【実施例】
【0049】
GNSSを用いて航法を行う機能を備えて飛行する航空機が増加するとともに、航空機を取り巻く電波環境や国際情勢の変化に伴い、GNSS衛星の信号による測位が出来ない状態、いわゆる“GNSSアウテージ”が多く報告されている。この発明は、このような状況にある航空機を、地上で監視するもので、GNSSを用いて飛行中の航空機の航法性能の推定方法及び推定装置を提供することを第1の目的としている。
【0050】
さらに、この発明は、GNSSを用いて航法を行う機能を備えて飛行している航空機から送信される航空機の航法性能を表す情報である航法性能の実際値とこの航空機の正常な航法性能を表す情報である航法性能の推定値とを比較するとともに、航法性能の実際値と航法性能の推定値を判定し、航法性能の実際値と航法性能の推定値とが相違するとともに、判定した航法性能の推定値が正常で、且つ、判定した航法性能の実際値が異常の場合、即ち、GNSS衛星の配置自体は、GNSS衛星を用いた測位の際において問題となる配置ではないのに対し、航空機におけるGNSS信号の受信環境が悪く、何らかの電波干渉(RFI)が疑われる場合に、航空機の航法性能の劣化と検出することにより、この航空機の航法性能の劣化を検出する方法及び航法性能の監視装置を提供することを第2の目的としている。
【0051】
この発明の実施例を、
図1〜
図6に基づいて詳細に説明する。
図1〜
図6は、この発明の実施例を示すもので、
図1はGNSSを用いて航法を行う機能を備えた航空機の航法性能の推定方法及び推定装置を説明するための模式図、
図2はGNSSを用いて航法を行う機能を備えた航空機の航法性能の劣化を検出する方法及び航法性能の監視装置を説明するためのフロー及び模式図である。
【0052】
図3は、GNSSを用いて航法を行う機能を備えた飛行中の航空機について、発明者がこの発明の航法性能の推定方法を用いて実験を行った際の実験装置の構成を示す概念図である。
図4〜
図6は、発明者がこの発明の航法性能の推定方法を用いて実験を行った際の実験結果を示す図で、
図4(a)、(b)、(c)は、航法にGNSSを用いて飛行中の航空機2(2A、2B、2C)からそれぞれ送信されているNICデータ(以下、NICデータ実際値と記す)を、発明者が実際に測定した結果を示している。
【0053】
図5(a)、(b)、(c)は、航空機2(2A、2B、2C)の水平方向の保護レベル(HPL)の計算値を示す図、
図6は
図4に示すNICデータ実際値と、
図5に示すHPLをNICデータに換算したNICデータ推定値とを比較・判定する図である。なお、この実施例では、GNSS衛星1としてGPS衛星を用いたので、以下、GNSSの代わりに適宜GPSと記載する。
【0054】
図1〜
図2において、1(1a、1b、1c・・・)は、GPS衛星で、測位信号(GPS情報)を送信している。2(2A、2B、2C・・・)は、GNSSを用いて航法を行う機能を備えた飛行中の航空機で、GPS衛星1(1a、1b、1c・・・)から送信される測位信号(GPS情報)を、機上受信機(図示せず)で受信し、このGPS情報により、自機(航空機)の測位を行うとともに、自機(航空機)の航法性能を表す情報である航法性能の実際値を算出している。又、航空機2(2A、2B、2C・・・)は、少なくとも航空機2の航法性能を表す情報と位置情報(座標、高度)とを、二次監視レーダ(SSR、図示せず)のモードS質問への応答あるいはADS−B情報の一部として、機上送信機(図示せず)により送信する機能を有する応答装置(図示せず)を備えている。
【0055】
さらに、航空機2(2A、2B、2C・・・)は、航空機2から送信される航空機の航法性能を表す情報(航法性能の実際値)と位置情報(座標、高度)を、二次監視レーダのモードS質問への応答あるいはADS−B情報から取得する機能を有している。
【0056】
3(3a、3b、3c・・・)は、既知点に設置されている航空機モニタ局で、二次監視レーダのモードS質問への応答あるいはADS−B情報の一部として、航空機2(2A、2B、2C・・・)の応答装置から送信される航法性能を表す情報と位置情報(座標・高度)とを受信可能な機能と、受信した航空機2(2A、2B、2C・・・)の航法性能を表す情報及び位置情報を、ネットワーク8を介して航空機航法性能推定マスタ局6や航空機GNSS監視マスタ局7に送信する機能を有している。
【0057】
4(4a、4b、4c・・・)は、GPS衛星1(1a、1b、1c・・・)から送信されるGPS情報を受信するGNSSモニタ局で、GPS衛星1(1a、1b、1c・・・)から送信されているGPS情報を受信可能な機能を有しており、受信したGPS情報を、ネットワーク8を介してGNSSマスタ局5に送信する機能をも有している。
