【発明の効果】
【0019】
以下に示す本発明の効果等に関する説明は、駆動基本周波数より高い周波数の高周波電圧の印加に対し回転子が突極特性を示す交流電動機であれば、回転子に永久磁石を有する永久磁石同期電動機、巻線形同期電動機、同期リラクタンス電動機、ハイブリッド界磁形同期電動機、誘導電動機などの何れの交流電動機にも適用される。埋込磁石形永久磁石同期電動機、同期リラクタンス電動機等は、駆動用電圧・電流に対して突極特性を示す。これらの電動機は、高周波電圧の印加に対しても同様に突極特性を示す。一方、駆動用電圧・電流に対しては突極特性を示さない表面磁石形永久磁石同期電動機、誘導電動機は、高周波電圧の印加に対しては突極特性を示す。ハイブリッド界磁形同期電動機は、永久磁石形と巻線形の両同期電動機の特性を有しており、高周波電圧印加に対して突極特性を示し得る。特に、自励式ハイブリッド界磁同期電動機は、突極性が強い。
【0020】
図1に示したように、制御設計者が指定した座標系速度ωγで回転するγδ一般座標系を考える。ただし、座標系速度ωγの最高速度は、高々、回転子速度の最高速度程度とする。座標系速度ωγをゼロとし、位相θγを位相θαとする場合には、γδ一般座標系は、αβ固定座標系となる。また、座標系速度ωγを回転子速度真値ω2nとし、位相θγをゼロとする場合には、γδ一般座標系は、dq同期座標系となる。また、座標系速度ωγを回転子速度の推定値とし、位相θγのゼロ収斂を目指す場合には、γδ一般座標系は、dq同期座標系への位相差ゼロでの収斂を目指したγδ準同期座標系となる。
【0021】
主軸(γ軸)から副軸(δ軸)への回転を正方向とする。以下に扱う交流電動機の物理量を表現した2x1ベクトル信号は、特に断らない限り、すべてγδ一般座標系上で定義されているものとする。なお、以降の数式表現においては、2x1ベクトル信号は太文字を利用して表記するようにしている。
【0022】
先ず、請求項1の発明の効果を説明する。電動機駆動用の電圧に、位相推定用の高周波電圧を重畳印加することを考える。この場合には、次のように、固定子の電圧v1、電流i1、鎖交磁束φ1は、大きくは2成分の合成ベクトルとして表現することができる。
【数1】
【0023】
(1)式右辺の信号の脚符f、hは、それぞれ駆動基本周波数、高周波の成分であることを示している。特に、(1)式各3式の第2項であるv1h、i1h、φ1hの3信号が、本発明と深く関係する、印加された高周波電圧、この応答としての高周波電流、印加高周波電圧に起因した高周波磁束、を各々示している。なお、位相推定用に重畳印加した高周波電圧の周波数ωhは、次の(2)式の関係が成立する十分に高いものとする。
【0024】
【数2】
以降では、記号sは微分演算子d/dtを、Iは2x2単位行列を、Jは次式で定義された2x2交代行列を意味するものとする。
【数3】
【0025】
(2)式が成立する場合には、高周波電圧の印加に対し回転子が突極特性を示す交流電動機における固定子の高周波成分に関しては、次の(4)〜(6)式の関係が成立する。
【数4】
【数5】
【数6】
【0026】
ここに、Li、Lmは固定子の同相インダクタンス、鏡相インダクタンスであり、d軸、q軸インダクタンスとは次の関係を有する。
【数7】
なお、鏡相インダクタンスLmは、回転子位相として負突極位相を選定する場合には負となる。
【0027】
以上の準備の下で、請求項1の発明の第1手段である空間回転高周波電圧印加手段を説明する。請求項1の発明では、印加高周波電圧として、周期Th、平均速度ωhで空間的に回転する高周波電圧(空間回転高周波電圧)を印加する。本電圧の代表的なものは、一定振幅をもつ次の真円形高周波電圧である。
【数8】
本発明における空間回転高周波電圧とは、高周波電圧を印加する座標系上において空間的に回転する高周波電圧を意味する。たとえば、uvw座標系上で高周波電圧を印加する場合には、uvw座標系上で空間的に回転する高周波電圧を意味し、αβ固定座標系上で高周波電圧を印加する場合には、αβ固定座標系上で空間的に回転する高周波電圧を意味し、γδ準同期座標系上で高周波電圧を印加する場合には、γδ準同期座標系上で空間的に回転する高周波電圧を意味する。なお、(8b)式における記号<>は平均処理を意味する。
