(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0018】
以下、本発明に係る実施形態を図面に従って説明するが、本発明は本実施形態に限定されるものではない。
【0019】
図1に、本発明の一実施形態に係る燃焼装置が適用されるガスタービンエンジン(以下、単にガスタービンと称する。)GTの概略構成を示す。ガスタービンGTでは、導入した空気を圧縮機1で圧縮して燃焼装置3に導き、燃料を燃焼装置3内に噴射して前記空気とともに燃焼させ、得られた高温高圧の燃焼ガスによりタービン5を駆動する。タービン5は圧縮機1に回転軸7を介して連結されており、タービン5によって圧縮機1が駆動される。このガスタービンGTの出力により、航空機のロータまたは発電機などの負荷Lを駆動する。本実施形態では、燃焼装置3に噴射される燃料として水素ガスを用いている。以下の説明において、ガスタービンGTの軸心方向における圧縮機1側を「前側」と呼び、タービン5側を「後側」と呼ぶ。
【0020】
図2は燃焼装置3を示す部分破断斜視図である。この燃焼装置3は、ガスタービンGTの軸心の周りに環状に複数個配置されるキャン型の燃焼装置である。燃焼装置3は、内側に燃焼室11を形成する燃焼筒13と、燃焼筒13の頂部13aに取り付けられて燃焼室11に燃料と空気を噴射する燃料噴射器15とを備えている。燃料噴射器15から噴射された燃料と空気に、燃焼筒13に設けられた点火プラグPで点火することにより、燃焼室11内に火炎が形成される。これら燃焼筒13および燃料噴射器15は、燃焼装置3の外筒となるほぼ円筒状のハウジングHに同心状に収容されている。ハウジングHの前端にはエンドカバー17がボルト19により固定されている。
図3に示すように、エンドカバー17に、燃焼筒13から筒状に延びる支持筒21がボルト等で連結固定されることにより、燃焼筒13の頂部13aがハウジングHに取り付けられている。
【0021】
本実施形態では、燃焼装置3は空気Aと燃焼ガスGとの流動方向が逆向きの逆流型として構成されている。すなわち、燃焼装置3は、ハウジングHと燃焼筒13および支持筒21との間に形成された空気導入通路25を有しており、この空気導入通路25は、圧縮機1(
図1)で圧縮された空気Aを、燃焼室11内の燃焼ガスGの流動方向と逆方向に導く。なお、燃焼装置3は、空気Aと燃焼ガスGとの流動方向が同じ向きの軸流型であってもよい。支持筒21の周壁の前端部には、複数の空気導入孔27が周方向に並べて設けられている。空気導入通路25を通って送られてきた空気Aは、空気導入孔27を通って、支持筒21の内方に形成された空気供給通路29に導入される。空気供給通路29に導入された空気Aは、後方、すなわち燃料噴射器15の方向へ送られる。また、空気供給通路29の中心部には、燃焼装置3の軸心Cに沿って延びる燃料供給母管31が設けられている。燃料供給母管31から、後述する燃料噴射部材34の燃料噴射用環状部33へと、燃料Fが供給される。空気供給通路29および燃料供給母管31の構成については後に詳述する。
【0022】
図4に示すように、燃料噴射器15は、複数の燃料噴射用環状部33を有する燃料噴射部材34および複数の燃焼空気用環状部35を有する空気ガイド部材36を備えている。本実施形態では、径寸法が互いに異なる4つの燃料噴射用環状部33が、互いに同心状に、かつ燃焼装置3(
図2)と同心状に配置されている。また、径寸法が互いに異なる5つの燃焼空気用環状部35が、互いに同心状に、かつ燃焼装置3(
図2)と同心状に配置されている。更に、燃料噴射用環状部33と燃焼空気用環状部35とは、それぞれの中心軸を同一として交互に配置されている。つまり、燃料噴射用環状部33と燃焼空気用環状部35とは、同心状に交互に配置されている。また、本実施形態では、燃料噴射器15は、4つの燃料噴射用環状部33と5つの燃焼空気用環状部35を有しているが、これらの数は適宜変更可能であり、例えば、3つの燃料噴射用環状部33と4つの燃焼空気用環状部35としても良い。
【0023】
