(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6291483
(24)【登録日】2018年2月16日
(45)【発行日】2018年3月14日
(54)【発明の名称】単軸光ホモジナイザーを組み込む光画像形成システム
(51)【国際特許分類】
G02B 27/09 20060101AFI20180305BHJP
G01J 3/40 20060101ALI20180305BHJP
G01J 3/36 20060101ALI20180305BHJP
G01J 3/18 20060101ALN20180305BHJP
【FI】
G02B27/09
G01J3/40
G01J3/36
!G01J3/18
【請求項の数】4
【全頁数】13
(21)【出願番号】特願2015-515134(P2015-515134)
(86)(22)【出願日】2013年5月29日
(65)【公表番号】特表2015-519611(P2015-519611A)
(43)【公表日】2015年7月9日
(86)【国際出願番号】US2013043018
(87)【国際公開番号】WO2013181203
(87)【国際公開日】20131205
【審査請求日】2016年5月12日
(31)【優先権主張番号】61/653,668
(32)【優先日】2012年5月31日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】397068274
【氏名又は名称】コーニング インコーポレイテッド
(74)【代理人】
【識別番号】100073184
【弁理士】
【氏名又は名称】柳田 征史
(74)【代理人】
【識別番号】100090468
【弁理士】
【氏名又は名称】佐久間 剛
(72)【発明者】
【氏名】コムストック,セカンド ロヴェル エルジン
(72)【発明者】
【氏名】ウィギンス,リチャード リントン
【審査官】
堀部 修平
(56)【参考文献】
【文献】
特表2008−520004(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 27/09
G01J 3/00 − 3/457
(57)【特許請求の範囲】
【請求項1】
オブジェクト光源の光画像を提供する光画像形成システムにおいて、前記光画像形成システムは、
前記オブジェクト光源に関連する光を受光するための画像形成光学系と;
単軸ホモジナイザーであって、
前記画像形成光学系から前記オブジェクト光源に関連する前記光を受光するように位置されると共に入口端、本体及び出口端を有するように構成される矩形横断面光パイプであり、前記入口端がX軸方向に、前記画像形成光学系から受光した前記光を均質化するための寸法とされる幅を有し、前記入口端がY軸方向に、前記画像形成光学系から受光した前記光における空間的且つ角度的な画像変化を保持するための寸法とされる高さを有し、前記本体がZ軸方向に所定の長さを有する、矩形横断面光パイプ;および
前記矩形横断面光パイプから前記オブジェクト光源に関連する前記光を受光するように位置される非点収差近軸光学系;
を含むホモジナイザーと;
前記光画像形成システムは、前記非点収差近軸光学系から前記オブジェクト光源に関連する前記光を受光するように位置されると共に前記オブジェクト光源の前記光画像を出力するように構成される検出器と;
を備え、
前記非点収差近軸光学系は、前記矩形横断面光パイプの前記入口端と一致するYZオブジェクト平面、前記矩形横断面光パイプの前記出口端と一致するXZオブジェクト平面、及び前記検出器でともに一致するXZ画像平面とYZ画像平面を有するように構成される光画像形成システム。
【請求項2】
前記矩形横断面光パイプは、
前記入口端が前記検出器で望ましい視野と整合する寸法とされたY軸方向の前記高さを有することと;
前記入口端で受光された前記光の角度が前記矩形横断面光パイプの前記本体内においてYZ平面内で変化しないままであるような寸法とされたY軸方向の高さを前記出口端が有することと;
前記入口端が前記オブジェクト光源の望ましい画像スライスを提供するための寸法とされたX軸方向の幅を有することと;
を備える請求項1に記載の光画像形成システム。
【請求項3】