【0058】
なお、この実施例では、航空機モニタ局3(3a、3b、3c・・・)とGNSSモニタ局4(4a、4b、4c・・・)は、互いに独立した構成となっているが、これに限定されるものではなく、航空機モニタ局3(3a、3b、3c・・・)の機能とGNSSモニタ局4(4a、4b、4c・・・)の機能を、既存の1つのモニタ局に統合し、それぞれ情報を処理するように構成しても良い。
【0059】
GNSSマスタ局5は、複数のGNSSモニタ局4(4a、4b、4c・・・)で受信したGNSS情報を集約し、各GNSS情報を比較するとともに、この集約したGNSS情報から広域における正常なGNSS情報を作成する機能と、この作成した広域における正常なGNSS情報を、ネットワーク8を介して航空機航法性能推定マスタ局6へ送信する機能とを有している。
【0060】
6は航空機航法性能推定マスタ局で、航空機モニタ局3(3a、3b、3c・・・)でそれぞれ受信した航空機の位置情報(座標、高度)とGNSSマスタ局5で作成した広域における正常なGNSS情報とをネットワーク8を介して受信する機能と、広域における正常なGNSS情報を用いて、航空機の位置に対応したGNSSの航法性能を表す情報を算出する機能と、この算出したGNSSの航法性能を表す情報を用いて航法性能の推定値を算出する機能と、この算出した航法性能の推定値により、航空機の正常な航法性能を表す情報を推定する機能と、この推定した航空機の正常な航法性能を表す情報(航法性能の推定値)を、ネットワーク8を介して航空機GNSS監視マスタ局7へ送信する機能とを有している。なお、この航法性能の推定値は、航空機に対し電波干渉等の外的要因がなければ、航空機の現在位置において本来発揮されるべき航空機の航法性能を示している。
【0061】
航空機GNSS監視マスタ局7は、航空機モニタ局3(3a、3b、3c・・・)でそれぞれ受信した航空機の位置情報(座標、高度)と航空機航法性能推定マスタ局6で推定した航空機の正常な航法性能を表す情報(航法性能の推定値)とをネットワーク8を介して受信する機能と、航空機航法性能推定マスタ局6で推定した航空機の正常な航法性能を表す情報である航法性能の推定値と、航空機から送信される航空機の航法性能を表す情報である航法性能の実際値とを比較する機能と、航法性能の推定値と航法性能の実際値とを判定する機能と、航法性能の推定値と航法性能の実際値とが相違するとともに、判定した航法性能の推定値が正常で、且つ、判定した航法性能の実際値が異常の場合、航空機2(2A、2B、2C・・・)の航法性能の劣化と検出する機能を有している。
【0062】
なお、この実施例では、航空機航法性能推定マスタ局6で算出した航空機の位置に対応したGNSSの航法性能を表す情報は、航空機の水平方向の保護レベル(HPL)データを用いている。また、航空機2から送信される航空機の航法性能を表す情報(航法性能の実際値)と、航空機航法性能推定マスタ局6で推定した航空機の正常な航法性能を表す情報(航法性能の推定値)は、NICデータをその指標として用いている。
【0063】
このNICデータは、ICAOにより規定されているもので、航法のインテグリティが確保される範囲を示した指標であり、NICデータが経路または空域ごとに指定されたRNP値を満足しない場合、当該航法を行ってはならない旨規定されている。また、このNICデータは、モードS質問への応答あるいはADS−B情報の一部として、航空機2(2A、2B、2C・・・)の応答装置から送信されている情報の中に含まれている。
【0064】
なお、航法性能の判定に用いられるRNP値は、広域航法(RNAV:aRea NAVigation)の利用に供するために経路または空域ごとに設定されている航法性能要件で、日本においては後述する表2のように6つの航法性能が設定されている。これらの航法性能要件の何れかが経路または空域ごとに指定されており、例えば、「RNP4」として指定された経路または空域では、航法性能の指定されたRNP値は4であり、要求される航法精度としては「4NM以内」、即ち、誤差としては全飛行時間中少なくとも95%は±4NMの範囲になければならず、これをNICデータに換算すると「3以上」となり、この経路または空域を飛行する際にはNICデータが3以上であることを求められることを示している。この経路または空域ごとに指定されたRNP値は、航空機GNSS監視マスタ局7にデータベースとして登録されているとともに、航空機2(2A、2B、2C・・・)のFMS(Flight Management System:飛行管理装置)(図示せず)にもデータベースとして登録されている。