本実施形態では、4つの燃料噴射用環状部33および5つの燃焼空気用環状部35は同一の軸心方向位置に設けられている(
図3)。もっとも、4つの燃料噴射用環状部33および5つの燃焼空気用環状部35の軸心方向位置は互いにずれていてもよい。例えば、4つの燃料噴射用環状部33の軸心方向位置が順に前後にずれるように配置してもよく、5つの燃焼空気用環状部35の軸心方向位置は、対応する燃料噴射用環状部33の軸心方向位置に合わせて、順に前後にずれるように配置してもよい。
【0024】
図5に示すように、燃料噴射部材34の燃料噴射用環状部33には、径方向Rに開口する燃料噴射孔39が周方向Qに複数設けられている。各燃料噴射孔39から燃料Fが噴射される。また、
図8に示すように、燃料噴射部材34の燃料噴射用環状部33は、断面外形がほぼ矩形に形成されており、燃焼室11に面する後壁33aが、軸心C方向に垂直となるよう配置されている。図示の例では、燃料噴射孔39は、燃料噴射部材34の燃料噴射用環状部33の外径側および内径側のいずれにも設けられている。換言すれば、燃料噴射孔39は、燃料噴射用環状部33の外周壁および内周壁のそれぞれに、外周壁および内周壁を径方向Rに貫通する貫通孔として設けられている。もっとも、燃料噴射孔39は、燃料噴射部材34の外径側および内径側のいずれか一方のみに設けられていてもよい。また、燃料噴射孔39は、径方向Rに対して軸心C方向に、−10°から+80°までの範囲で傾斜していてもよい。ここで、径方向Rに対して軸心C方向上流側に燃料噴射孔39が傾斜する場合の傾斜角をマイナスの傾斜角とし、径方向Rに対して軸心C方向下流側に燃料噴射孔39が傾斜する場合の傾斜角をプラスの傾斜角とする。
【0025】
空気ガイド部材36は、燃料噴射部材34の燃料噴射孔39から噴射された燃料Fに対して空気Aを案内する。より具体的には、空気ガイド部材36は、燃料Fに対して、空気Aを空気供給通路29の上流側から軸心C方向に案内する。空気ガイド部材36は、円環板状の複数の燃焼空気用環状部35を有している。燃料噴射部材34の燃料噴射用環状部33と空気ガイド部材36の燃焼空気用環状部35とは、それぞれの中心軸を同一として交互に配置されている。
図5に示すように、各空気ガイド部材36の燃焼空気用環状部35には、燃料噴射部材34の各燃料噴射孔39に対応する周方向位置に、径方向に凹む空気ガイド溝41が形成されている。すなわち、図示の例では、燃料噴射部材34の燃料噴射用環状部33の径方向外側に位置する空気ガイド部材36の燃焼空気用環状部35の内径側に、径方向外方に凹む空気ガイド溝41が形成されており、燃料噴射用環状部33の径方向内側に位置する燃焼空気用環状部35の外径側に、径方向内方に凹む空気ガイド溝41が形成されている。
【0026】
図4に示すように、本実施形態では、2つの燃料噴射用環状部33の間に、1つの燃焼空気用環状部35を配置し、この燃焼空気用環状部35の外径側および内径側の両方に空気ガイド溝41を設けている。したがって、燃料噴射器15は、4つの燃料噴射用環状部33を有する燃料噴射部材34と、5つの燃焼空気用環状部35を有する空気ガイド部材36と、を備えている。具体的には、最外周側の燃料噴射用環状部33の外周側に配置される燃焼空気用環状部35,4つの燃料噴射用環状部33の各間に配置される3つの燃焼空気用環状部35および最内径側の燃料噴射用環状部33の内周側に配置される燃焼空気用環状部35が設けられている。空気ガイド部材36のうち最外周に配置された燃焼空気用環状部35の外周は、環状の支持リング部材43によって覆われている。
図2に示すように、支持リング部材43を燃焼筒13に連結することにより、燃料噴射器15が燃焼筒13に支持される。
【0027】
図8、9に示すように、空気ガイド部材36は、燃料噴射部材34の燃料噴射孔39よりも前側、すなわち空気Aの流れ方向における上流側に配置されている。このように、各燃料噴射孔39から噴射される燃料Fに対して上流から空気Aを軸心C方向に案内するように空気ガイド部材36を設けることにより、燃料Fと空気Aとが互いにほぼ直交する向きで交わることとなり、燃料噴射器15外にて燃料Fと空気Aを均一に混合させることができる。