前記矩形横断面光パイプの前記入口端の高さ、前記出口端の高さ、及び前記本体の長さが、
Yh(出口) ≧ Yh(入口)+Z(光パイプ)/f/#を満たし、
式中、Z(光パイプ)が前記本体の長さであり、
Yh(出口)が出口端の高さであり、
Yh(入口)が入口端の高さであり、
1/f/#が前記矩形横断面光パイプ内で移動する前記光の最大角度の傾きの2倍である請求項2に記載の光画像形成システム。
【請求項4】
オブジェクト光源の光画像を提供する光画像形成システムを製造する方法において、前記方法は、
前記オブジェクト光源に関連する光を受光するように構成される画像形成光学系を提供する工程と;
単軸ホモジナイザーであって、
前記画像形成光学系から前記オブジェクト光源に関連する前記光を受光するように位置されると共に入口端、本体及び出口端を有するように構成される矩形横断面光パイプであり、前記入口端がX軸方向に、前記画像形成光学系から受光した前記光を均質化するための寸法とされる幅を有し、前記入口端がY軸方向に、前記画像形成光学系から受光した前記光における空間的且つ角度的な画像変化を保持するための寸法とされる高さを有し、前記本体がZ軸方向に所定の長さを有する、矩形横断面光パイプ;および
前記矩形横断面光パイプから前記オブジェクト光源に関連する前記光を受光するように位置される非点収差近軸光学系;
を含む単軸ホモジナイザーを提供する工程と;
前記非点収差近軸光学系から前記オブジェクト光源に関連する前記光を受光するように位置されると共に前記オブジェクト光源の前記光画像を出力するように構成される検出器を提供する工程と;
を備え、
前記非点収差近軸光学系は、前記矩形横断面光パイプの前記入口端と一致するYZオブジェクト平面、前記矩形横断面光パイプの前記出口端と一致するXZオブジェクト平面、及び前記検出器でともに一致するXZ画像平面とYZ画像平面を有するように構成される、方法。
【発明の詳細な説明】
【0001】
本願は、2012年5月31日に出願された米国仮特許出願第61/653668号の優先権の利益を享受し、その内容に基づいており、その全体の参照によってここに組み込まれる。
【技術分野】
【0002】
画像形成光学系、単軸ホモジナイザー(矩形横断面光パイプと非点収差近軸光学系を含む)、及び検出器を含む光画像形成システム(例えば、ハイパースペクトル画像形成システム)が、概して開示される。単軸ホモジナイザーは、一本の軸に沿って画像形成を保持すると共に第2の垂直軸に沿って均質化する(全ての画像情報を除去する)ように構成される。一実施形態では、単軸ホモジナイザーは、ハイパースペクトル画像形成システムの分光写真機において使用され、矩形横断面光パイプが分光写真機の入口スプリットに取って代り、非点収差近軸光学系が分光計の光学系の設計に組み入れられる。
【背景技術】
【0003】
ハイパースペクトル画像形成システムのような光画像形成システム、プロジェクタ、トラッキングシステム、及び光制御システムの製造者は、常に、画像形成が幾つかの特性を有するように調整することによってそのようなシステムを向上しようとしている。
【発明の概要】
【発明が解決しようとする課題】
【0004】
製造者が、実際に画像の完全さをより減少することによって光画像形成システムを向上してそれにより良好に実行させる1つの方法が、本発明の主題である。
【課題を解決するための手段】
【0005】
光画像形成システム、その光画像形成システムを製造する方法、及びハイパースペクトル画像形成システムが、本願の独立の請求項に開示されている。光画像形成システム、その光画像形成システムを製造する方法、及びハイパースペクトル画像形成システムの有利な実施形態が、独立の請求項に開示されている。
【0006】
