(58)【調査した分野】(Int.Cl.,DB名)
前記3個以上の(メタ)アクリロイル基を有する化合物が、有機ポリイソシアネートと水酸基含有(メタ)アクリレートの反応物であって、3個以上の(メタ)アクリロイル基を有する化合物である請求項4に記載の樹脂シートの製造方法。
前記工程2において、ピーク温度55℃以下に維持しながら、基材のいずれかの側から光拡散板を透過した活性エネルギー線を照射して、組成物を硬化させる請求項1〜請求項6のいずれか1項に記載の樹脂シートの製造方法。
【発明を実施するための形態】
【0018】
本発明は、活性エネルギー線硬化型組成物を使用し、下記工程1及び同2を順次実施する膜厚100μm〜5mmを有する樹脂シートの製造方法に関する。
工程1:基材上に、前記組成物を塗工するか、又は
凹部を有する基材に、前記組成物を流し込むか若しくは注入する工程
工程2:基材のいずれかの側からヘイズが45%以上である光拡散板を透過した活性エネルギー線を照射して、組成物を硬化させる工程
以下、活性エネルギー線硬化型組成物、及び樹脂シートの製造方法について説明する。
【0019】
1.活性エネルギー線硬化型組成物
本発明の製造方法では、活性エネルギー線硬化型組成物を使用する。
活性エネルギー線硬化型組成物を構成する化合物としては、活性エネルギー線の照射によりラジカル種、カチオン種及びアニオン種等の活性種を発生する化合物が挙げられる。
活性エネルギー線の照射によりラジカル種を発生する化合物としては、エチレン性不飽和基を有する化合物(A)〔以下、「(A)成分」という〕が挙げられる。
活性エネルギー線の照射によりカチオン種を発生する化合物としては、エポキシ化合物、オキセタン化合物及びビニルエーテル等が挙げられる。
活性エネルギー線の照射によりアニオン種を発生する化合物としては、クロムアミンチオシアネート、白金アセチルアセトネート、ペンタカルボニル金属錯体、シッフ塩基、フェロセン、メタロセン及びアルキルアルミニウムポルフィリン等が挙げられる。
【0020】
本発明においては、(A)成分を含む組成物が好ましい。
(A)成分におけるエチレン性不飽和基としては、(メタ)アクリロイル基、ビニル基及びビニルエーテル基等が挙げられ、(メタ)アクリロイル基が好ましい。
(A)成分としては、エチレン性不飽和基を1個有する化合物〔以下、「単官能不飽和化合物」という〕、及びエチレン性不飽和基を2個以上有する化合物〔以下、「多官能不飽和化合物」という〕等が挙げられる。
本発明においては、(A)成分として、多官能不飽和化合物を含むものが、得られる樹脂シートが高弾性率を有するものとなるためより好ましい。
以下、それぞれの化合物について具体的に説明する。
【0021】
1−1.単官能不飽和化合物
単官能不飽和化合物としては、1個の(メタ)アクリロイル基を有する化合物〔以下、「単官能(メタ)アクリレート」という〕等が挙げられる。
【0022】
単官能(メタ)アクリレートの具体例としては、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、トリメチルシクロヘキシル(メタ)アクリレート、1−アダマンチル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、アリル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、о−フェニルフェノールEO変性(n=1〜4)(メタ)アクリレート、p−クミルフェノールEO変性(n=1〜4)(メタ)アクリレート、フェニル(メタ)アクリレート、о−フェニルフェニル(メタ)アクリレート及びp−クミルフェニル(メタ)アクリレート等が挙げられる。
【0023】
単官能不飽和化合物としては、種々の官能基を有する化合物であっても良い。
カルボキシル基を有する化合物の例としては、(メタ)アクリル酸、(メタ)アクリル酸のポリカプロラクトン変性物、(メタ)アクリル酸のマイケル付加型多量体、2−ヒドロキシエチル(メタ)アクリレートと無水フタル酸の付加物、2−ヒドロキシエチル(メタ)アクリレートと無水コハク酸の付加物等のカルボキシル基含有(メタ)アクリレート等が挙げられる。
【0024】
水酸基を有する化合物の例としては、水酸基を有する(メタ)アクリレートが挙げられる。