【0028】
なお、
図5Bに本実施形態の変形例として示すように、空気ガイド部材36の各燃焼空気用環状部35に、複数の冷却孔45が設けられていてもよい。複数の冷却孔45は、燃焼空気用環状部35の周方向に等間隔に配置されている。冷却孔45は、燃焼空気用環状部35を前側から後側へ貫通する、断面がほぼ円形の貫通孔として形成されている。図示の例では、各冷却孔45は、燃焼空気用環状部35内を周方向に傾斜して延びるように形成されている。したがって、燃焼空気用環状部35表面における冷却孔45の開口の形状は、周方向に長い楕円形状となっている。このように、燃焼空気用環状部35に冷却孔45を設けた場合、空気供給通路29(
図3)を流れてきた空気Aが、冷却孔45を通った後に、燃焼空気用環状部35の燃焼室側表面に吹き出して、周方向に沿って空気のフィルム層を形成し、この表面をエフュージョン冷却する。なお、冷却孔45は、周方向に傾斜していることが好ましいが、傾斜方向はこれに限定されない。また、冷却孔45は必ずしも傾斜していなくともよく、軸心方向に平行に延びる貫通孔であってもよい。
【0029】
図2に示すように、空気供給通路29には、空気導入孔27から空気供給通路29に導入された空気Aを空気ガイド部材36へ向かう均一な流れに整流する空気整流機構として空気整流板47が設けられている。空気整流板47は、円板状の部材であり、軸心方向に貫通する貫通孔49を複数有している。空気整流板47は、
図3の支持筒21の内径に一致する外径を有するとともに、中心部に燃料供給母管31の外径に一致する内径の嵌合孔51を有している。本実施形態では、空気整流板47の嵌合孔51から、燃料供給母管31の外周面に嵌合する筒状の嵌合部53が軸心C方向前方に突設されている。空気整流板47は、嵌合部53の前端に設けられたフランジ55を介してエンドカバー17に整流板ボルト57によって連結固定されている。
【0030】
図示の例では、空気整流板47は、同一径の円形の貫通孔49を複数有している。より詳細には、これら複数の貫通孔49は、空気整流板47の同一の径方向位置に周方向に沿って等間隔に配列された環状の貫通孔49の列が、径方向に等間隔に複数列設けられた状態に配置されている。つまり、空気整流板47は、同一円周上に等間隔に配置された環状の貫通孔49の列を有し、その列はその中心を同一として複数設けられている。
図6Aに、前記空気整流板47、嵌合部53およびフランジ55からなる空気整流機構を示す。
【0031】
もっとも、空気整流板47における複数の貫通孔49の形状、数および配置は
図6Aの態様に限定されず、適宜設定してよい。例えば、
図6Bに示すように、空気整流板47の内周縁部および外周縁部には、多数の同一径の円形の貫通孔49からなる列を設け、内周縁部および外周縁部との中間部に、より大径の円形の貫通孔49からなる列を設けてもよい。また、
図6Cに示すように、空気整流板47の内周縁部に多数の同一径の円形の貫通孔49からなる列を設け、その外周側に、その長径方向が空気整流板47の径方向と一致する長円形の貫通孔49の列を設けてもよい。また、
図6Dに示すように、その長径方向が空気整流板47の径方向と一致する長円形の貫通孔49の列のみを設けてもよい。
【0032】
空気整流板47における貫通孔の形状、数および配置をどのように設定する場合にも、空気整流板47全体の面積に対する全貫通孔49の合計面積の割合(開孔率)は、整流効果と圧力損失のバランスを考慮して、20〜50%の範囲にあることが好ましく、30〜40%の範囲にあることがより好ましい。
【0033】
また、空気導入孔27から空気供給通路29に導入された空気Aを燃料噴射器15へ向かう均一な流れに整流する空気整流機構として、空気整流板47の代わりに、
図7A,7Bに示すように、整流ダクト61を設けてもよい。