一態様において、オブジェクト光源の光画像を提供するための光画像形成システムが開示される。一実施形態において、光画像形成システムは、(a)オブジェクト光源に関連する光を受光するための画像形成光学系と;(b)単軸ホモジナイザーを備え、前記単軸ホモジナイザーが、(i)前記画像形成光学系から前記オブジェクト光源に関連する光を受光するように位置され且つ入口端、本体及び出口端を有するように構成される矩形横断面光パイプを含み、前記入口端が、X軸方向に受光光を均質化するための寸法にされた幅を有し且つ前記入口端が、Y軸方向に受光光の空間的且つ角度的画像変化を保持するための寸法にされた高さを有し、前記本体は、Z軸方向に所定の長さを有すること、及び(ii)前記矩形横断面パイプから前記オブジェクト光源に関連する光を受光するように位置された非点収差近軸光学系を含み;前記光画像形成システムは、(c)前記非点収差近軸光学系から前記オブジェクト光源に関連する光を受光するように位置され且つ前記オブジェクト光源の光画像を出力するように構成された検出器を含む。
【0007】
他の実施形態において、本開示は、オブジェクト光源の光画像を提供する光画像形成システムを製造する方法を提供する。一実施形態では、本方法は、(a)前記オブジェクト光源に関連する光を受光するように構成された画像形成光学系を提供する工程と;(b)単軸ホモジナイザーを提供する工程を備え、前記単軸ホモジナイザーは、(i)前記画像形成光学系から前記オブジェクト光源に関連する光を受光するように位置され且つ入口端、本体及び出口端を有するように構成される矩形横断面光パイプを含み、前記入口端が、X軸方向に受光光を均質化するための寸法とされた幅を有し且つ前記入口端が、Y軸方向に受光光の空間的且つ角度的画像変動を保持するための寸法にされた高さを有し、前記本体は、Z軸方向に所定の長さを有すること、及び(ii)前記矩形横断面パイプから前記オブジェクト光源に関連する光を受光するように位置された非点収差近軸光学系を含み;本方法は、(c)前記非点収差近軸光学系から前記オブジェクト光源に関連する光を受光するように位置され且つ前記オブジェクト光源の光画像を出力するように構成される検出器を提供する工程を備える。
【0008】
更に他の態様において、本開示は、オブジェクト光源の光画像を提供するためのハイパースペクトル画像形成システムを提供する。一実施形態では、本ハイパースペクトル画像形成システムは、(a)前記オブジェクト光源に関連する光を提供するための画像形成光学系と;(b)単軸ホモジナイザーとを備え、前記単軸ホモジナイザーが、(i)前記画像形成光学系から前記オブジェクト光源に関連する光を受光するように位置され且つ入口端、本体及び出口端を有するように構成される矩形横断面光パイプを含み、前記入口端が、X軸方向に受光光を均質化するための寸法にされた幅を有し且つ前記入口端が、Y軸方向に受光光の空間的且つ角度的画像変動を保持するための寸法にされた高さを有し、前記本体は、Z軸方向に所定の長さを有すること、及び(ii)前記矩形横断面パイプから前記オブジェクト光源に関連する光を受光するように位置された非点収差近軸光学系を含み;前記ハイパースペクトル画像形成システムは、(c)前記非点収差近軸光学系から前記オブジェクト光源に関連する光を受光するように位置される回折格子と;(d)前記回折格子から前記オブジェクト光源に関連する光を受光するように位置される分光計光学系と;(e)前記分光計光学系から前記オブジェクト光源に関連する光を受光するように位置され且つ前記オブジェクト光源の光画像を出力するように構成された検出器を備える。
【0009】
本開示の追加の態様は、続く詳細な説明、図面及びいずれかの請求項に部分的に述べられており、その詳細な説明から部分的に導出される、又は本発明の実施によって学ばれる。前述の一般的な記述及び以下の詳細な記述は、例示であり、説明のためものに過ぎず、開示される開示に制限されない。
【図面の簡単な説明】
【0010】
添付の図面と併せて以下の詳細な説明を参照することによって本開示のより完全な理解が得られる。
【
図1A】本発明の実施形態に従う、オブジェクト光源の光画像を提供するように構成される例示の光画像形成システムに関連する図である。
【
図1B】本発明の実施形態に従う、オブジェクト光源の光画像を提供するように構成される例示の光画像形成システムに関連する図である。
【
図1C】本発明の実施形態に従う、オブジェクト光源の光画像を提供するように構成される例示の光画像形成システムに関連する図である。
【
図1D】本発明の実施形態に従う、オブジェクト光源の光画像を提供するように構成される例示の光画像形成システムに関連する図である。
【