また、印加した空間回転高周波電圧の周期Thは、制御周期Tsの3〜10倍とする。すなわち、
【数9】
【0028】
(2)式の関係が成立する場合、(4)、(5)式より、印加した高周波電圧とこの応答である高周波電流の間には、次の関係が近似的に成立する。
【数10】
本発明のデジタル式回転子位相速度推定装置に備える空間回転高周波電圧印加手段は、(9)式、(10)式の性質を備えた(8)式に代表される空間回転高周波電圧印加のための電圧指令値を生成する手段を意味する(後掲の
図3、
図6、
図7、
図9を参照)。空間回転高周波電圧は、電圧指令値に従い、電力変換器(インバータ)を介して、電動機に印加されるものとしている(後掲の
図2、
図8を参照)。
【0029】
つづいて、請求項1の発明の第2手段である時間差分固定子電流生成手段を説明する。固定子電流は、(1)式に明示しているように、駆動基本周波数、高周波の2成分を有している。固定子電流が、固定子電流検出器により制御周期Tsごとに離散時間検出され、時間差分される場合、(10)式より、次の関係が成立する。
【数11】
ここに、電流の脚符kはt=k*Tsでの離散時間検出時刻を意味し、電圧の脚符k−1は時間t=(k−1)*Ts〜k*Tsの間に印加された電圧を意味する(後掲の
図5参照)。
【0030】
時間差分固定子電流生成手段では、(11a)式右辺に従い、(11a)式左辺の時間差分固定子電流(すなわち、固定子電流検出器により制御周期Tsごとに離散時間検出された固定子電流を、時間差分した信号)を生成する。時間差分固定子電流生成手段で生成された時間差分固定子固定子電流は、解析式たる(11b)式の最終式が示しているように、回転子位相情報を有する。なお、解析式たる(11b)式においては、「制御周期Tsの間の駆動基本周波数成分の変化は実質的に無視できる」と仮定している。本仮定は、低回転の状況下では、一般に成立する。
【0031】
つづいて、請求項1の発明の第3手段である回転子位相速度推定値生成手段を説明する。連続した2制御周期にわたって(11b)式を適用するならば、次式を得る。
【数12】
なお、上式は、「(k−1)時点とk時点の2つの時間差分固定子電流が生成される間、回転子位相は実質的に不変」と言う仮定の下に構築している。本仮定は、制御周期に比較して、回転子速度が十分に低ければ、一般に成立する。
【0032】
印加高周波電圧は空間回転高周波電圧であるので、(12)式右辺の2×2高周波電圧行例は、常時正則となる。すなわち、常時この逆行列が存在する。逆行列の存在条件を(12)式に用いると、請求項1の発明の最重要な原理式である次式を得る。
【数13】
(13)式においては、印加された高周波電圧は同指令値(頭符*で表示)で近似されるものとしている。
【0033】
(13)式は、「同式左辺に従い、時間差分固定子固定子電流と高周波電圧指令値(空間回転高周波電圧に起因する高周波信号の代表的1種)とを処理するならば、同式右辺の2×2インダクタンス行列が特定され、ひいては回転子位相θγが特性される」ことを意味している。インダクタンス行列の特定が、回転子位相の特定を意味すことは、(13)式を書き改めた次式より容易に理解される。
【数14】
上の(14b)式は、「(14a)式の第1式に基づき時間差分固定子固定子電流と高周波電圧指令値とから特定された4要素より、ただちに回転子位相が特定される」ことを明快に示している。なお、以降では、(14a)式左辺の4要素を基本信号と呼称する。
【0034】
(11)〜(14)式を用いた上の説明より既に明らかなように、請求項1の発明によれば、フィルタ等を用いた高周波電流検出を一切行なうことなく、固定子電流の離散時間検出値から直接的に回転子位相を推定できるという効果が得られる。回転子位相推定値の生成には、フィルタ等を一切使用していないので、フィルタ使用に伴う安定性の低下もなく、高い速応性を備えた位相推定が可能となるという効果も得られる。回転子速度と回転子位相とは、互いに微積分の関係にある。したがて、微積分関係を利用することにより、回転子速度推定値を、回転子位相推定値からこれと同様な効果をもった形で生成することができる(速度推定値生成の具体例は、後掲の
図7、
図9を用いた実施例を通じ示す)。
【0035】