水酸基を有する(メタ)アクリレートとしては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシペンチル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート及びヒドロキシオクチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート等が挙げられる。
【0025】
アミド基を有する化合物の例としては、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルピロリドン及び(メタ)アクリルアミド系化合物等が挙げられる。
(メタ)アクリルアミド系化合物の具体例としては、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド及びN−t−ブチル(メタ)アクリルアミド等のN−アルキルアクリルアミド;
N,N−ジメチル(メタ)アクリルアミド及びN,N−ジエチル(メタ)アクリルアミド等のN,N−ジアルキルアクリルアミド;
N−ヒドロキシエチル(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、N−メトキシメチル(メタ)アクリルアミド及びN−ブトキシメチル(メタ)アクリルアミド、N−メトキシエチル(メタ)アクリルアミド等のN−アルコキシアルキル(メタ)アクリルアミド;並びに
(メタ)アクリロイルモルホリン等が挙げられる。
これら化合物の中でも、(メタ)アクリロイルモルホリン及びN−ビニルホルムアミドが好ましい。
【0026】
カルバメート基を有する化合物の例としては、オキサゾリドン基を有する(メタ)アクリレート等を挙げることができ、その具体例としては、2−(2−オキソー3−オキサゾリジニル)エチルアクリレート等を挙げることができる。
【0027】
イミド基を有する化合物の例としては、マレイミド基を有する化合物が挙げられる。マレイミド基を有する化合物としては、ヘキサヒドロフタルイミド基を有する(メタ)アクリレート及びテトラヒドロフタルイミド基を有する(メタ)アクリレート等が挙げられる。ヘキサヒドロフタルイミド基を有する(メタ)アクリレートの具体例としては、N−(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド等が挙げられる。テトラヒドロフタルイミド基を有する(メタ)アクリレートの例としては、N−(メタ)アクリロイルオキシエチルテトラヒドロフタルイミド等が挙げられる。
【0028】
1−2.多官能不飽和化合物
多官能不飽和化合物としては、2個の(メタ)アクリロイル基を有する化合物〔以下、「2官能(メタ)アクリレート」という。以下、3個以上の(メタ)アクリロイル基を有する化合物を「○官能(メタ)アクリレート」と同様に表記する。〕としては、ビスフェノールAアルキレンオキサイド付加物のジ(メタ)アクリレート及びビスフェノールAジ(メタ)アクリレート等の芳香族骨格を有する2官能(メタ)アクリレート;
エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、ポリ(1−メチルブチレングリコール)ジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート及びネオペンチルグリコールジ(メタ)アクリレート等の脂肪族骨格を有する2官能(メタ)アクリレート;
ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート;
ジメチロールトリシクロデカンジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート及びスピログリコールジ(メタ)アクリレート等の脂環式骨格を有する2官能(メタ)アクリレート;
尚、上記においてアルキレンオキサイド付加物としては、エチレンオキサイド付加物及びプロピレンオキサイド付加物等が挙げられる。
【0029】
多官能(メタ)アクリレートとしては、上記以外にもウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレー及びポリエーテル(メタ)アクリレート等が挙げられる。
【0030】
1−2−1.ウレタン(メタ)アクリレート
多官能(メタ)アクリレートとしては、ウレタン結合を有し2個以上の(メタ)アクリロイル基を有する化合物であるウレタン(メタ)アクリレート〔以下、「(A1)成分」という〕が好ましい。
(A1)成分としては、ポリオール、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの反応物〔以下、「(A1-1)成分」という〕、並びに有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの反応物〔以下、「(A1-2)成分」という〕等が挙げられる。