図1E】本発明の実施形態に従う、オブジェクト光源の光画像を提供するように構成される例示の光画像形成システムに関連する図である。
【
図2A】本発明の実施形態に従う、単一のオブジェクト光源の単一の光画像を提供する代わりに、二つのオブジェクト光源の二つの光画像を提供している
図1に示された例示の光画像形成システムに関連する図である。
【
図2B】本発明の実施形態に従う、単一のオブジェクト光源の単一の光画像を提供する代わりに、二つのオブジェクト光源の二つの光画像を提供している
図1に示された例示の光画像形成システムに関連する図である。
【
図2C】本発明の実施形態に従う、単一のオブジェクト光源の単一の光画像を提供する代わりに、二つのオブジェクト光源の二つの光画像を提供している
図1に示された例示の光画像形成システムに関連する図である。
【
図2D】本発明の実施形態に従う、単一のオブジェクト光源の単一の光画像を提供する代わりに、二つのオブジェクト光源の二つの光画像を提供している
図1に示された例示の光画像形成システムに関連する図である。
【
図2E】本発明の実施形態に従う、単一のオブジェクト光源の単一の光画像を提供する代わりに、二つのオブジェクト光源の二つの光画像を提供している
図1に示された例示の光画像形成システムに関連する図である。
【
図3A】本発明の実施形態に従う、オブジェクト光源のスペクトル特徴を描く光画像を提供するように構成された例示のハイパースペクトル画像形成システムの基本コンポーネントを描く写真である。
【
図3B】本発明の実施形態に従う、オブジェクト光源のスペクトル特徴を描く光画像を提供するように構成された例示のハイパースペクトル画像形成システムの基本コンポーネントを描く写真である。
【
図3C】本発明の実施形態に従う、オブジェクト光源のスペクトル特徴を描く光画像を提供するように構成された例示のハイパースペクトル画像形成システムの基本コンポーネントを描く写真である。
【発明を実施するための形態】
【0011】
図1A乃至
図1Eを参照すると、本開示の実施形態に従う、オブジェクト光源102の光画像101を提供するように構成された例示の光画像形成システム100を記述するのを助けるために使用される幾つかの図がある。
図1Aに示されるように、例示の光画像形成システム100は、中に画像形成光学系106、単軸ホモジナイザー108(矩形横断面光パイプ110及び非点収差近軸光学系112を含む)、及び検出器114が配置されるハウジング104を含む。画像形成光学系106(例えば、凸形状レンズ106、レンズ群系106)は、オブジェクト光源102の少なくとも一部に関連する光116を受光し、オブジェクト光源102に関連する光116aを出力する。矩形横断面光パイプ110は、画像形成光学系106からオブジェクト光源102に関連する光116aを受光し、オブジェクト光源102に関連する光116bを出力するように位置される(
図1B乃至
図1E参照)。非点収差近軸光学系112(例えば、非点収差近軸レンズ112)は、矩形横断面光パイプ110からオブジェクト光源102に関連する光116bを受光し、オブジェクト光源102に関連する光116cを受光するように位置される。検出器114は、非点収差近軸光学系112からオブジェクト光源102に関連する光116cを受光し、オブジェクト光源102の光画像101を出力するように位置される(
図1E参照)。光画像形成システム100は、当業者には周知である他のコンポーネントを組み込むことができるが、明瞭にするために、本開示に関連するこれらのコンポーネントのみがここで詳細に論じされる。これに関連して、矩形横断面光パイプ110と非点収差近軸光学系112を含む単軸ホモジナイザー108についての詳細な議論は、
図1B乃至
図1Eに関連して以下で行われる。
【0012】
図1Bに示されるように、本開示の一実施形態に従う矩形横断面光パイプ110の斜視図がある。矩形横断面光パイプ110は、光線を1つの軸方向へ指定の場所へ案内すると共に第2の垂直軸方向への案内をしない任意の構造である。例は、全内反射を使用する矩形光導波路、内部が中空であるが反射内表面を有する矩形光学光パイプ、又は一連の円筒状レンズアレイである。この例では、矩形横断面光パイプ110は、直接繋がるx軸方向のパスが無いように接続された二つの矩形状セクション110aと110b(より可能性がある)から形成され、それによって、常に均質化があるが、均質化の度合いがより少ない1つの矩形状セクション(図示せず)から作られてもよい。
