【0029】
本発明の方法は、特定の遺伝子を選択する以外は、公知のダイレクト・リプログラミングの手法に準じて行うことができ、例えば以下の文献1〜6の方法に準じて行うことができる:
文献1 Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes
by Defined Factors; Masaki Ieda, Ji-Dong Fu, Paul Delgado-Olguin, Vasanth Vedantham, Yohei Hayashi, Benoit G. Bruneau, and Deepak Srivastava Cell 142: 375-386, 2010.
文献2 Direct conversion of fibroblasts to functional neurons by defined factors. Thomas Vierbuchen, Austin Ostermeier, Zhiping P. Pang, Yuko Kokubu, Thomas C. Sudhof & Marius Wernig. Nature 463: 1035-1041, 2010
文献3 Induction of human neuronal cells by defined transcription factors. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Sudhof TC, Wernig M. Nature 476: 220-223, 2011.
文献4 Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors Kunihiko Hiramatsu, Satoru Sasagawa, Hidetatsu Outani, Kanako Nakagawa, Hideki Yoshikawa, and Noriyuki Tsumaki, Journal of Clinical Investigation, 121: 640-657, 2011.
文献5 Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Pengyu Huang, Zhiying He, Shuyi Ji, Huawang Sun, Dao Xiang, Changcheng Liu, Yiping Hu, XinWang & Lijian Hui, . Nature 475:386-389, 2011.
文献6 Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Sayaka Sekiya & Atsushi Suzuki. Nature 475:390-393, 2011.
具体的には、褐色脂肪細胞に変換するための導入遺伝子を発現ベクターに組み込み、対象とする体細胞に発現ベクターを導入し、細胞内で発現させることが好ましい。
【実施例】
【0050】
以下に実施例を示すが、本発明はこの実施例だけに限定されるものではない。
【0051】
実施例1 実験の概略(
図1 )
レトロウイルスベクタープラスミドpMXs.puroに、C/EBPβ等の種々の遺伝子のcDNAコーディング配列をGene artシステム組み込んだ。パッケージング細胞 Plat GP細胞を、100U/mL Penicillinと100μg/ml Streptomycinを含んだ1% NEAA 10% FBS DMEM(通常培地)に縣濁し、ゼラチンコートした10cm培養ディシュにディシュあたり5×10
6 個の濃度で播種した(第3日)。24時間培養後、種々の遺伝子を含むpMXsベクターを、種々の組み合わせで、pCMV VSVベクターと伴に、X-tremeGENE 9を用いて以下の比で導入した。すなわち導入遺伝子5μg、pCMV.VSV 2.5μg、Opti-MEM 500μl、X-tremeGENE 9 22.5μlの混和液を10mlの培地入りの10cmディシュに添加した(第2日)。24時間後、抗生剤を含まない通常培地に交換(第-1日)。同日(第1日)に、ヒト正常皮膚線維芽細胞株であるaHDF、またはヒト脂肪由来幹細胞であるADSCを、1.5×10