図7Aは、空気導入孔27の上流側から燃料噴射器15まで、下流側に向かって縮径となるように延びた整流ダクト61aと、空気導入孔27の下流側から燃料噴射器15まで、下流側に向かって拡径となるように延びた整流ダクト61bと、を有する整流ダクト61を示している。
図7Bは、空気導入孔27の上流側から燃料噴射器15まで、下流側に向かって縮径となるように延びた整流ダクト61aと、空気導入孔27の中心位置から燃料噴射器15まで、下流側に向かって縮径となるように延びた整流ダクト61cと、空気導入孔27の下流側から燃料噴射器15まで、下流側に向かって縮径となるように延びた整流ダクト61dと、を有する整流ダクト61を示している。空気整流機構として空気整流板47や整流ダクト61を設けることにより、燃料噴射器15に対して均一な空気流が供給されるので、均一な燃焼によってNOx発生が抑制されるとともに、確実に逆火現象を防止できる。
【0034】
また、
図3に示すように、燃焼装置3には、その軸心C上に位置し、燃料噴射器15を貫通して燃焼室11に向かって突出する整流突起部材63が設けられている。整流突起部材63は、空気供給通路29内に位置し、円筒形状を有する支持部63aと、燃焼室11内に位置する突出部63bとからなる。図示の例では、整流突起部材63は燃料噴射器15に取り付けられているが、燃料供給母管31に取り付けられてもよい。いずれの場合も、整流突起部材63の支持部63aの前端(燃料供給母管31側の端部)は燃料噴射器15よりも上流に位置している。突出部63bは、その先端部がほぼ半球状に形成されている。整流突起部材63は省略してもよいが、整流突起部材63を設けることにより、燃焼室11内の軸心C位置付近において、燃料噴射器15の径方向内側に位置する燃料噴射用環状部33から噴射される燃料と、燃焼空気用環状部35から供給される空気とによって形成される火炎が安定的に保持される。
【0035】
なお、燃料噴射器15を構成する燃料噴射部材34、空気ガイド部材36、支持リング部材43および整流突起部材63は、一体的に形成してもよく、それぞれ別体に形成したうえで、例えば径方向にピンを挿通することにより互いに連結してもよい。
【0036】
次に、燃焼装置3における燃料噴射部材34への燃料供給構造について説明する。本実施形態の燃焼装置3は、燃料噴射部材34の各燃料噴射用環状部33に独立に燃料Fを供給可能な複数の燃料供給路を有している。具体的には、燃料供給母管31と各燃料噴射用環状部33とは、互いに独立に分岐する複数の分岐燃料供給管66によって接続されている。燃料供給母管31は、複数(図示の例では2つ)の円筒管、つまり内側の第1燃料供給管64と、その外側に配置された第2燃料供給管65とを同心状に重ねた多管式構造(二重管構造)を有している。第1燃料供給管64の内方空間が、第1燃料供給路67を形成し、第1燃料供給管64と第2燃料供給管65との間の空間が、第2燃料供給路69を形成している。外部から、燃料供給母管31内の各燃料供給路67,69に導入された燃料Fは、各分岐燃料供給管66内に形成された燃料供給路を通って各燃料噴射用環状部33へ供給される。本実施形態では、第1燃料供給路67を通った燃料Fは、第1燃料供給管64に接続された2つの分岐燃料供給管66を介して、複数の燃料噴射用環状部33のうちの内径側に配置された2つの燃料噴射用環状部33(以下、「第1環状部群」という。)へ供給され、第2燃料供給路69を通った燃料Fは、第2燃料供給管65に接続された2つの分岐燃料供給管66を介して、複数の燃料噴射用環状部33のうちの外径側に配置された2つの燃料噴射用環状部33(以下、「第2環状部群という。」)へ供給される。第1燃料供給路67の、ハウジングHの外部に延設された上流部67aと、第2燃料供給路69、ハウジングHの外部に延設された上流部69aには、それぞれ、燃料流量を調節できる調節弁71が設けられている。各燃料供給路67,69の調節弁71の開度を調節することにより、燃料噴射用環状部33の各環状部群へ供給される燃料Fの流量を独立に制御することができる。
【0037】