【0013】
図示されるように、矩形横断面光パイプ110は、入口端120(光116aを受光する)、本体122、及び出口端124(光116bを出力する)を有する。入口端120は、X軸方向に受光光116aを均質化する寸法にされた幅128を有する。入口端120は、Y軸方向に受光光116aにおける元の空間的且つ角度的画像変化を保持する寸法にされた高さ129を有する。本体122は、Z軸方向へ所定の長さ131を有する。矩形横断面光パイプ110の寸法を、X軸方向に受光光116aを均質化し、同時にY軸方向に受光光116aの空間的及び角度的画像変化を保持するように決定又は選択することができる方法は、以下の公式を利用することである。
【0015】
式中、Z(光パイプ)は、光パイプ110の長さであり、Yh(出口)は、出口端124の高さであり、Yh(入口)は、入口端120の高さ129であり、1/f#は、光パイプ110内の光移動の最大角度の勾配の2倍である。
【0016】
ここで記述され且つ図面に示されるX軸、Y軸及びZ軸は、周知の三次元直交座標系である。更に、明瞭化のための図面は、光116、116a、116b、及び116cに関連する光線の小さな部分を描いているに過ぎない。
【0017】
この公式の利用において、矩形横断面光パイプ110の入口端120のYh(入口)は、口径食を防止するのに必要な視野を整合するように選択される。矩形横断面光パイプ110の出口124のYh(出口)は、矩形横断面光パイプ110に入る光116aの光線角度がY−Z平面内で変化しないままであるように選択される。加えて、X軸に沿う矩形横断面光パイプ110の入口端120の幅128は、望ましい画像スライスを選択するように選ばれる。典型的には、矩形横断面光パイプ110の出口124の幅は、X軸に沿う矩形横断面光パイプ110の入口端120の幅と同一である。しかしながら、幾つかの用途において、矩形横断面光パイプ110の入口端120のX幅とは異なる出口端124のX幅を有することによって、出口光線116bのf/#を変化させることが有利である可能性がある。
【0018】
更に、Z軸に沿う矩形横断面光パイプ110の本体122の長さ131は、望ましい度合いの均質化を提供するように選択される。この出願では、用語“均質化”は、以下のように特徴付けられ得る。矩形横断面光パイプの入口端120がオブジェクト光源102に関連する光116aを受光し、矩形横断面光パイプの本体122がX軸に沿ってオブジェクト光源102に関連する受光光116aを均質化し、それによって、矩形断面光パイプの出口端124を出るX軸に関する光116bの空間的、角度的及び分極分布が矩形横断面光パイプの入口端120で受光されるX軸に沿う光116aよりも均一にされる。更に、この出願では、用語“オブジェクト光源”は、以下のように特徴付けられ得る。即ち、発光物理オブジェクト又は画像形成システムによって生成されるオブジェクトのような画像である。
【0019】
図1Cに示されるように、X軸に沿う受光光116aの均質化を描くXZ平面に関する矩形横断面光パイプ110の平面図がある。この例では、X軸に沿う矩形横断面光パイプ110の幅128は、50マイクロメートルであり、Z軸に沿う矩形横断面光パイプ110の長さ131は、1mmである。受光光116aの光線は、左から右へ移動している。この図面と
図1Aを参照すると、非点収差近軸光学系112の構成とその矩形横断面光パイプ110に対する位置は、オブジェクト光源102の望ましい光画像101を提供するために重要であることを当業者は認識すべきである。これに関して、非点収差近軸光学系(例えば、非点収差近軸レンズ112)は、矩形横断面光パイプ110の入口端120と一致するYZオブジェクト平面を有するように構成される。非点収差近軸光学系112は、矩形横断面光パイプ110の出口端124と一致するXZオブジェクト平面を有する。加えて、非点収差近軸光学系112は、検出器114で一致されるXZ画像平面とYZ画像平面を有する。非点収差近軸光学系112は、YZ平面における非点収差近軸光学系112の適切な焦点距離とXZ平面における適切な焦点距離を選択することによって、これらの要求の全てを満たすように構成され得る。換言すれば、非点収差近軸光学系112は、入口端120の平面でのYZ平面における及び出口端124の平面におけるXZ平面での完全な又は実質的に完全な(近軸)画像形成を有するように構成される。非点収差近軸光学系112の例は、本願では、非点収差を有する円筒レンズである。