【0065】
従って、この実施例では、航空機航法性能推定マスタ局6は、GNSSマスタ局5で作成した広域における正常なGNSS情報と、航空機モニタ局3(3a、3b、3c・・・)で受信した航空機の位置情報(座標、高度)とから、航空機の位置に対応した航空機の水平方向の保護レベル(HPL)データを求める機能と、この保護レベル(HPL)データをNICデータに換算する機能とを有し、航空機2(2A、2B、2C・・・)の位置に対応した航空機の水平方向の保護レベル(HPL)データを求めて、このHPLデータをNICデータに換算することにより、NICデータ推定値を算出している。このNICデータ推定値は、航空機2(2A、2B、2C・・・)の現在位置において、航空機に対し電波干渉等の外的要因がなければ、航空機2(2A、2B、2C・・・)から本来送信されて然るべきNICデータであり、NICデータ推定値により、航空機2(2A、2B、2C)の航法性能を推定している。このNICデータ推定値は、ネットワーク8を介して航空機GNSS監視マスタ局7へ送信される。
【0066】
航空機GNSS監視マスタ局7は、この実施例では、航空機航法性能推定マスタ局6で推定したNICデータ推定値と、実際に航空機から送信されているNICデータであるNICデータ実際値とを比較する機能と、NICデータ推定値とNICデータ実際値とを判定する機能とを有し、NICデータ推定値とNICデータ実際値とが相違するとともに、判定したNICデータ推定値が正常で、且つ、判定したNICデータ実際値が異常の場合、さらには、NICデータ推定値とNICデータ実際値とがいずれも正常と判定された場合であっても、NICデータ推定値とNICデータ実際値との差が2以上ある場合、又は、NICデータ推定値とNICデータ実際値との差が1であるが瞬間的な差異に収まらない場合に、航空機2(2A、2B、2C・・・)の航法性能の劣化と検出する機能を有している。
【0067】
換言すれば、航空機GNSS監視マスタ局7は、航空機航法性能推定マスタ局6で推定したNICデータ推定値が正常であるのに対し、実際に航空機から送信されているNICデータ実際値が異常の場合、若しくは、NICデータ推定値とNICデータ実際値とがいずれも正常であったとしても、NICデータ推定値と比較して、NICデータ実際値が極端に悪い場合や、NICデータ実際値が極端に悪い状態ではないが、この状態が長く続く場合に、航空機2(2A、2B、2C・・・)の航法性能の劣化と検出している。なお、この実施例では、航空機GNSS監視マスタ局7は、データベースに予め登録しているRNP値をもとに換算したNICデータの条件を満足する場合には正常、満足しない場合には異常として、NICデータ推定値やNICデータ実際値を判定している。
【0068】
なお、この実施例では、GNSSマスタ局5と航空機航法性能推定マスタ局6と航空機GNSS監視マスタ局7とは、互いに独立した構成となっているが、これに限定されるものではなく、GNSSマスタ局5の有する機能と、航空機航法性能推定マスタ局6の有する機能と、航空機GNSS監視マスタ局7の有する機能とを備えた1つのマスタ局に統合し、この1つのマスタ局で情報を一括で処理するように構成しても良い。
【0069】
次に、作用動作について、
図1〜
図6を参照して説明する。
まず、ADS−B情報としては、航空機のID番号(モードSコード、航空機がセットした値でICAOが管理している)、航空機の座標(経度、緯度)、速度(水平速度、上昇下降速度)、高度(GPSからの情報と気圧高度計情報)、航空機の進行方向、システムの状態、スコークコードがある。なお、航空機の便名やルート情報等は含まれていない。
【0070】
前述したように、日本国内では、まだADS−B装備は義務づけられておらず、衛星航法システムを利用する場合には、モードS情報(二次監視レーダのモードS質問への応答信号)が利用されている。従って、この実施例では、モードS情報を利用して実験したが、ADS−B情報を用いても同様である。
【0071】