なお、それぞれ独立に燃料Fが供給される単位となる環状部群を構成する燃料噴射用環状部33の数は、上記の例に限定されない。例えば、1つの燃料噴射用環状部33がそれぞれ1つの環状部群を構成(計4つの環状部群を構成)してもよく、内径側の2つの燃料噴射用環状部33で1つの環状部群を構成し、外径側の2つの燃料噴射用環状部33が、それぞれ1つの環状部群を構成(計3つの環状部群を構成)してもよい。構成される環状部群の数に対応して、燃料供給路の数および調節弁の数が設定される。
【0038】
このような燃料供給構造とすることにより、ガスタービンGTの負荷に応じて燃料噴射部材34の各燃料噴射用環状部33への燃料供給量を独立に制御できる。つまり、燃料噴射部材34のうち、燃料供給を行う燃料噴射用環状部33と燃料供給を行わない燃料噴射用環状部33とに分けることができるので、定格負荷から部分負荷までの出力変化に対応した運転(ステージング燃焼)が可能となる。本実施形態のように、燃料Fを燃料噴射部材34の多数の燃料噴射孔39に分散させて噴射する場合には、すべての燃料噴射用環状部33から平均的に燃料供給量を変化させるよりも、作動させる燃料噴射用環状部33と作動しない燃料噴射用環状部33を選択することによって負荷変動に対応することが、安定的かつ低NOx燃焼のために効果的である。本実施形態では、1つの燃料供給源(図示せず)から複数の燃料供給路67,69を分岐させて、各燃料供給路67,69に設けた調節弁71によって燃料供給量を独立に制御するが、複数の燃料供給源から独立に各燃料供給路67,68に燃料Fを供給するように構成してもよい。
【0039】
なお、燃料噴射部材34の各燃料噴射用環状部33に接続される分岐燃料供給管66の数は、各燃料噴射用環状部33の燃料噴射量に応じて適宜設定してよい。例えば、内径側に配置された燃料噴射用環状部33に接続される分岐燃料供給管66の数を少なくし、外径側に配置された燃料噴射用環状部33に接続される分岐燃料供給管66の数を多くすることが好ましい。一つの燃料噴射用環状部33に複数の分岐燃料供給管66を接続する場合、その燃料噴射用環状部33における接続位置は、周方向に等間隔であることが好ましい。
【0040】
また、燃料供給母管31の多管式構造は、複数の管を用いて互いに独立した複数の燃料供給路を形成できるのであれば、
図3の例に限らない。例えば、1つの大径の母管の中に、これより小径の同一径の複数の燃料供給管を平行に延設した多管式構造でもよい。もっとも、本実施形態のように、燃料供給母管31を互いに異なる径を有する複数の燃料供給管を同心状に重ねた多管式構造として、最内径側の燃料供給管の内方空間および各管の間の空間を燃料供給路とした場合は、より大量の燃料を要する外径側の燃料噴射用環状部33に供給する外径側の燃料供給路(
図3の例では第2燃料供給路69)の流路面積を大きくし、より小量の燃料を要する内径側の燃料噴射用環状部33に供給する内径側の燃料供給路(
図3の例では第1燃料供給路67)の流路面積を小さく設定することが容易となる。
【0041】
次に、燃焼室11に面して燃焼室11の高温に曝される部材である燃料噴射部材34および整流突起部材63の内部冷却構造、または防熱構造について説明する。
【0042】
燃料噴射部材34については、上述のように、燃料噴射部材34の燃焼室11に面する後壁33aが、軸心C方向に垂直に設けられている。
図8に示すように、空気ガイド部材36は、燃料噴射部材34の燃料噴射孔39から噴射された燃料Fに対して上流側から供給される空気Aを軸心C方向に案内する。燃料噴射用環状部33は中空状に形成されており、この中空空間が、燃料噴射用環状部33内に燃料Fを周方向に流通させる環状の燃料流通路73を形成している。つまり、燃料噴射部材34の後壁33aと環状の燃料流通路73の内壁の一部とは同じ壁であって、燃焼室側の璧面が後壁面33ab、燃料流通路側の壁面が内壁面33aaとなっている。
【0043】