【0020】
図1Dに示されるように、受光光116aの空間的且つ角度的画像変化がY軸に沿って維持されることを描くと共にY軸に沿う受光光116aの均質化がないことも描くYZ平面に関する矩形横断面光パイプ110の拡大側面図がある。この例では、Y軸に沿う矩形横断面光パイプ110の高さ129とZ軸に沿う矩形横断面光パイプ110の長さ131は、1mmである。受光光116aの光線は、左から右へ移動している。
【0021】
図1Eに示すように、矩形横断面光パイプ110の入口端120での照明スポット132(受光光116a)と矩形横断面光パイプ110の出口端124で得られる照明スポット132(出力光116b)を描く矩形横断面光パイプ110の二つの部分的端面図がある。この例では、照明スポット130は、入口端120の幅128に対応する50マイクロメートルにわたる均質化がX軸に沿って生じる20マイクロメートの正方形である。照明スポット130の均質化は、入口端120の高さ129に対応するY軸に沿っては生じない。矩形横断面光パイプ110の出口端124での照明スポット132(出力光116b)は、Y軸に沿って20マイクロメートルとX軸に沿って50マイクロメートルである矩形形状を有する。照明スポット132は、光画像101を形成するために検出器114までの非点収差近軸光学系112によって提供されるものである(
図1A参照)。この場合、元の矩形照明スポット130は、スポット130のY方向寸法を保持するが幅128の全X方向寸法にわたって均質的に広がる矩形の照明132に変換された。
【0022】
図2A乃至
図2Eを参照すると、上述の単一オブジェクト光源102の単一光画像101を提供する代わりに、本発明の実施形態に従って、二つのオブジェクト光源102と204の二つの光画像101と202を提供している前述の例示的光画像形成システム100に関連する幾つかの図がある。この場合、光画像形成システム100は、同じコンポーネント、即ち、
図1A乃至
図1Eに関して上述したのと同じ構成で配置されたハウジング104、画像形成光学系106、単軸ホモジナイザー108(矩形横断面光パイプ110と非点収差近軸光学系112)、及び検出器114を含む。しかしながら、この場合、画像形成光学系106(例えば、近軸レンズ106、凸形状レンズ106、レンズ系106、ミラー系106)は、オブジェクト光源102の少なくとも一部に関連する受光光116(短鎖線)に加えて、他方のオブジェクト光源204の少なくとも一部に関連する光206(長鎖線)も受光する(注:短鎖線と長鎖線は、読者が光116の光線を光206の光線から区別するのを助けるために使用されているに過ぎない)。画像形成光学系106は、オブジェクト光源102と204に関連する光116aと206aを出力する。矩形横断面光パイプ110は、画像形成光学系106からオブジェクト光源102と204に関連する光116aと206aを受光し、オブジェクト光源102と204に関連する光116bと206bを出力するように位置される(
図2B乃至
図2E参照)。非点収差近軸光学系112(例えば、非点収差近軸レンズ112)は、オブジェクト光源102と204に関連する光116bと206bを受光し、オブジェクト光源102と204に関連する光116cと206cを出力するように位置される。検出器114は、非点収差近軸光学系112からオブジェクト光源102と204に関連する光116cと206cを受光し、オブジェクト光源102と204の光画像101と202を出力するように位置される(
図2E参照)。矩形横断面光パイプ110と非点収差近軸光学系112を含む単軸ホモジナイザー108についての詳細な議論は、
図2B乃至
図2Eに関連して以下に提供される。
【0023】