図2に示すように、航空機2(2A、2B、2C・・・)は、航法にGNSSを用いるとともに、少なくとも航空機の航法性能を表す情報と位置情報(座標、高度)とを送信する応答装置を有している。そこで、GPSを用いて飛行中の航空機2(2A、2B、2C・・・)は、GPS衛星1(1a、1b、1c・・・)からの測位信号(GPS情報)を受信して、自機の測位を行うとともに、自機で受信できたGPS衛星の配置の情報から、自機(航空機)の航法性能を表す情報(航法性能の実際値)としてNICデータの算出を行う。この実施例では、航空機(自機)の航法性能を表す情報は、NICデータを指標として用いており、この算出したNICデータは、航空機から送信されるADS−B情報やモードS情報の一部として組み込まれる。
【0072】
GNSSを用いて測位した自機の位置は、航空機に搭載されている高度センサからの高度情報とともに、航空機2(2A、2B、2C・・・)の位置情報(座標、高度)として、航空機から送信されるADS−B情報やモードS情報の一部として組み込まれる。また、算出したNICデータも同様に、航空機から送信されるADS−B情報やモードS情報の一部として組み込まれる。これらの情報は、ADS−B情報の一部として送信する場合は、航空機2(2A、2B、2C・・・)から自動的に送信され、モードS情報の一部として送信する場合は、二次監視レーダからのモードS質問があった場合に、その応答として、それぞれ航空機2(2A、2B、2C・・・)から自動的に送信されている。
【0073】
ここで、GPS衛星1からのGPS情報は、GPS衛星1がどのくらいの性能で情報を送信しているか、GPS衛星1の配置はどのくらいか、との2つのパラメータにより決定される。NICデータ(HPLから換算する)とは、航空機2はどのくらいの誤差範囲(現時点では10
−7)で保護レベル(以下、HPLと記す)円の中にいるかを示す情報で、この情報は航空機毎の(固有の)パラメータを除けばGPS衛星1の配置のみで決定される。即ち、航空機毎の(固有の)パラメータは最初に登録しておけば良いので、求める際のパラメータは1つである。従って、他の誤差要因、例えば電離層遅延などの誤差要因に依らずに、GPS衛星1の配置の1パラメータのみで求めることが出来るので、信頼性が高い。さらに、NICデータと同じくADS−B情報に含まれているデータであって、2パラメータの測位精度を表すデータであるFOM(Figure of Merit)又はNAC
P(Navigation Accuracy Category for Position)を併用することで、さらに信頼性を高めることが可能である。
【0074】
航空機2(2A、2B、2C・・・)からADS−B情報やモードS情報の一部として送信される航空機の航法性能を表す情報と位置情報(座標、高度)は、既知点に設置された航空機モニタ局3(3a,3b、3c・・・)で受信され(ステップ1)、航空機の航法性能を表す情報として航空機2のNICデータが取得される(ステップ2)。このNICデータは、実際に航空機から送信されるNICデータであるNICデータ実際値として航空機GNSS監視マスタ局7へネットワーク8を介して送信される。一方、航空機2の位置情報は、航空機航法性能推定マスタ局6と航空機GNSS監視マスタ局7へネットワーク8を介して送信される(ステップ3)。
【0075】
なお、この実施例の場合、航空機2の位置情報は、航空機モニタ局3(3a、3b、3c・・・)から送信されたデータを用いているが、これに限定されるものではなく、例えば、少なくとも3つの航空機モニタ局3(3a、3b、3c・・・)で受信した航空機2からの信号を用いて航空機航法性能推定マスタ局6で航空機2の測位を行っても良いし、別途二次監視レーダ(SSR)等の監視データから送信された航空機2(2A、2B、2C・・・)の位置情報(座標及び高度)を用いても良い。
【0076】
一方、GNSS衛星1から送信されるGNSS情報は、GNSSモニタ局4(4a、4b、4c・・・)でそれぞれ受信される(ステップ4)。次いで、これら複数のGNSSモニタ局4(4a、4b、4c・・・)でそれぞれ受信したGNSS情報は、GNSSマスタ局5で集約するとともに、各GNSS情報を比較する。さらに、GNSSマスタ局5では、集約したGNSS情報から広域における正常なGNSS情報を作成する。この広域における正常なGNSS情報は、ネットワーク8を介して航空機航法性能推定マスタ局6に送信される。
【0077】
又、航空機航法性能推定マスタ局6では、広域における正常なGNSS情報及びそれぞれの航空機について予め登録されている航空機の性能パラメータ(ステップ6)と、ネットワーク8を介して受信した航空機2の位置情報を用いて、航空機2の位置に対応した航空機2の水平方向の保護レベル(HPL)を算出する。
【0078】