以下、(A1-1)成分及び(A1-2)成分について説明する。
【0031】
1)(A1-1)成分
(A1-1)成分は、ポリオール、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの反応物である。
【0032】
(A1-1)成分におけるポリオールとしては、ジオールが好ましい。
ジオールとしては、低分子量ジオール、ポリエステル骨格を有するジオール、ポリエーテル骨格を有するジオール及びポリカーボネート骨格を有するジオールが好ましい。
低分子量ジオールとしては、エチレングリコール、プロピレングリコール、シクロヘキサンジメタノール、ネオペンチルグリコール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール等が挙げられる。
ポリエステル骨格を有するジオールとしては、前記低分子量ジオール又はポリカプロラクトンジオール等のジオール成分と、ジカルボン酸又はその無水物等の酸成分とのエステル化反応物等が挙げられる。
ジカルボン酸又はその無水物としては、アジピン酸、コハク酸、フタル酸、テトラヒドルフタル酸、ヘキサヒドロフタル酸及びテレフタル酸等、並びにこれらの無水物等が挙げられる。
ポリエーテルジオールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリエトラメチレングリコール等が挙げられる。
ポリカーボネートジオールとしては、前記低分子量ジオール又は/及びビスフェノールA等のビスフェノールと、エチレンカーボネート及び炭酸ジブチルエステル等の炭酸ジアルキルエステルの反応物等が挙げられる。
【0033】
有機ポリイソシアネートとしては、脂環式基を有しない脂肪族ポリイソシアネート(以下、単に「脂肪族ポリイソシアネート」という)、脂環式基を有する脂肪族ポリイソシアネート(以下、「脂環式ポリイソシアネート」という)、複素環を有するポリイソシアネート及び芳香族ポリイソシアネート等が挙げられる。
脂肪族ポリイソシアネートとしては、ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート及びリジンジイソシアネート等が挙げられる。
脂環式ポリイソシアネートとしては、水素化トリレンジイソシアネート、水素化4,4’−ジフェニルメタンジイソシアネート、水素化キシレンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート及びイソホロンジイソシアネート3量体等が挙げられる。
芳香族ジイソシアネートとしては、トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、パラフェニレンジイソシアネート及び1,5−ナフタレンジイソシアネート等が挙げられる。
本発明において、有機ポリイソシアネートとしては、硬化物の物理特性に優れ、黄変が少ないという点で脂肪族ポリイソシアネートが好ましい。
【0034】
水酸基含有(メタ)アクリレートとしては、水酸基含有モノ(メタ)アクリレートが好ましい。
水酸基含有モノ(メタ)アクリレートとしては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシペンチル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート及びヒドロキシオクチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート等が挙げられる。
【0035】
2)(A1-2)成分
(A1-2)成分は、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの反応物であり、ウレタンアダクトと称される化合物である。
(A)成分として、(A1-2)成分を使用することにより、架橋密度が高くなり、耐熱性が向上するため好ましい。
【0036】
(A1-2)成分において、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートとしては、前記した化合物が挙げられる。
【0037】
(A1-2)成分においては、水酸基含有(メタ)アクリレートとして、水酸基及び2個以上の(メタ)アクリロイル基を有する化合物(以下、「水酸基含有多官能(メタ)アクリレート」という)を使用することもできる。