分岐燃料供給管66は、燃料噴射部材34の前壁(空気供給通路29側の壁)33b側から環状の燃料流通路73aに、燃料Fを供給するように接続されている。燃料噴射部材34の燃料噴射用環状部33の内部には、燃焼装置3の軸心C方向に区画された2つの環状の燃料流通路73a、73bが形成されている。すなわち、燃料噴射用環状部33の内部には、後側(燃焼室11側)に位置して燃料噴射孔39に燃料Fを供給する下流側燃料流通路73b(第1燃料流通路)と、前側(空気供給通路29側)に位置して燃料Fが直接供給される上流側燃料流通路73a(第2燃料流通路)とが形成されている。
【0044】
上流側燃料流通路73aと下流側燃料流通路73bとを区画する環状の第1区画壁77には、上流側燃料流通路73aから下流側燃料流通路73bへと燃料を導く貫通孔が周方向に並んで複数設けられている。この貫通孔が、2つの燃料流通路73a、73bを連通させ、燃料Fを上流側燃料流通路73aから下流側燃料流通路73bへ送給する送給孔79として機能する。分岐燃料供給管66から上流側燃料流通路73aへ導入された燃料Fは、上流側燃料流通路73aを周方向に流れながら、送給孔79を通って順次下流側燃料流通路73b内へ流入する。送給孔79から下流側燃料流通路73bへ流入した燃料Fは、後壁33aの内壁面33aaに衝突して下流側燃料流通路73b内を周方向に流れながら、燃料噴射孔39へ導かれる。このように、燃料噴射部材34の燃料噴射用環状部33内部を、燃焼装置3の軸心C方向に上流側燃料流通路73aと下流側燃料流通路73bとに区画することにより、燃料Fが周方向に均一に分布した状態で燃料噴射孔39へ供給される。
【0045】
また、下流側燃料流通路73bへ流入した燃料Fが後壁33aの内壁面33aaに衝突することにより、燃料Fが後壁33aをインピンジメント冷却する。図示の例では、第1区画壁77に、後方へ突出するノズル壁81を周方向に延設し、このノズル壁81内に、送給孔79を周方向に複数設けている。ノズル壁81は、上流側燃料流通路部73a内の燃料Fを下流側燃料流通路部73bの燃焼室11側の壁面である背面33aaへ噴射する噴射ノズルを形成する。つまり、燃料噴射用環状部33は、燃焼室11側に位置し、燃料噴射孔39と連通する下流側燃料流通路73bと、燃焼室11とは反対側に位置し、燃料噴射孔39から噴射される燃料Fが供給される上流側燃料流通路73aと、上流側燃料流通路73a内の燃料Fを下流側燃料流通路73bの燃焼室11側の内壁面33aaへ噴射する噴射ノズルと、を有する。これにより、燃料Fが下流側燃料流通路73bの燃焼室11側の内壁面33aaへ噴き付けられ、内壁面33aaがインピンジメント冷却によって冷却される、つまり、後壁33aが燃料Fによってきわめて効果的に冷却される。なお、噴射ノズルは、ノズル壁81を必ずしも有さなくてもよく、第1区画壁77内に形成された絞りノズルであってもよい。さらに、燃料Fが送給孔79から噴射される後壁33aの内壁面33aaから燃料噴射孔39までの流通経路の中途に、周方向に延びる突壁83を後壁33aの内壁面33aaに突設することにより、燃料Fが下流側燃料流通路73b内を流れることによる対流冷却の効果を一層高めている。
【0046】
また、燃料噴射部材34の燃料噴射用環状部33内に設けられる燃料流通路73の形状としては、
図9に示す変形例のように、一つの燃料流通路73のみを設けてもよい。この場合は、燃料Fを利用して、燃料噴射用環状部33の燃焼室11に面した後壁33aを内方(内壁面33aa側)から対流冷却によって冷却することができる。
また、各分岐燃料供給管66から供給される燃料Fが燃料流通路73内をほぼ均等に流れ、対流冷却の効果を十分に発揮できるように、燃料Fが燃料流通路73から燃料噴射孔39に導かれる途中に第2区画壁87を設けてもよい。つまり、環状の燃料流通路73は、外周側区画壁87aと内周側区画壁87bとによって、3つの環状の空間に分割されていてもよい。
【0047】
更に、後壁33aの後壁面33abに遮熱板85を設けてもよい。遮熱板85を形成する材質としては、例えば、耐腐食性及び耐熱性を有する合金であるHastelloy−X(Haynes International.Inc.:登録商標)、HA188(Haynes International.Inc.:登録商標)、若しくはこれらとセラミックコーティングとの組み合わせたもの等を使用することができる。また、