(11)〜(14)式は、γδ一般座標系上の関係式である。したがって、本関係式は、γδ一般座標系の特別の場合であるαβ固定座標系上の信号にも適用できる。より具体的には、請求項1の発明に、αβ固定座標系上の固定子電流等を適用するならば、固定座標系のα軸からみた回転子位相θαの推定値を得ることができる(
図1参照)。また、本関係式は、γδ一般座標系の特別の場合であるγδ準同期座標系上の信号にも適用できる。より具体的には、請求項1の発明に、γδ準同期座標系上の固定子電流等を適用するならば、γδ準同期座標系のγ軸からみた回転子位相θγの推定値を得ることができる(
図1参照)。当然のことながら、このときの推定値生成には上に述べた効果が伴う。
【0036】
続いて、請求項2の発明による効果について説明する。(1)式に明示しているように、固定子電圧には、駆動用基本周波数成分と高周波成分との2成分が含まれている。良好な推定値を得るには、両成分の周波数の差は可能な限り大きくすることが望まれる。請求項2の発明では、γδ準同期座標系上で高周波電圧を印加するようにしている。一方、γδ準同期座標系上では、駆動用基本周波数成分の周波数は実質的にはゼロである。したがって、請求項2の発明に従って空間回転高周波電圧印加手段を構成するならば、印加高周波電圧の周波数を両成分の周波数の差とすることができ、ひいては最大の周波数差を得ることができると言う効果が得られる。この結果、請求項1の効果を、一層高めることができるという効果が得られる。
【0037】
続いて、請求項3の発明による効果について説明する。(1)式に明示しているように、固定子電流には、駆動用基本周波数成分と高周波成分との2成分が含まれている。回転子位相情報を保有しているのは、2成分のうちの高周波成分すなわち高周波電流である。本発明は、固定子電流に含まれる駆動用基本周波数成分の除去を固定子電流の差分処理で行なうものである(請求項1の効果に関する説明を参照)。差分処理を通じた駆動用基本周波数成分の除去は、駆動用基本周波数成分の周波数が実質的にゼロ周波数であれば、理想的に遂行される((11b)式参照)。請求項3の発明に基づく時間差分固定子電流生成手段よれば、固定子電流の差分処理をγδ準同期座標系上で遂行することになる。γδ準同期座標系上では、電動機が高速回転を行なう場合においても、固定子電流の駆動用基本周波数成分の周波数は実質的にゼロ周波数であり、請求項3の発明に基づく時間差分固定子電流生成手段に生成された時間差分固定子電流においては、駆動用基本周波数成分は理想的状態で除去されることになる。以上の説明より既に明らかなように、請求項3の発明の時間差分固定子電流生成手段によれば、ゼロ速から高速までの広い速度範囲で時間差分固定子電流から駆動用基本周波数成分を理想的状態で除去でき、ひいてはゼロ速から高速までの広い速度範囲で請求項1の発明を適用できるようになるという効果が得られる。換言するならば、請求項1の効果を一層高めることができると言う効果が得られる。
【0038】
続いて、請求項4の発明による効果について説明する。(13)式、(14)式の導出根拠となった(12)式は、「(k−1)時点とk時点の2つの時間差分固定子電流が生成される間、回転子位相は実質的に不変」と言う仮定の下に構築されている。ゼロ速度あるいはこれに準じた低速度であれば本仮定は問題なく成立するが、速度向上に応じて、この仮定が崩れてくる。ひいては、位相推定値あるいはこれに基づく速度推定値に伴う誤差が、次第に大きくなる。位相同期(PLL)ループまたは位相同期ループと等価なフィードバックループは、位相推定値を時々刻々変化する位相真値に追随させる働きがある。請求項4の発明によれば、位相同期ループまたは位相同期ループと等価なフィードバックループを構成するようにして、回転子位相速度推定値生成手段を構成することになるので、速度向上に応じて増大する上述の推定誤差を押さえ込むことが可能となる。速度推定値は、微積分の関係を利用して位相推定値から生成されるので、速度推定値に伴う誤差も同様に押さえ込まれる。以上の説明より既に明白なように、請求項4の発明の回転子位相速度推定値生成手段によれば、高速回転においても、精度を著しく劣化することなく回転子位相推定値あるいは回転子速度推定値を得ることができると言う効果が得られる。換言するならば、請求項1の効果を一層高めることができると言う効果が得られる。