(A1-2)成分としては、当該有機ポリイソシアネートと水酸基含有多官能(メタ)アクリレートの反応物〔以下、「(A1-2-1)成分」という〕を使用すると、架橋密度が高くなり、耐熱性、耐摩耗性及び耐擦傷性にも優れるものとなるため好ましい。
水酸基含有多官能(メタ)アクリレートとしては、種々の化合物が使用でき、具体的には、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールのジ又はトリ(メタ)アクリレート、ジトリメチロールプロパンのジ又はトリ(メタ)アクリレート及びジペンタエリスリトールのジ、トリ、テトラ又はペンタ(メタ)アクリレート等が挙げられる。
これらの中でも、硬化膜が耐磨耗性と耐擦傷性に優れる点で、3個以上の(メタ)アクリロイル基を有し、水酸基を1個有する化合物が好ましく、具体的には、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート及びジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
これら化合物の中でも、得られる硬化物の反りを防止できる点で、ペンタエリスリトールトリ(メタ)アクリレートがより好ましい。
【0038】
(A1-2-1)成分の製造において、原料の水酸基含有多官能(メタ)アクリレートは、通常、水酸基含有多官能(メタ)アクリレートと水酸基を有しない多官能(メタ)アクリレートを含む混合物であるが、(A1-2-1)成分としては当該混合物を使用して製造されたものも使用することができる。
具体的には、トリメチロールプロパンジ(メタ)アクリレートとトリメチロールプロパントリ(メタ)アクリレートの混合物、ジトリメチロールプロパントリ(メタ)アクリレートとジトリメチロールプロパンテトラ(メタ)アクリレートの混合物、及びジペンタエリスリトールペンタ(メタ)アクリレートとジペンタエリスリトールヘキサ(メタ)アクリレートの混合物等が挙げられる。
【0039】
(A1-2)成分の別の好ましい化合物としては、3個以上のイソシアネート基を有する有機ポリイソシアネートと水酸基含有モノ(メタ)アクリレートの反応物〔以下、「(A1-2-2)成分」という〕が挙げられる。
(A1-2-2)成分における水酸基含有モノ(メタ)アクリレートとしては、前記した化合物と同様の化合物が挙げられる。
3個以上のイソシアネート基を有する有機ポリイソシアネートの例としては、前記したヘキサメチレンジイソシアネート3量体及びイソホロンジイソシアネート3量体等を挙げることができる。
(A1-2-2)成分の好ましい例としては、ヘキサメチレンジイソシアネート3量体とヒドロキシブチルアクリレートの付加反応物等が挙げられる。
【0040】
さらに、(A1-2)成分としては、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの反応物であって、3個以上の(メタ)アクリロイル基を有する化合物がより好ましい。当該化合物は、硬化物の適度な架橋密度によって剛性を維持すると同時に高い強靭性を有するものとなる。
当該化合物の例としては、前記した(A1-2-1)成分及び(A1-2-2)成分を挙げることができる。
【0041】
3)(A1)成分の製造方法
(A1)成分は、(A1-1)成分においては、ポリオール、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの付加反応、(A1-2)成分においては、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの付加反応により製造される。
この付加反応は無触媒でも可能であるが、反応を効率的に進めるために、ジブチルスズジラウレート等の錫系触媒や、トリエチルアミン等のアミン系触媒等を添加しても良い。
【0042】
1−2−2.ポリエステル(メタ)アクリレート
ポリエステル(メタ)アクリレートとしては、ポリエステルジオールと(メタ)アクリル酸との脱水縮合物等が挙げられる。
ここで、ポリエステルジオールとしては、ジオールとジカルボン酸又はその無水物との反応物等が挙げられる。
ジオールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ポリブチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール等の低分子量ジオール、並びにこれらのアルキレンオキサイド付加物等が挙げられる。