図8に示す実施例においても、遮熱板85を選択的に組み合わせることが可能である。
【0048】
図10に示すように、整流突起部材63は、全体として中空状に形成されている。整流突起部材63の支持部63aは、有底の円筒状部材からなり、その前端(上流端)の周壁には、径方向の貫通孔である冷却空気導入孔91が設けられている。冷却空気導入孔91は、支持部63aの前端の周壁の周方向に等間隔に複数形成されている。整流突起部材63の突出部63bは、燃焼室側(
図10の右側)に向かって縮径となるドーム形状の内側壁93と外側壁95からなる二重壁構造を有している。なお、突出部63bは、ドーム形状でなくてもよく、円柱形状であってもよい。また、突出部63bは、二重壁構造でなくてもよく、外壁だけの単壁構造であってもよい。突出部63bの内側壁93の周壁には、径方向の貫通孔である第1冷却空気噴射孔97が設けられている。第1冷却空気噴射孔97は、内側壁93の周壁の周方向及び軸心方向に等間隔に複数形成されている。さらに、突出部63bの外側壁95の周壁には、径方向に対して後方に傾斜して延びる貫通孔である第2冷却空気噴射孔98が複数設けられている。複数の第2冷却空気噴射孔98は、外側壁95の周壁の周方向及び軸心方向に等間隔に配置されている。
【0049】
突出部63bの外側壁95の先端部中央には、軸心方向の貫通孔である冷却空気排出孔99が設けられている。つまり、整流突起部材63は、その支持部63aの前端に形成され、燃料噴射器15よりも上流の空気Aをその内部に導入する冷却空気導入孔91と、その突出部63bに形成され、その内部に導入された空気Aを燃焼室11に排出する冷却空気排出孔99とを有している。
【0050】
支持部63aと突出部63bの内側壁93によって形成される内方空間Sと、突出部63bの内側壁93と外側壁95によって形成される隙間Gとが、内側壁93の第1冷却空気噴射孔97のみを介して連通する。図示の例では、支持部63aの開口縁部には、嵌合突壁63aaが突設されており、この嵌合突壁63aaの内周側に内側壁93の開口縁部93aが嵌合し、嵌合突壁63aaの外周側に外側壁95の開口縁部95aが嵌合する。これにより、支持部63aと突出部63bとが連結されている。
【0051】
突出部63bが外壁だけの単壁構造の場合は、空気供給通路29の空気Aの一部は、冷却空気導入孔91から整流突起部材63の内方空間Sに流入し、冷却媒体として、燃焼室11に面した突出部63bを内方から対流による冷却を行いながら、冷却空気排出孔99から燃焼室11へ排出される。更に、突出部63bが内側壁93と外側壁95からなる二重壁構造の場合は、冷却空気導入孔91から整流突起部材63の内方空間Sに流入した空気Aの一部は、冷却媒体として、内側壁93の第1冷却空気噴出孔97から径方向に噴射される。この空気Aは、外側壁95の内周面に衝突し、この内周面に沿って内側壁93と外側壁95との間の隙間Gである冷却通路を通って冷却空気排出孔99から燃焼室11へ排出される。このように空気Aが外側壁95の内周面に衝突し、内周面に沿って流れることにより、外側壁95が内部からインピンジメント冷却される。また、内側壁93と外側壁95との間の隙間Gに流入した空気Aの一部は、外側壁95の第2冷却空気噴射孔98を通って燃焼室11へ排出される。第2冷却空気噴射孔98から吹き出された空気Aは、外側壁95の表面に空気のフィルム層を形成し、外側壁95を外部からエフュージョン冷却する。このようにして、整流突起部材63の焼損を防止できる。なお、第2冷却空気噴射孔98は省略してもよい。
【0052】
さらに、外側壁95の外周面は、断熱材100によってコーティングされてもよい。断熱材100としては、セラミックスや、耐腐食性及び耐熱性を有する合金であるHastelloy−X(Haynes International.Inc.:登録商標)、HA188(Haynes International.Inc.:登録商標)等を使用することができる。断熱材100によるコーティングを施すことにより、さらに確実に整流突起部材63の焼損を防止することができる。