4〜2×10
4 cells/mLで培養ディッシュまたは12 wellプレートに播種した。24時間後(第 0日)、Plat GP培養上清を、ポアの直径が0.45μmのシリンジフィルターを通した後、ポリブレン(最終濃度4μg/mL)と混和した(ウイルス液)。aHDF の培養上清を吸引除去した後、すばやく上記のウイルス液を1mL加え24時間培養した(感染)。コントロール群として、ウイルス感染を行わない細胞も準備した。1日後(第 1日)、培養上清を吸引除去し、褐色脂肪誘導培地TypeI(通常培地に850nM human Insulin、1nM triiodothyronine(T3)、0.5mM 3-isobutyl-1-methylxanthine(IBMX)、100 nM Dexametazone、125nM Indometacin、1μg/ml Rosigritazone(いずれも最終濃度)を加えたもの)を加え2日間培養した。第3日に培地を吸引除去し、褐色脂肪誘導培地TypeII(通常培地に850nM human Insulin、1nM triiodothyronine(T3)、1μg/mL Rosigritazone(いずれも最終濃度)を加えたもの)を加え、その後2日おきに同じ組成の新しい培養液に交換した。第 12-22日に、OilRedO染色、Real-time RT-PCRを行った。レトロウイルスベクターを感染させずに、同じ培養を行った細胞をControlとした。
【0052】
実施例2 ヒト正常皮膚線維芽細胞から褐色脂肪細胞へのコンバージョン、OilRedO染色像(
図2)
ヒト正常皮膚線維芽細胞であるaHDFを、12 wellプレートに培養し、
図1のように実験した。第14日に各ウェルから培養液を吸引除去し、PBSで1回洗浄を行った後、60%イソプロパノールで固定。OilRedO染色液を加え、37℃で15分間静置した(OilRedO染色液は以下のように作成した。OilRedO粉末0.24gを99.7%イソプロパノール30mLに溶解したのち、20mLの蒸留水を添加。30分間室温放置したのち濾紙を用いて濾過し、OilRedO染色液とした)。60%イソプロパノールで1回洗浄したのち、純水で3回洗浄した。プレートの画像を
図2A-Fに示す。プレートの各ウェルには異なる遺伝子の組み合わせが導入されており、どのナンバーのウェルにどの遺伝子の組み合わせが導入されたかは、
図3に記載する(
図3の下の表中で、No.は
図2のNo.と共通でプレートのウェルの番号を指す。また各遺伝子の欄に「1」と記載があるものは、その遺伝子を含むレトロウイルスベクターを感染させたことを、空欄は、その遺伝子を含むレトロウイルスベクターを感染させていないことを表す)。赤く染まっているのは脂質であり、いくつかのウェルでは、小さな多房性の脂肪滴を含む褐色脂肪細胞が認められる。たとえば、
図2のNo.36ウェルは、
図3のNo. 36に示されるとおり、C/EBPβ、L-Myc、c-Mycの遺伝子を含むレトロウイルスベクターを感染させた細胞であり、多くの褐色脂肪細胞が含まれているのが分かる。
【0053】
実施例3 ヒト正常皮膚線維芽細胞から褐色脂肪細胞へのコンバージョン、OilRedO染色の半定量と定量(
図3)
図2と同じ実験において、OilRedOの染色性を半定量するために、2名の評価者がそれぞれ独立に、プレートを実体顕微鏡観察し、OilRedOの染色性を4段階で評価した(OilRedOの染色性が強いものから順に、+++、++、+、−)。その結果を
図3の下の表中に示す。
図3の下の表中で、各遺伝子の欄に「1」と記載があるものは、その遺伝子を含むレトロウイルスベクターを感染させたことを、空欄は、その遺伝子を含むレトロウイルスベクターを感染させていないことを表す。
【0054】