HPLデータとNICデータとは、後述する表1に示す関係となっており、この航空機2の水平方向の保護レベル(HPL)を、さらにNICデータに換算してNICデータ推定値を算出することにより、航空機2の正常な航法性能を表す情報である航法性能の推定値を推定する(ステップ5)。
【0079】
航空機航法性能推定マスタ局6で推定した航空機2の正常な航法性能を表す情報である航法性能の推定値(NICデータ推定値)は、上記したように、航空機に対し電波干渉等の外的要因がなければ、航空機の現在位置において本来発揮されるべき航空機の航法性能を示しており、この航法性能の推定値(NICデータ推定値)は、ネットワーク8を介して航空機GNSS監視マスタ局7に送信される。
【0080】
航空機GNSS監視マスタ局7では、航空機モニタ局3(3a,3b、3c・・・)で受信した航空機2から送信される航空機の航法性能を表す情報である航法性能の実際値(NICデータ実際値)と航空機の正常な航法性能を表す情報である航法性能の推定値(NICデータ推定値)とを比較するとともに、経路または空域ごとに要求されるRNP値が予め登録されている航空機GNSS監視マスタ局7のデータベースから、航空機2の位置において指定されるRNP値を求め、この航空機2の位置におけるRNP値をNICデータの条件に換算し、この航空機2の位置におけるNICデータの条件を用いて航法性能の推定値と航法性能の実際値とをそれぞれ判定する(ステップ7)。
【0081】
航法性能の推定値(NICデータ推定値)と航法性能の実際値(NICデータ実際値)とを比較及び判定した結果、航法性能の推定値(NICデータ推定値)と航法性能の実際値(NICデータ実際値)とが両方とも正常の場合(航空機2の位置において指定されるRNP値から換算したNICデータの条件を満たす場合)、航空機2におけるGNSSの受信環境は、電波干渉等もなく正常で、航空機2の航法性能は正常と判定する(ステップ8)。
【0082】
航法性能の推定値(NICデータ推定値)と航法性能の実際値(NICデータ実際値)とが相違するとともに、航法性能の推定値(NICデータ推定値)が正常(航空機2の位置において指定されるRNP値から換算したNICデータの条件を満たす場合)で、且つ、航法性能の実際値(NICデータ実際値)が異常の場合(航空機2の位置において指定されるRNP値から換算したNICデータの条件を満たさない場合)、航空機2におけるGNSSの受信環境は、電波干渉等の何らかの外的要因により悪くなっており、航空機2は当該航法を行ってはならない状態、即ち、航法にGNSSを用いてはならない状態(GNSSアウテージ)となり、航空機2の航法性能は劣化していると検出する(ステップ9)。
【0083】
さらに、航法性能の推定値(NICデータ推定値)と航法性能の実際値(NICデータ実際値)とがいずれも正常と判定された場合であっても、NICデータ推定値とNICデータ実際値との差が2以上ある場合、又は、NICデータ推定値とNICデータ実際値との差が1であるが瞬間的な差異に収まらない場合、即ち、両方とも正常(航空機2の位置において指定されるRNP値から換算したNICデータの条件を満たす場合)であっても、NICデータ実際値がNICデータ推定値よりNICデータとして2以上悪い場合、又は、NICデータ実際値がNICデータ推定値よりNICデータとして1悪い状態でしかないものの、その悪い状態が瞬間的な差異に収まらない場合に、GNSSアウテージとはなっていないものの、電波干渉等の何らかの外的要因、又は、本来想定されるGNSSの環境が想定よりも劣化していることにより航空機2におけるGNSSの受信環境が悪くなっているため、航空機2(2A、2B、2C・・・)の航法性能は劣化していると検出する(ステップ9)。
【0084】
このようにして、航空機GNSS監視マスタ局7では、航空機モニタ局3(3a、3b、3c・・・)から受信した航空機の実際のNICデータ(NICデータ実際値)と、航空機航法性能推定マスタ局6で推定した航空機のNICデータ推定値(正常なNICデータ)とを比較するとともに判定して、各航空機2(2A、2B、2C・・・)が、航法性能の劣化、いわゆる“GNSSアウテージ”に陥っているか否かを常時監視している。
【0085】
以下、発明者が実際に実験した状況について説明する。
現時点における衛星航法の現場では、GNSSを用いて飛行している航空機2から送信されているADS−B情報あるいはモードS応答信号が、下記の(1)〜(3)の状態の場合には、この航空機2(2A、2B、2C・・・)は、“GNSSアウテージ”(GNSSが使用出来ない状態)であり、航空機2は、地上の航法装置、例えば、VORやDME等を用いて飛行している。
(1)NIC−>劣化