【0053】
以上説明したように、本実施形態に係る
図2に示すガスタービンの燃焼装置3によれば、燃料噴射器15は複数の燃料噴射用環状部33を有する燃料噴射部材34を備えており、燃料噴射用環状部33はその外周面に多数の燃料噴射孔39を有しているので、燃料噴射器15の全面から均一に燃料Fが噴射されることになる。これにより、燃料噴射器15の全面において微細な火炎が多点で保持される。これにより、局所的な高温燃焼の発生が防止され、低NOx燃焼が実現できる。また、燃料噴射孔39から噴射された燃料Fに対して上流から空気Aが供給されるという構成によって、火炎が燃料噴射器15の内部に入り込むことがないため、逆火現象が抑制される。したがって、ガスタービンGTの燃料として、水素を含む反応性の高い燃料を使用する場合にも、NOxの発生を抑制しながら、極めて安定した燃焼が維持される。
【0054】
なお、本実施形態の燃焼装置3に利用される燃料Fは、水素ガスに限定されず、例えば、液体の水素でもよく、水素ガスと他の燃料ガス(天然ガス、COなど)の混合燃料でもよく、さらには水素を含まない他の燃料ガス(天然ガス、COなど)であってもよい。また、本実施形態では、キャン型の燃焼装置3を例として説明したが、アニュラー型の燃焼装置にも上記構成を適用することができる。
【0055】
本発明を順流式のアニュラー型燃焼装置に適用した実施形態を
図11,12に、逆流式のアニュラー型燃焼装置に適用した実施形態を
図13に示す。これらの実施形態に係る燃焼装置3は、内側に燃焼室11を形成する燃焼筒13と、燃焼筒13の頂部に設けられ、複数の燃料噴射用環状部33を含む燃料噴射部材34および燃焼用空気を案内する複数の燃焼空気用環状部35を含む空気ガイド部材36を有し、燃料噴射用環状部33と燃焼空気用環状部35とが同心状に交互に配置され、燃焼室11に燃料と空気を噴射する燃料噴射器15とを備えている点で
図2の実施形態と共通する。上記実施形態について
図5とともに説明したように、燃料噴射用環状部33は、その径方向Rに開口する複数の燃料噴射孔39を有し、燃焼空気用環状部35は、その軸心方向に開口し、燃料噴射孔39から噴射される燃料Fに対し
て空気Aを案内する複数の空気ガイド溝41を有している。
【0056】
図11に示す順流式アニュラー型の燃焼装置3では、燃焼筒13が、筒状の内壁101と、内壁101の外側に内壁と同心状に配置された外壁103とによって構成されており、内壁101と外壁103の間の空間が環状の燃焼室11を形成している。圧縮機1(
図1)で圧縮された空気Aは、前方からディフューザ105を介して環状の燃焼器ハウジングH内に導入され、さらに燃料噴射器15へ供給される。燃料噴射器15の前方は、空気整流機構である空気整流カウル107によって覆われている。
図12に示すように、空気整流カウル107は、前方に膨出する断面形状を有する環状の部材であり、空気Aを通過させる多数の孔が形成されている。
【0057】
図13に示す逆流式アニュラー型の燃焼装置3においても、燃焼筒13は、筒状の内壁101と、内壁101の外側に内壁と同心状に配置された外壁103とによって構成されており、内壁101と外壁103の間の空間が環状の燃焼室11を形成している。圧縮機1(
図1)で圧縮された空気Aは、後方から、ハウジングHと燃焼筒13との間に形成された空気導入通路25を通った後、燃料噴射器15へ供給される。燃料噴射器15の前方は、空気整流機構である空気整流カウル107によって覆われている。空気整流カウル107は、
図12に示す例と同様、前方に膨出する断面形状を有する環状の部材であり、空気を通過させる多数の孔が形成されている。
【0058】
以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。