図2と同じ実験において、脂肪の含量を定量化する目的で、画像撮影の後、各ウェルから蒸留水を取り除き、100%イソプロパノール300μlを加えて抽出液を調整した。抽出液を250μlずつ、96 well plateに移した後、波長550nmの吸光度(OD550)をマイクロプレートリーダーを用いて測定した。結果を
図3に示す。グラフの縦軸はOD550であり、各ウェルの脂肪の含量を示す。たとえばNo.4のPRDM16、C/EBPβ, L-Myc, c-Myc, Glis1の遺伝子を含むレトロウイルスベクターを感染させた細胞は、もっとも多くの褐色脂肪細胞を含むことが分かる。
【0055】
実施例4 ヒト正常皮膚線維芽細胞から褐色脂肪細胞へのコンバージョン、UCP1遺伝子のmRNA発現計測(
図4)
ヒト正常皮膚線維芽細胞であるaHDFを、12wellプレートに培養し、
図1のように実験した。遺伝子導入12日後、一部のウェルからISOGEN IIにてtotal RNAを回収し、Rever Tra Ace qPCR RT Master Mixを用いてcDNAを合成した。UCP1とβアクチン遺伝子のmRNAレベルを定量する目的で、Real-time PCR Master Mix、Taqman probe、Specific PrimerおよびcDNAを混和し、AB7300 Real-time PCR systemを用いてReal-time RT-PCRを行った。各細胞のβアクチンmRNAレベルに対するUCP1 mRNAレベルの値を計算した。結果を
図4に示す。
図4の下の表中で、各遺伝子の欄に「1」と記載があるものは、その遺伝子を含むレトロウイルスベクターを感染させたことを、空欄は、その遺伝子を含むレトロウイルスベクターを感染させていないことを表す。グラフの縦軸は、No.64(遺伝子を導入していない細胞)の値を1として計算した相対値であり、バーに書かれた数値も同じである。ND(Not determined)と書かれたものはこの実験では測定していない。PRDM16、C/EBPβ, L-Myc, c-Mycの4つの遺伝子を導入した細胞(No.19)は、controlと比較し、遺伝子レベルにおいて褐色脂肪細胞特異的マーカーであるUncoupling protein-1(UCP-1)のもっとも強力な発現を認めた。また、C/EBPβ、L-Myc、c-Mycの3つの遺伝子を導入した細胞(No. 36)や、C/EBPβ、c-Myc、Glis1の3つの遺伝子を導入した細胞(No. 38)でも極めて高いUCP1の発現を認め、これらの遺伝子があればPRDM16がなくてもヒト線維芽細胞から褐色脂肪細胞へのダイレクト・リプログラミングが効率よく可能であることが分る。
【0056】
実施例5 ヒト正常皮膚線維芽細胞から褐色脂肪細胞へのコンバージョン、UCP1遺伝子のmRNA発現(
図5)
ヒト正常皮膚線維芽細胞であるaHDFを、12wellプレートに培養し、
図1のように実験した(
図4とは遺伝子を組み合わせを変えて独立に行った実験である)。遺伝子導入12日後、一部のウェルからISOGEN IIにてtotal RNAを回収し、Rever Tra Ace qPCR RT Master Mixを用いてcDNAを合成した。UCP1とβアクチン遺伝子のmRNAレベルを定量する目的で、Real-time PCR Master Mix、Taqman probe、Specific PrimerおよびcDNAを混和し、AB7300 Real-time PCR systemを用いてReal-time RT-PCRを行った。各細胞のβアクチンmRNAレベルに対するUCP1 mRNAレベルの値を計算した。結果を
図5に示す。