図2Bに示されるように、上述のように、入口端120、本体122、及び出口端124を含む矩形横断面光パイプ110の斜視図がある。この場合、入口端120は、照明スポット130でオブジェクト光源102と関連する光116aを受光し且つ照明スポット232でオブジェクト光源204に関連する光206aを受光する。
図2Cにおいて、XZ平面に関する矩形横断面光パイプ110の平面図は、X軸に沿う受光光116aと206aの均質化について描いている。
図2Dにおいて、YZ平面に関する矩形横断面光パイプ110の拡大側面図は、受光光116aと206aの空間的且つ角度的な画像変化がY軸に沿って保持されることを描くと共にY軸に沿う受光光116aと206aの均質化もないことを描いている。
図2Eにおいて、矩形横断面光パイプ110の二つの端面図は、矩形横断面光パイプ110の入口端120での照明スポット130と232(受光光116aと206a)と矩形横断面光パイプ110の出口端124で得られる照明スポット132と236(出力光116bと206b)を描いている。この例では、照明スポット130と232は、両方とも、X軸に沿って30マイクロメートルとY軸に沿って60マイクロメートル変位される20マイクロメートルの正方形である。この場合、入口端120の幅128に対応し且つX軸に沿って生じる50マイクロメートルにわたる均質化があった。照明スポット130と232の均質化は、入口端120の高さ129に対応するY軸に沿って生じない。矩形横断面光パイプ110の出口端124での照明スポット132と236(出力光116bと光206b)は、各々がY軸に沿って20マイクロメートルとX軸に沿って50マイクロメートルである矩形状である。照明スポット132と236は、光画像101と202を形成するために検出器114までの非点収差近軸光学系112によって提供されるものである(
図2A参照)。光画像形成システム100は、複数のオブジェクト光源(二つのオブジェクト光源102と204を越える)から光を受光し、これらのオブジェクト光源の光画像を提供できることが認識されるべきである。
【0024】
図3A乃至
図3Cを参照すると、本発明の実施形態に従って、オブジェクト光源304のスペクトル特徴を描く光画像302を提供するように構成された例示のハイパースペクトル画像形成システム300の基本コンポーネントを描く写真がある。例示のハイパースペクトル画像形成システム300は、中に配置される画像形成光学系308、単軸ホモジナイザー310(矩形横断面光パイプ312と非点収差近軸光学系314を含む)、回折格子316、分光計光学系318、及び検出器320が配置されるハウジング306を含む。画像形成光学系308(例えば、近軸レンズ308、凸形状レンズ308、レンズ系308、ミラー系308)は、オブジェクト光源304の少なくとも一部に関連する光を受光し、オブジェクト光源304に関連する光を出力する。矩形横断面光パイプ312は、画像形成光学系308からオブジェクト光源304に関連する光を受光し、オブジェクト光源304に関連する光を出力するように位置される(
図3B乃至
図3C参照)。非点収差近軸光学系314(例えば、オフナー主鏡315に組み込まれた近軸非点収差画像形成)は、矩形横断面光パイプ312からオブジェクト光源304に関連する光を受光し、オブジェクト光源304に関連する光を反射するように位置される。回折格子316は、非点収差近軸光学系314からオブジェクト光源304に関連する光を受光し、オブジェクト光源304に関連する光を回折し、回折光を反射するように位置される。分光計光学系318(例えば、オフナー副鏡318)は、回折格子316からオブジェクト光源304に関連する光を受光し、オブジェクト光源304に関連する回折光を反射するように位置される。検出器320は、分光計光学系318からオブジェクト光源304に関連する回折光を受光し、オブジェクト光源304のスペクトル特徴を描く光画像302を出力する。
【0025】