ジカルボン酸又はその無水物としては、オルソフタル酸、イソフタル酸、テレフタル酸、アジピン酸、コハク酸、フマル酸、マレイン酸、ヘキサヒドロフタル酸、テトラヒドロフタル酸及びトリメリット酸等のジカルボン酸、並びにこれらの無水物等が挙げられる。
【0043】
1−2−3.エポキシ(メタ)アクリレート
エポキシ(メタ)アクリレートは、エポキシ樹脂に(メタ)アクリル酸を付加反応させた化合物である。エポキシ樹脂としては、芳香族エポキシ樹脂及び脂肪族エポキシ樹脂等が挙げられる。
【0044】
芳香族エポキシ樹脂としては、具体的には、レゾルシノールジグリシジルエーテル、ハイドロキノンジグリシジルエーテル;ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールフルオレン又はそのアルキレンオキサイド付加体のジグリシジルエーテル;フェノールノボラック型エポキシ樹脂及びクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;グリシジルフタルイミド;o−フタル酸ジグリシジルエステル等が挙げられる。
【0045】
脂肪族エポキシ樹脂としては、具体的には、エチレングリコール、プロピレングリコール、1,4−ブタンジオール及び1,6−ヘキサンジオール等のアルキレングリコールのジグリシジルエーテル;ポリエチレングリコール及びポリプロピレングリコールのジグリシジルエーテル等のポリアルキレングリコールのジグリシジルエーテル;ネオペンチルグリコール、ジブロモネオペンチルグリコール及びそのアルキレンオキサイド付加体のジグリシジルエーテル;水素添加ビスフェノールA及びそのアルキレンオキシド付加体のジグリシジルエーテル;テトラヒドロフタル酸ジグリシジルエステル等が挙げられる。
上記において、アルキレンオキサイド付加物のアルキレンオキサイドとしては、エチレンオキサイド及びプロピレンオキサイド等が好ましい。
【0046】
1−2−4.ポリエーテル(メタ)アクリレート
ポリエーテル(メタ)アクリレートオリゴマーとしては、ポリアルキレングリコール(メタ)ジアクリレートがあり、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート及びポリテトラメチレングリコールジ(メタ)アクリレート等が挙げられる。
【0047】
(A)成分としては、前記した化合物の1種のみを使用しても、2種以上を併用しても良い。
【0048】
(A)成分としては、前記した化合物の中でも、硬化物の曲げ弾性率が高くなるという理由で、3官能以上の(メタ)アクリレートが好ましく、より好ましくは有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの反応物であって、3個以上の(メタ)アクリロイル基を有する化合物である。
(A)成分として3官能以上の(メタ)アクリレートを含む場合は、(A)成分の合計量中に20重量%以上含むことが好ましい。
又、単官能(メタ)アクリレートとしては、イソボルニル(メタ)アクリレート等の脂環式骨格を有する単官能(メタ)アクリレート、並びにジメチロールトリシクロデカンジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート及びスピログリコールジ(メタ)アクリレート等の脂環式骨格を有する2官能(メタ)アクリレートが好ましい。
【0049】
1−3.活性エネルギー線硬化型組成物
組成物の粘度は目的に応じて適宜設定すれば良く、50〜10,000mPa・sが好ましい。
尚、本発明において粘度とは、E型粘度計を使用して25℃で測定した値を意味する。
【0050】
本発明における組成物は、前記(A)成分を好ましく含むものであるが、目的に応じて種々の成分を配合することができる。
その他成分としては、具体的には、光重合開始剤〔以下、「(B)成分」という〕、熱重合開始剤〔以下、「(C)成分」という〕、有機溶剤、可塑剤、重合禁止剤又は/及び酸化防止剤、耐光性向上剤、並びに2個以上のメルカプト基を有する化合物等を挙げることができる。
【0051】
(B)成分は、光重合開始剤である。
(B)成分は、活性エネルギー線として紫外線及び可視光線を用いた場合に配合する成分である。活性エネルギー線として電子線を使用する場合には、必ずしも配合する必要はないが、硬化性を改善させるため必要に応じて少量配合することもできる。
【0052】