図5の下の表中で、各遺伝子の欄に「+」と記載があるものは、その遺伝子を含むレトロウイルスベクターを感染させたことを、空欄は、その遺伝子を含むレトロウイルスベクターを感染させていないことを表す。グラフの縦軸は、遺伝子を導入していない細胞(一番右のバーに示す)の値を1として計算した相対値である。PRDM16、C/EBPβ, c-Mycの3つの遺伝子を導入した細胞(右から7番目のバー)は、mRNAレベルにおいて褐色脂肪細胞特異的マーカーであるUncoupling protein-1(UCP-1)のもっとも強力な発現を認めた。その発現レベルは、PRDM16とC/EBPβの2つの遺伝子を導入した細胞(左から8番目のバー)で認められるUCP1のmRNAレベルと比較して、100倍以上高いことが分る。
【0057】
実施例6 ヒト正常皮膚線維芽細胞から褐色脂肪細胞へのコンバージョン、ミトコンドリア染色像(
図6)
ヒト正常皮膚線維芽細胞 aHDFを、12wellプレートに培養し、
図1のように実験した。遺伝子導入から12日後、位相差顕微鏡で観察した(
図6左列)。また一部のウェルではミトコンドリアを可視化する目的で、培養液に終濃度200nMになるようにInvitrogen 社製のMito Tracker Red probeを添加し、5%CO
2 /95%大気、37℃で15分間静置した後オリンパス社製の蛍光顕微鏡で観察した(
図6中央列)。別の一部のウェルでは、
図2と同様の方法でOilRedOで染色した(
図6右列)。PRDM16、C/EBPβ, c-Mycの3つの遺伝子を導入した群では、多数のミトコンドリアを細胞内に集積した細胞が多数観察された。またこの群ではOilRedO染色により小さな多房性脂肪滴を含む褐色脂肪細胞が確認された。これに比べて、PRDM16、C/EBPβの2つの遺伝子を導入した群では、ミトコンドリア、脂肪滴ともにはるかに少なかった。
【0058】
実施例7 ヒト脂肪由来幹細胞から褐色脂肪細胞へのコンバージョン、OilRedO染色像(
図7)
ヒト脂肪由来幹細胞(ADSC)を12wellプレートに培養し、
図1のように実験した。遺伝子導入から22日後、
図2と同様の方法でOilRedO染色を行った。結果を
図7に示す。赤く染まっているのは脂質であり、脂肪細胞が誘導されたことを示す。PRDM16、C/EBPβ、cMycの遺伝子を含むレトロウイルスベクターを感染させた細胞では、小さな多房性の脂肪滴を含む褐色脂肪細胞が、数多く認められる(
図7左上)。一方GFP(Green fluorescent protein)遺伝子を導入した細胞では、大きな単房性の脂肪滴を含む白色脂肪細胞が認められた(
図7右下)。
【0059】
実施例8 ヒト脂肪由来幹細胞から褐色脂肪細胞へのコンバージョン、UCP1遺伝子のmRNA発現計測(
図8)
ヒト脂肪由来幹細胞(ADSC)を12wellプレートに培養し、
図1のように実験した。遺伝子導入22日後、UCP1、CIDEA、AdipoQのmRNA発現を定量する目的で、細胞からtotal RNAを回収し、
図4と同様にReal-time RT-PCRを行った。その結果を
図8に示す。PRDM16、C/EBPβ、c-Mycの3つの遺伝子を導入した群では、PRDM16、C/EBPβ、L-Mycの3つの遺伝子を導入した群や、PRDM16、C/EBPβ、Glis1の3つの遺伝子を導入した群、GFP遺伝子を導入したControl群と比較して、褐色脂肪細胞特異的因子であるUCP1とCIDEAを有意に高発現していた。一方、褐色脂肪細胞と白色脂肪細胞の共通のマーカーである、Adiponectin(AdipoQ)は、PRDM16、C/EBPβ、c-Mycを導入した群およびControl群で有意に高発現していた。
【0060】
これらの結果より、ヒト脂肪由来幹細胞(ADSC)は遺伝子導入を行わないと多くが白色脂肪細胞になるが、PRDM16、C/EBPβ、c-Mycの3つの遺伝子を導入することにより、褐色脂肪細胞に誘導できることが示された。したがって、ヒト正常皮膚線維芽細胞以外の細胞からでもダイレクトに褐色脂肪細胞にコンバートできることが示された。
【0061】
試験例1
図9−12に、マウスiPSから褐色脂肪細胞を誘導し(iPS-derived BA細胞)、C57BL/6マウスに移植した実験を示す。熱産生、体重増加抑制を認め、また高カロリー食を与えると体重増加抑制と血清脂質異常改善を認めたことから、高カロリー食に伴う肥満と脂質代謝異常をiPS-derived BA細胞が是正できる可能性があることが分る。