見られるように、本開示の単軸ホモジナイザー310は、ハイパースペクトル画像形成システム300の分光写真機322において使用され得る。分光写真機322において使用される場合、矩形横断面光パイプ312は、従来の入口スリットと取り代わり、非点収差近軸光学系314が従来の分光計光学系315の設計に組み入れられる。このように、分光写真機322のコンポーネントの数は、従来の分光写真機と比較して変わらないままである。ハイパースペクトル画像形成システム300は、当業者には周知である他のコンポーネントを組み込むこともできるが、明瞭化のために、本開示に関連するこれらのコンポーネントのみがここでは詳細に論じられる。
【0026】
図3B乃至
図3Cに示されるように、本発明の一実施形態に係る例示のハイパースペクトル画像形成システム300に設置される矩形状矩形横断面光パイプ312の正面図と角度が付けられた正面図を夫々示す写真がある。矩形横断面光パイプ312は、入口端324(オブジェクト光源304に関連する光を受光する)、本体326、及び出口端328(オブジェクト光源304に関連する光を出力する)を有するように構成される。入口端324は、X軸方向に受光光を均質化するための寸法にされた幅330を有する。更に、入口端324は、Y軸方向に受光光の空間的且つ角度的な画像変化を保持するための寸法にされた高さ332を有する。本体326は、Z軸方向に所定の長さ327を有する。矩形横断面光パイプ312及びそれがいかに設計され得るかについてのより詳細な議論のために、
図1A乃至
図1Eに関して上述された矩形横断面光パイプ110が参照される。更に、非点収差近軸光学系314は、矩形横断面光パイプ312の入口端324と一致するYZオブジェクト平面を有するように構成される。非点収差近軸光学系314は、矩形横断面光パイプ312の出口端328と一致するXZオブジェクト平面を有するように構成される。加えて、非点収差近軸光学系314は、検出器のXY平面(320)で一致させられるXZ画像平面とYZ画像平面を有する。非点収差近軸光学系314は、YZ平面における非点収差近軸光学系314の適切な焦点距離とXZ平面における適切な焦点距離を選択することによって、これらの要求の全てを満たすように構成され得る(
図3A参照)。換言すれば、非点収差近軸光学系314は、YZ平面とXZ平面において完全な又は実質的に完全な(近軸)画像形成を有するように構成されるが、非点収差近軸光学系314の焦点距離は、これら二つの平面において異なっている。分光写真機のような画像形成システム300が単軸ホモジナイザー310に続く場合、画像形成システムにおける光学系を変更することはむしろ容易であり、それらは、それらの元の機能を提供し、更に非点収差近軸光学系314の機能も提供することが認識されるべきである。そして、外部の非点収差近軸レンズは必要ない。従って、二つの異なるバージョンがある。
【0027】
前述から、当業者は、本開示が一般的には光画像形成システム100に関し、一特定の実施形態では、分光写真機322を組み込むハイパースペクトル画像形成システム300に関することを理解するであろう。分光写真機ベースのハイパースペクトル画像形成システム300の性能は、矩形光パイプ312が従来の入口スリットに取って代り且つ非点収差近軸光学系314が従来の分光計光学系に組み入れられるため、最先端の技術に対する顕著な向上である。特に、変幻自在の単軸ホモジナイザー310を有する分光写真機ベースのハイパースペクトル画像形成システム300は、矩形横断面光パイプの入口端324での照明が入口端の幅(一軸、スペクトル軸)にわたって均一にされる(均質にされる、散乱される)と共に入口端の長さ(垂直軸、空間軸)に沿う空間的且つ角度的な画像変化を保持できるように構成される。本発明の幻自在の単軸ホモジナイザー310は、分光写真機における用途に制限されず、それは、例えば、プロジェクタ、トラッキングシステム、及び光制御システムを含む広範囲のデバイスにおいて有用性を有する。
【0028】
本開示の複数の実施形態が添付の図面に描かれ且つ前述の詳細な説明に記述されたが、本発明は開示の実施形態に制限されず、以下の請求項で述べられ且つ定義される開示から逸脱することなく多くの再配置、変更及び交換が可能であることが理解されるべきである。また、ここで使用される“本開示(present disclosure)”や“開示(disclosure)”に対する言及は、例示的実施形態に関するものであり、必ずしも添付の請求項によって包含される全ての実施形態に関するものではない。