(B)成分としては、活性エネルギー線の照射によりラジカル種を発生する化合物を使用する場合には、光ラジカル重合開始剤を使用し、活性エネルギー線の照射によりカチオン種を発生する化合物を使用する場合には、光カチオン重合開始剤を使用し、活性エネルギー線の照射によりアニオン種を発生する化合物を使用する場合には、光アニオン重合開始剤を使用する。
本発明においては、(A)成分を使用することが好ましく、この場合は光ラジカル重合開始剤を使用することが好ましい。
【0053】
光ラジカル重合開始剤としては、ベンジルジメチルケタール、ベンジル、ベンゾイン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−[4−(2−ヒドロキシエトキシ)-フェニル]−2−ヒドロキシー2−メチルー1−プロパンー1−オン、オリゴ[2−ヒドロキシー2−メチルー1−[4−1−(メチルビニル)フェニル]プロパノン、2−ヒドロキシー1−[4−[4−(2−ヒドロキシー2−メチループロピオニル)−ベンジル]−フェニル]−2−メチルプロパンー1−オン、2−メチル−1−[4−(メチルチオ)]フェニル]−2−モルフォリノプロパン−1−オン、2−ベンジルー2−ジメチルアミノー1−(4−モルフォリノフェニル)ブタンー1−オン、2−ジメチルアミノー2−(4−メチルベンジル)−1−(4−モルフォリン−4−イルーフェニル)−ブタンー1−オン、アデカオプトマーN−1414((株)ADEKA製)、フェニルグリオキシリックアシッドメチルエステル、エチルアントラキノン、フェナントレンキノン等の芳香族ケトン化合物;
ベンゾフェノン、2−メチルベンゾフェノン、3−メチルベンゾフェノン、4−メチルベンゾフェノン、2,4,6−トリメチルベンゾフェノン、4−フェニルベンゾフェノン、4−(メチルフェニルチオ)フェニルフェニルメタン、メチル−2−ベンゾフェノン、1−[4−(4−ベンゾイルフェニルスルファニル)フェニル]−2−メチル−2−(4−メチルフェニルスルフォニル)プロパンー1−オン、4,4‘−ビス(ジメチルアミノ)ベンゾフェノン、4,4‘−ビス(ジエチルアミノ)ベンゾフェノン、N,N′−テトラメチル−4,4′−ジアミノベンゾフェノン、N,N′−テトラエチル−4,4′−ジアミノベンゾフェノン及び4−メトキシ−4′−ジメチルアミノベンゾフェノン等のベンゾフェノン系化合物;
ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド、エチル−(2,4,6−トリメチルベンゾイル)フェニルフォスフィネート及びビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルフォスフィンオキサイド等のアシルホスフィンオキサイド化合物;
チオキサントン、2−クロロチオキサントン、2,4−ジエチルチオキサントン、イソプロピルチオキサントン、1−クロロ−4−プロピルチオキサントン、3−[3,4−ジメチル−9−オキソ−9H−チオキサントン−2−イル]オキシ]−2−ヒドロキシプロピル−N,N,N―トリメチルアンモニウムクロライド及びフロロチオキサントン等のチオキサントン系化合物;
アクリドン、10−ブチル−2−クロロアクリドン等のアクリドン系化合物;
1,2−オクタンジオン1−[4−(フェニルチオ)−2−(O―ベンゾイルオキシム)]及びエタノン1−[9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル]−1−(O―アセチルオキシム)等のオキシムエステル類;
2−(o−クロロフェニル)−4,5−ジフェニルイミダゾール二量体、2−(o−クロロフェニル)−4,5−ジ(m−メトキシフェニル)イミダゾール二量体、2−(o−フルオロフェニル)−4,5−フェニルイミダゾール二量体、2−(o−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体、2−(p−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体、2,4−ジ(p−メトキシフェニル)−5−フェニルイミダゾール二量体及び2−(2,4−ジメトキシフェニル)−4,5−ジフェニルイミダゾール二量体等の2,4,5−トリアリールイミダゾール二量体;並びに9−フェニルアクリジン及び1,7−ビス(9,9′−アクリジニル)ヘプタン等のアクリジン誘導体等が挙げられる。
【0054】