【0062】
(1)
図9
マウスiPS-derived BA細胞、またはコントロールとして非誘導細胞を、同系マウスの腹部皮下に図左上のように移植した。iPS-derived BA細胞のグラフトは、OilRed染色陽性の脂肪組織の組織像を呈した(右上)。iPS-derived BA細胞を移植したマウスは、体重増加が有意に抑制され(左下)、体温が有意に上昇していた(右下)。
【0063】
(2)
図10
マウスiPS-derived BA細胞、またはコントロールとして非誘導細胞を、同系マウスの腹部皮下に移植した。各群、2匹のサーモグラフィーのイメージング像を示す。iPS-derived BA細胞のグラフト局所で温度が上昇していた(下)。褐色脂肪細胞への誘導を行わなかった細胞のグラフトは周囲組織と同じ温度であった(上)。
【0064】
(3)
図11
移植後、高カロリー食餌を与えたところiPS-derived BA細胞を移植したマウスのみ体重減少が有意に抑制された。
【0065】
(4)
図12
移植後、高カロリー食餌(QF)を与え、4週間後に血清の脂質を調べたところ、iPS-derived BA(iBA)細胞を移植したマウスのみ高脂血症が進行していなかった。NFは通常食餌を与えたマウスである。
【0066】
試験例2
図13−16では、2型糖尿病マウスの体細胞からiPS細胞を作り、そのiPS細胞から褐色脂肪細胞を誘導し(iPS-derived BA細胞)、糖尿病マウスに移植した実験を示す。移植によって随時血糖値低下、体重増加抑制、血清脂質異常改善が認められ、褐色脂肪細胞の移植が糖尿病を制御できることが分る。
【0067】
(1)
図13
2型糖尿病を発症するKK-Ayマウスの体細胞からiPS細胞を作った。得られたiPS細胞は典型的なES細胞様の形態を示し(中央、位相差顕微鏡像)、幹細胞マーカーを発現していた(下:real time RT-PCR、右:免疫蛍光染色)。KK-AyiPS1~4は、KK-Ayの体細胞由来の4つの異なるiPS細胞クローンであり、201B7は正常マウス由来のiPS細胞クローンである。
【0068】
(2)
図14
図13のiPS細胞から褐色脂肪細胞を誘導した(iPS-derived BA細胞)(上)。この細胞をKK-Ayマウスに移植したところ、随時血糖値の上昇が緩やかで(左下)、また尿糖はほとんど検出されなかった(右下)。コントロールとして、移植していないKK-Ayマウス(Non-transplant)と、褐色脂肪細胞への誘導を行わずGFP(green fluorescent protein)遺伝子を導入した細胞を移植したマウス(GFPコントロール)では、糖尿病が進行していた。
【0069】
(3)
図15
iPS由来のBA細胞を移植したKK-Ayマウスは、体重増加が有意に抑制され(上)、血清中のNEFA(左下)と中性脂肪(右下)も低かった。
【0070】
(4)
図16
iPS由来のBA細胞を移植したKK-Ayマウスは、血清中のアディポネクチンが有意に高値であった。摂食量はコントロールマウスと同じであった。
【0071】
実施例9
ヒト正常皮膚線維芽細胞およびiPS細胞から誘導した褐色脂肪細胞の性状(
図17)
A,ヒト正常皮膚線維芽細胞 aHDFを、12wellプレートに培養し、
図1に示す方法で、C/EBPβとc-Mycの2つの遺伝子を導入した群の結果を示す。遺伝子導入から12日後、位相差顕微鏡で観察した(左)。また一部のウェルではミトコンドリアを可視化する目的で、培養液に終濃度200nMになるようにInvitrogen 社製のMito Tracker Red probeを添加し、5%CO
2 /95%大気、37℃で15分間静置した後オリンパス社製の蛍光顕微鏡で観察した(中央)。別の一部のウェルでは、
図2と同様の方法でOilRedOで染色した(右)。多数のミトコンドリアが細胞内に集積し、また多房性脂肪滴を含む褐色脂肪細胞が、多数認められる。