(2)SIL(Source Integrity Level) “3”−>3以外に劣化
(3)SIL
SUPP(Source Integrity Level Supplement) “0”−>0以外
【0086】
従って、航空機GNSS監視マスタ局7では、この状態を監視しており、“GNSSアウテージ”となっている航空機2(2A、2B、2C)の航法性能を、地上の管制官に報告する。
【0087】
ここで、“GNSSアウテージ”となる原因としては、下記の(1)〜(3)の3つがある。以下、これら3つの原因について検討する。
(1)機上受信機の故障による場合
(2)電波干渉(RFI)による場合
(3)GNSS衛星1の配置による場合
【0088】
上記3つの原因のうち、まず、(1)機上受信機の故障による場合について説明する。
航空機2(2A、2B、2C・・・)は、通常、安全上の要請により複数の予備の機上受信機を備えており、“GNSSアウテージ”が表示された場合には、切換指示が表示されるので、パイロットは予備の機上受信機に切換えれば良い。その結果、“GNSSアウテージ”が解消されれば、(1)機上受信機の故障が原因であると判断出来るので、問題は解決される。
【0089】
一方、予備の機上受信機に切り換えても“GNSSアウテージ”が解消されない場合には、(1)機上受信機の故障が原因ではないことが判明するとともに、(2)電波干渉(RFI)による場合、あるいは(3)GNSS衛星1の配置が悪い場合のいずれかが原因であることが判明する。
【0090】
この場合、残りの(2)電波干渉(RFI)による場合、あるいは(3)GNSS衛星1の配置が悪い場合のいずれの場合にあっても、航空機におけるGNSS受信状況が悪いために“GNSSアウテージ”が引き起こされていることが原因ではあるが、この航空機におけるGNSS受信状況が悪くなった原因を地上から直接観測することは困難である。
【0091】
そこで、発明者は、間接的に観測出来れば良いのではないかと考えた。即ち、“GNSSアウテージ”の原因が、(3)GNSS衛星1の配置が悪い場合によるものであるならば、航空機の位置におけるGNSS衛星の配置を地上で求めた場合、同様に悪いと考えられる。一方で、原因が(2)電波干渉(RFI)による場合には、地上で求めた航空機の位置におけるGNSS衛星の配置は悪くないと考えられる。
【0092】
従って、航空機の位置におけるGNSS衛星の配置を地上で求め、航空機の位置におけるGNSS衛星1の配置が悪いか否かを判断することにより、間接的に観測することが出来るのではないかと考えた。
【0093】
このGNSS衛星1の配置の善し悪しの判断については、航空機のGNSSの航法性能を表す情報であって、求める際のパラメータがGNSS衛星1の配置である航空機2の水平方向の保護レベル(HPL)を、下記の表1をもとにNICデータに換算した上で、このNICデータを用いて行う。
【0094】
【表1】
【0095】
表1は、NICデータとHPLデータとの関係を示すもので、上記したように、この表1に基づいてHPLデータをNICデータに換算する。例えば、航空機航法性能推定マスタ局6で計算した航空機2の位置における航空機2のGNSSの航法性能を表す情報、即ち、航空機2のHPLデータが、369m〜185mの場合には、NICデータ(推定値)は7と換算され、HPLデータが555m〜370mの場合には、NICデータは6と換算される。
【0096】
また、広域航法の利用に供するため、日本では経路または空域ごとに許容される航法性能が指定されており、現在下記の表2に示す6つの航法性能が設定されている。
【0097】
【表2】
【0098】
表2は、日本で設定されている航法性能を示すもので、例えば、「RNP4」として指定された経路または空域では、航法性能の指定されたRNP値は4であり、要求される航法精度としては「4NM以内」、即ち、誤差としては全飛行時間中少なくとも95%は±4NMの範囲になければならず、これをNICデータに換算すると「3以上」となる。従って、この「RNP4」として指定された経路または空域を飛行する際には、NICデータが3以上であることを求められることを示している。
【0099】
なお、現状では日本はADS−Bを義務化してはいないが、米国などにおいては、ADS−Bが義務化されており、ADS−Bを義務化している経路または空域では、NICデータが7以上であることが求められている。
【0100】
