応容器中にm−TD 1.06g(5ミリモル)とDAF 0.98g(5ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の20.26gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.8dL/gであった。
【0182】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0183】
このポリイミドフィルムの特性を測定した結果を表2−4に示す。
【0184】
〔比較例5〕
窒素ガスで置換した反応容器中にDABAN 1.14g(5ミリモル)とODA 1.00g(5ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の20.64gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.6dL/gであった。
【0185】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から430℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0186】
このポリイミドフィルムの特性を測定した結果を表2−4に示す。
【0187】
〔比較例6〕
窒素ガスで置換した反応容器中にPPD 1.08g(10ミリモル)を入れ、N,N−ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の16.04gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
【0188】
PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から480℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が10μmのポリイミドフィルムを得た。
【0189】
このポリイミドフィルムの特性を測定した結果を表2−4に示す。
【0190】
【表2-1】
【0191】
【表2-2】
【0192】
【表2-3】
【0193】
【表2-4】
【0194】
表2−1〜2−4に示した結果から、比較例1〜6に比べ、本発明のポリイミド(実施例1〜20)は、波長400nmにおける透過率が高く(75%以上)、且つ線熱膨張係数が小さくなっている(50ppm/K以下)ことが分かる。これにより、ディスプレイなどの用途においてポリイミドフィルムを透過する光を十分に確保でき、また、回路基板を形成する際の反りなどの問題を生じなくなる。
【0195】
前記のとおり、本発明のポリイミド前駆体から得られたポリイミドは、優れた耐熱性、折り曲げ耐性を有すると共に、高透明性と低線熱膨張係数を兼ね備えており、本発明のポリイミドフィルムは、ディスプレイ用途などの無色透明で微細な回路形成可能な透明基板として好適に用いることができる。
【産業上の利用可能性】
【0196】
本発明によって、高耐熱性、折り曲げ耐性などの優れた特性を有し、さらに高い透明性と極めて低い線熱膨張係数を兼ね備えるポリイミド、及びその前駆体を提供することができる。このポリイミド前駆体から得られるポリイミド、及びポリイミドは、透明性が高く、且つ低線熱膨張係数であって微細な回路の形成が容易であり、耐熱性と耐溶剤性も併せ有するので、特にディスプレイ用途、タッチパネル用、太陽電池用などの基板を形成するために好適に用いることができる。