【0072】
B、ヒト正常皮膚線維芽細胞 aHDFを、12wellプレートに培養し、
図1のように実験した。C/EBPβ, c-Mycの2つの遺伝子を導入した群の結果を示す。遺伝子導入から12日後、免疫染色を行った。上段から順に抗UCP1抗体(1次抗体)とPE Cy5標識抗ウサギIgG抗体(2次抗体)、抗CIDEA抗体(1次抗体)とAlexaFluor488標識抗ウサギIgG抗体(2次抗体)、抗PGC-1抗体(1次抗体)とPE Cy5標識抗ウサギIgG抗体(2次抗体)、および抗Dio2抗体(1次抗体)とAlexaFluor488標識抗ウサギIgG抗体(2次抗体)で染色した細胞である。左は蛍光像、右は微分干渉像。褐色脂肪細胞に特異的な4つのたんぱくのすべてが多量に発現しているのが分かる。
【0073】
C、ヒト正常皮膚線維芽細胞 aHDF、aHDFからAの方法で誘導した褐色脂肪細胞(dBA)、ヒトiPS細胞から誘導した褐色脂肪細胞(iBA)からRNAを回収し、UCP1、CIDEA、AdipoQに特異的なプライマー・プローブを用いたreal time RT-PCR解析を行った。各mRNAの発現量を、βアクチンのmRNA発現量で補正した後、aHDFでのmRNA発現量を1として算出した相対的なmRNA発現量を示す。dBAとiBAは、aHDFと比べて極めて高いレベルで、褐色脂肪細胞に特異的な遺伝子のmRNAを発現している。
【0074】
実施例10
ヒト正常皮膚線維芽細胞から誘導した褐色脂肪細胞の性状(
図18)
A, ヒト正常皮膚線維芽細胞 aHDF、aHDFから
図17Aの方法で誘導した褐色脂肪細胞(dBA)、dBAに100 nMのレプチンを添加後24時間培養した細胞(Lep)、およびdBAに1μMのイソプロテレノールを添加後2時間培養した細胞(Iso)からRNAを回収し、UCP1、レプチンレセプターに特異的なプライマー・プローブを用いたreal time RT-PCR解析を行った。各mRNAの発現量を、βアクチンのmRNA発現量で補正した後、aHDFでのmRNA発現量を1として算出した相対的なmRNA発現量を示す。dBAは、aHDFと比べて極めて高いレベルでUCP1とレプチンレセプターのmRNAを発現し、これらの発現はレプチンあるいはイソプロテレノールの刺激でさらに増強することが分かる。
【0075】
B、ヒト正常皮膚線維芽細胞 aHDF、aHDFから
図17Aの方法で誘導した褐色脂肪細胞(dBA)、およびdBAに1μMのイソプロテレノールを添加後2時間培養した細胞(Iso)を準備した。24時間培養前後の培地中のグルコースの濃度をグルコースBテスト(和光)で測定した。コントロールとして、細胞を培養しない培地を24時間インキュベートし、それぞれのグルコース濃度の減少率を算出した。dBAは線維芽細胞に比し、より多くのグルコースを消費すること、その消費量はイソプロテレノールの刺激でさらに増加することが分かる。
【0076】
C, ヒト正常皮膚線維芽細胞 aHDF、およびaHDFから
図17Aの方法で誘導した褐色脂肪細胞(dBA)からDNAを採取した。PPARg遺伝子上流域(転写開始点の-431〜-151 bp)、およびUCP1遺伝子上流域(転写開始点の-693〜-348 bp)のCpGジヌクレオチドのメチル化を、バイサルファイド法で解析した。メチル化を黒で、脱メチル化を白で示す。線維芽細胞ではどちらの領域も高度にCpGメチル化されているのに対して、dBAでは低メチル化になっていることが分かる。
【0077】
実施例11
ヒト正常皮膚線維芽細胞から誘導した褐色脂肪細胞の性状(
図19)
A, ヒト正常皮膚線維芽細胞 aHDFから、
図17Aの方法で褐色脂肪細胞(dBA)を誘導する実験を行い、遺伝子導入後0、3、6、9、12日後の細胞からRNAを採取した。MitoHDに特異的なプライマー・プローブを用いたreal time RT-PCR解析を行った。mRNAの発現量を、βアクチンのmRNA発現量で補正した後、aHDFでのmRNA発現量を1として算出した相対的なmRNA発現量を示す。線維芽細胞からdBAへの誘導にともなって、ミトコンドリアDNAのMT-ND1遺伝子の発現が増強することが分かる。