上記したように、航空機GNSS監視マスタ局7では、このNICデータが航空機2の飛行している経路または空域において指定されるRNP値から換算したNICデータの条件を満たす場合に正常と判定し、満たさない場合には異常と判定する。例えば、上記例のように「RNP4」として指定された経路または空域を航空機2が飛行している場合(指定されたRNP値が4の場合)、この指定されたRNP値から換算されるNICデータの条件は「3以上」であるので、NICデータが3以上の場合は正常と判定される。同じ例において、NICデータが2以下の場合には、上述したように当該航法を行ってはならないとICAOにより規定されており、航空機GNSS監視マスタ局7では、異常と判定され、その際、航空機2がGNSSを用いて航法を行っていた場合には、いわゆる“GNSSアウテージ”となっていることを表わしている。
【0101】
次に、発明者がこの発明の航法性能の推定方法を用いて行った実験について、
図3〜
図6に基づいて詳細に説明する。
図3は、同じ時間帯に付近を飛行中のGNSSを用いて航法を行う機能を備えた3機の航空機について、発明者がこの発明の航法性能の推定方法を用いて実験を行った際の実験装置の構成を示す概念図である。
【0102】
図4〜
図6は、発明者がこの発明の航法性能の推定方法を用いて実験を行った際の実験結果を示す図で、
図4(a)、(b)、(c)は、航法にGNSSを用いて飛行中の航空機2(2A、2B、2C)からそれぞれ送信されているNICデータ(以下、NICデータ実際値と記す)を、発明者が実際に測定した結果を示している。
図5(a)、(b)、(c)は、航空機2(2A、2B、2C)の水平方向の保護レベル(HPL)の計算値を示す図、
図6は
図4に示すNICデータ実際値と、
図5に示すHPLをNICデータに換算したNICデータ推定値とを比較・判定する図である。
【0103】
まず、
図3を用いて説明する。この実験においては、GNSSに用いるGNSS衛星として、GPS衛星1(1a、1b、1c・・・)を用いており、航空機2(2A、2B、2C)は、ADS−B情報を発信可能なモードSトランスポンダ(応答装置)を搭載しており、ADS−B情報を送信している。
【0104】
図3において、13は1090MHzの周波数で送信されているモードS応答信号やADS−B情報を受信可能な受信機で、航空機2(2A、2B、2C)から送信されているADS−B情報を受信している。GPS受信機14は、GPS衛星1(1a、1b、1c・・・)から送信されるGPS情報を受信し、PC15は、航空機2(2A、2B、2C)から送信されるADS−B情報からNIC実際値を取得するとともに、GPS情報を用いて航空機2(2A、2B、2C)のNIC推定値を求める計算処理を行っている。
【0105】
まず、
図2におけるステップ1と同様に、航空機2(2A、2B、2C)から送信されているADS−B情報を受信機13で受信し、PC15においてこのADS−B情報をデコードして、
図2におけるステップ2、ステップ3と同様に、航空機2(2A、2B、2C)のNICデータ実際値と、航空機2(2A、2B、2C)の位置情報(座標、高度)を取得する。この取得したNICデータ実際値を
図4に示す。
【0106】
図4は実際の測定結果を示し、(a)は航空機2A、(b)は航空機2B、(c)は航空機2Cについて、それぞれ実際に取得したNICデータ(NICデータ実際値)を示すもので、横軸は世界協定時(UTC:Universal Time, Cordinated)(h)、縦軸はNICデータ(指標につき無単位)を示している。
【0107】
例えば、
図4(a)に示すように、航空機12AからのNICデータ実際値は、5:45(h)〜5:50(h)頃迄は7であるが、5:50(h)頃から6に下がり、次いで、5:53(h)頃迄からは、再び7に上がることがわかる。
【0108】
一方、
図2におけるステップ4と同様に、GPS衛星1(1a、1b、1c・・・)から送信されるGPS情報をGPS受信機14で受信する。この受信したGPS情報のうち、GPS衛星1(1a、1b、1c・・・)の配置に関するパラメータと、PC15で取得した航空機2(2A、2B、2C)の位置情報(座標、高度)と、予め登録されている航空機2(2A、2B、2C)の性能パラメータとを用いて、航空機2(2A、2B、2C)の位置に対応した航空機2(2A、2B、2C)の水平方向の保護レベル(HPL)を算出する。このPC15で算出したHPLデータを
図5に示す。
【0109】
図5は、航空機の位置情報とGPS情報を用いてHPLデータを計算した結果を示し、(a)は航空機2A、(b)は航空機2B、(c)は航空機2Cについて、それぞれのHPLデータを示すもので、横軸は世界協定時(h)、縦軸はHPLデータ(m)を示している。また、この