【0078】
B、ヒト正常皮膚線維芽細胞 aHDF、およびaHDFから
図17Aの方法で誘導した褐色脂肪細胞(dBA)を準備した。6ウェルプレートに播種後、図のようにインスリン、Phloretin、アンチマイシン、および/またはイソプロテレノールを添加し、2-デオキシグルコースの取り込みを測定した。dBAは線維芽細胞に比して高いグルコース取り込みを示すこと、その取り込みはインスリン刺激により増加すること、インスリン刺激によるグルコース取り込みの増加はPhloretin(グルコーストランスポーター阻害剤)によってキャンセルされることがわかる。また、dBAによるグルコース取り込みはイソプレテレノール刺激により増加すること、イソプロテレノール刺激によるグルコース取り込みの増加はアンチマイシン(ミトコンドリア電子伝達鎖阻害剤)によってキャンセルされることがわかる。
【0079】
C, ヒト正常皮膚線維芽細胞 aHDF、およびaHDFから
図17Aの方法で誘導した褐色脂肪細胞(dBA)を準備した。FCCP、アンチマイシン、またはオリゴマイシンを添加し、経時的に細胞外酸素濃度を測定した。縦軸は発光強度であり、数字が高いと酸素濃度が低いことを示す。線維芽細胞と比べてdBAでは酸素消費量が高く、その酸素消費はアンチマイシンまたはオリゴマイシンの添加により抑制されることがわかる。
【0080】
実施例12
ヒトiPS細胞から
図17Aの方法で褐色脂肪細胞を誘導する。得られた細胞は多房性脂肪滴を含み、UCP1を有意に発現する。また、ヒト白色脂肪細胞から
図17Aの方法で褐色脂肪細胞を誘導する。得られた細胞は多房性脂肪滴を含み、UCP1を有意に発現する。
【0081】
実施例13
エピゾーマル・ベクターによるヒト正常皮膚線維芽細胞から褐色脂肪細胞へのダイレクト・リプログラミング(
図20)
A、エピゾーマル・ベクターとプラスミド・ベクターの構造を示す。図左:エピゾーマル・ベクター。この中のcDNAとして、何も含まないものをpG.oriP9.E、PRDM16を含むものをpG.oriP9.E.P、CEBPbetaを含むものをpG.oriP9.E.C、c-Mycを含むものをpG.oriP9.E.Mと呼ぶ。図右:プラスミド・ベクター。この中のcDNAとして、何も含まないものをpG.4、PRDM16を含むものをpG.P、CEBPbetaを含むものをpG.C、c-Mycを含むものをpG.Mと呼ぶ。CAG prom:CAGプロモーター、polyA:Poly A additional signal,oriP: Epstein-Barr virus (EBV) origin of replication P,EBNA1: EBV nuclear antigen 1。
【0082】
B、Aのプラスミドを、ヒト皮膚由来線維芽細胞に電気穿孔法で導入後、12日間培養し、RNAを回収した。UCP1遺伝子特異的プライマー・プローブを用いてreal time RT-PCRを行った。UCP1遺伝子mRNAの発現量を、βアクチンのmRNA発現量で補正した後、線維芽細胞でのmRNA発現量を1として算出した相対的なmRNA発現量を示す。pG.oriP9.E.CおよびpG.oriP9.E.Mを共導入したもので最も高くUCP1 mRNAが発現し、褐色脂肪細胞に誘導されたことがわかる。
【0083】
C、ヒト線維芽細胞に記載のプラスミドを導入後、12日間培養した。OilRedO染色像を示す。CEBPbetaとc-Mycをそれぞれ含む2つのエピゾーマルベクター(pG.oriP9.E.CとpG.oriP9.E.M)の共導入により、効率よく褐色脂肪細胞に誘導できたことがわかる。CEBPbetaとc-Mycをそれぞれ含む2つのプラスミドベクター(pG.CとpG.M)の共導入でも、褐色脂肪細胞を誘導できるが、その効率はエピゾーマルベクターよりも劣る。
【0084】
実施例14
マウス胎仔線維芽細胞(MEF)から誘導した褐色脂肪細胞(
図21)
実施例1と同様に、マウスのPRDM16(P)、C/EBPβ(C)、L-Myc(L)、およびc-Myc(M)遺伝子を有するレトロウイルスベクターを、種々の組み合わせでマウス胎仔線維芽細胞(MEF)に感染させ、その後褐色脂肪誘導培地で培養した。感染後第 20日目に、RNAを回収した。レトロウイルスベクターを感染させずに、同じ培養を行った細胞をControlとした。UCP1遺伝子特異的プライマー・プローブを用いてreal time RT-PCRを行った。UCP1遺伝子mRNAの発現量を、βアクチンのmRNA発現量で補正した後、線維芽細胞でのmRNA発現量を1として算出した相対的なmRNA発現量を示す。PRDM16(P),C/EBPβ(C),L-Myc(L)の3因子を導入したもので最も高くUCP1 mRNAが発現し、褐色脂肪細胞に誘導されたことがわかる。
【0085】
実施例15
マウス胎仔線維芽細胞(MEF)から誘導した褐色脂肪細胞の生体内機能(
図22)
実施例13の方法で、C57BL/6マウスのMEFにPRDM16(P)、C/EBPβ(C)およびL-Myc(L)遺伝子を導入して、褐色脂肪細胞(dBA)を誘導した。この細胞、またはGFP遺伝子を導入したMEF(GFP-MEF)を、8週齢の同系マウスの皮下に移植した。これらのマウス、および移植しないマウスに、高脂肪食餌(QF)を与えた。コントロールとして、通常食餌(NF)を与えた非移植マウスも準備した。
【0086】
A、移植後のマウスの体重を示す。非移植およびGFP-MEF移植マウスでは、QF摂取にともないNF摂取マウスに比して体重が著しく増加したが、dBAを移植した群ではこの食餌性の肥満が顕著に抑制できた。
【0087】
B、移植後4週に血清を採取し、非エステル化脂肪酸(NEFA)と中性脂肪(TG)を測定した。非移植およびGFP-MEF移植マウスでは、QF摂取にともないNF摂取マウスに比して血清NEFAとTGが著しく増加したが、dBAを移植した群ではこの食餌性の脂質異常症が顕著に抑制できた。
【0088】
C、移植後7日目に、GFP-MEFまたはdBA移植マウスを麻酔し、低温に2時間暴露した。その後サーモグラフィーで体表温度を測定した。GFP-MEF移植マウスでは移植部の温度は周辺体表温度と変わらなかったが、dBA移植マウスでは移植部の温度上昇が認められた。
【0089】
実施例16
マウス胎仔線維芽細胞(MEF)から誘導した褐色脂肪細胞の生体内機能(
図23)
糖尿病モデルであるAAkyマウスのMEFから、PRDM16(P)、C/EBPβ(C)およびL-Myc(L)遺伝子を用いた実施例13の方法で、褐色脂肪細胞(dBA)を誘導した。この細胞、またはGFP遺伝子を導入したMEF(GFP-MEF)を、6週齢の同系マウスの皮下に移植(10 cm Dish confluentx2/マウス)した。これらのマウス、および移植しないマウスを、通常食餌で飼育した。
【0090】
A―C、マウスの体重(A)、随時血中グルコース(B)、空腹時血中グルコース(C)を示す。dBAを移植したAAkyマウスでは体重増加と血中グルコース上昇が有意に抑制されたことが分かる。
【0091】
D、移植後4週目に、経口グルコース負荷試験を行った。50mg/mouseのグルコースをカテーテルでマウスの胃内に投与し、経時的に血中グルコースを測定した。dBAを移植したマウスでは耐糖能が改善していることが分かる。
【0092】
E、移植後4週目に、経口グルコース負荷試験を行った。0.0125U/mouseのインスリンをマウスの腹腔内に注射し、経時的に血中グルコースを測定した。dBAを移植したマウスではインスリン抵抗性が改善していることが分かる。
【0093】
F、移植後4週目にマウスの血清を採取し、非エステル化脂肪酸(NEFA)と中性脂肪(TG)を測定した。非移植およびGFP-MEF移植マウスでは、血清NEFAとTGが増加したが、dBAを移植した群ではこの脂質異常症が顕著に抑制できた。