図5において、実線が航空機のHPLデータ、点線はNICデータの6と7との境界である0.2(NM)を示している。
図4に示す結果もその様になっているが、日本では、一日を通してどの場所でもNICデータが6〜7を示すことが普通であるので、この
図5においては、NICデータの6と7との境界を点線で示している。
【0110】
上述したように、NICデータとHPLデータとは表1に示す関係があり、この表1に基づいてHPLデータをNICデータに換算する。このようにして求めた航空機2(2A、2B、2C)のNICデータ推定値と、
図4に示す取得したNICデータ実際値とを、
図6に併せて示す。
【0111】
図6は、NICデータ実際値と推定したNICデータ推定値とを比較評価するための図で、(a)は航空機2A、(b)は航空機2B、(c)は航空機2Cについて、それぞれのNICデータ推定値とNICデータ実際値とを示すもので、実線は推定したNICデータ推定値を示し、・・・線は、
図4に示すNICデータ実際値を示している。なお、横軸は世界協定時(h)、縦軸はNICデータ(指標につき無単位)を示している。
【0112】
図6(a)〜(c)に示すように、航空機2A〜航空機2Cにつて、いずれも実際のNICデータ実際値(・・・線で示す)と推定したNICデータ推定値(実線で示す)とは、ほぼ一致している。例えば、5:45(h)から推定しているNIC推定値は7であり、ほぼ同様に、実際のNICデータ実際値も7である。5:50(h)頃には、NIC推定値及びNICデータ実際値ともに、6に下がり、又、5:53(h)頃には、NIC推定値及びNICデータ実際値はともに、7に上がっており、ほぼ両NICデータは一致していることが明らかである。
図6に示す結果からわかるように、この発明による航法性能の推定方法を用いれば、地上にいながら、飛行中の航空機の航法性能を推定可能である。
【0113】
このように、この発明による航法性能の推定方法を用いれば、地上にいながら、飛行中の航空機の航法性能を推定可能であることから、この推定方法により求めたNICデータ推定値と、航空機から送信されるADS−B情報やモードS情報(モードS応答信号)に含まれるNICデータ(NICデータ実際値)とを比較するとともに、判定することで、航空機の航法性能の劣化を検出することが出来る。
【0114】
例えば、NICデータ推定値とNICデータ実際値とが一致するとともに異常の場合(航空機2の位置において指定されるRNP値から換算したNICデータの条件を満たさない場合)、NICデータ実際値が異常であることから、航空機は“GNSSアウテージ”ではあるが、NICデータ推定値もまた異常であることから、その原因はGNSS衛星の配置が悪いためだと判断することが出来る。しかしながら、上述したように、通常は飛行前のフライトプラン作成時にRAIM予測を行っているため、このような状況にはならない筈である。従って、フライトプラン作成時には把握できていなかった(メンテナンス等により)機能を発揮できないGNSS衛星があることにより、GNSS衛星の配置が悪くなったと推測することが出来る。
【0115】
また、NICデータ推定値が正常(航空機2の位置において指定されるRNP値から換算したNICデータの条件を満たす場合)で、NICデータ実際値が異常の場合、NICデータ実際値が異常であることから、航空機は“GNSSアウテージ”であり、NICデータ推定値が正常であることから、その原因はGNSS衛星の配置が悪いためではなく、電波干渉等の何らかの外的要因により航空機におけるGNSSの受信環境が悪くなっているために、航空機の航法性能が劣化していると検出することが出来る。
【0116】
さらに、NICデータ推定値とNICデータ実際値とがともに正常であったとしても、NICデータ実際値がNICデータ推定値より2以上悪い場合、又は、NICデータ実際値がNICデータ推定値より1悪い状態でしかないものの、その悪い状態が瞬間的な差異に収まらない場合、航空機は“GNSSアウテージ”になってはいないものの、電波干渉等の何らかの外的要因、又は、本来想定されるGNSSの環境が想定よりも劣化していることにより航空機におけるGNSSの受信環境が悪くなっているために、航空機の航法性能が劣化していると検出することが出来る。
【0117】
なお、この実施例では、GPS衛星及びADS−B情報を利用しているが、これに限定されるものではなく、他の衛星、即ちGNSS衛星に属する全ての衛星及びモードS情報でも同様であり、又、今後開発される他の放送システムであっても適用可能である。