光ラジカル重合開始剤としては、前記以外にも分子量が350以上の光重合開始剤を使用することも可能である。分子量350以上の光重合開始剤は、光照射後の分解物により得られる樹脂シートが着色を生じることがなく、さらに透明導電性フィルムの製造に使用する場合、分解物が透明導電体層の真空成膜時のアウトガスも発生しないため、短時間で高真空に到達することができ、導電体層の膜質が低下して低抵抗化しにくくなってしまうことを防止することができる。
【0055】
光ラジカル重合開始剤としては、分子量が350以上で紫外線や可視光線等の光により重合開始する化合物であれば種々の化合物を使用することができる。
光ラジカル重合開始剤の具体例としては、ヒドロキシケトンのポリマー等が挙げられ、例えば、下記式(1)で表される化合物等が挙げられる。当該化合物は、(A)成分との相溶性に優れる点でも好ましい。
【0057】
式(1)において、R
1は水素原子又はメチル基を表し、R
2はアルキル基を表し、nは2〜5数を表す。
R
2はアルキル基としては、メチル基、エチル基及びプロピル基等の低級アルキル基が好ましい。
【0058】
式(1)で表される化合物の具体例としては、オリゴ(2−ヒドロキシ−2−メチル−1−(4−(1−メチルビニル)フェニル)プロパノン等が挙げられる。
当該化合物は市販されており、例えば、ESACURE KIP 150(Lamberti社製)が知られている。ESACURE KIP 150は、上記式(1)表される化合物において、R
1は水素原子又はメチル基、R
2はメチル基、nは2〜3数、かつ[(204.3×n+16.0)又は(204.3×n+30.1)]の分子量を有する化合物である。
【0059】
前記以外の化合物としては、2−[2−オキソ−2−フェニルアセトキシエトキシ]エチルエステルとオキシフェニル酢酸等を挙げることができる。
当該化合物は市販されており、イルガキュア754(BASF社製)が知られている。イルガキュア754は、オキシフェニル酢酸、2−[2−オキソ−2−フェニルアセトキシエトキシ]エチルエステルとオキシフェニル酢酸、2−(2−ヒドロキシエトキシ)エチルエステルの混合物である。
【0060】
(B)成分の配合割合としては、(A)成分の合計量100重量部に対して、0.01〜10重量部が好ましく、より好ましくは0.1〜5重量部である。
(B)成分の配合割合を0.01重量%以上とすることにより、適量な紫外線又は可視光線量で組成物を硬化させることができ生産性を向上させることができ、一方10重量部以下とすることで、硬化物の耐候性や透明性に優れたものとすることができる。
【0061】
組成物には、必要に応じて(C)成分(熱重合開始剤)を配合することができる。
熱重合開始剤としては、種々の化合物を使用することができ、有機過酸化物及びアゾ系開始剤が好ましい。
【0062】
有機過酸化物の具体例としては、1,1−ビス(t−ブチルパーオキシ)2−メチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、2,2−ビス(4,4−ジ−ブチルパーオキシシクロヘキシル)プロパン、1,1−ビス(t−ブチルパーオキシ)シクロドデカン、ジラウロイルパーオキサイド、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシマレイン酸、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、t−ブチルパーオキシピバレート、t−ヘキシルパーオキシピバレート、2,5−ジメチル−2,5−ジ(m−トルオイルパーオキシ)ヘキサン、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、2,5−ジーメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、2,2−ビス(t−ブチルパーオキシ)ブタン、t−ブチルパーオキシベンゾエート、n−ブチル−4,4−ビス(t−ブチルパーオキシ)バレレート、ジ−t−ブチルパーオキシイソフタレート、α、α‘−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、p−メンタンハイドロパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、ジイソプロピルベンゼンハイドロパーオキサイド、t−ブチルトリメチルシリルパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t−ヘキシルハイドロパーオキサイド、t−ブチルハイドロパーオキサイド等が挙げられる。
【0063】
アゾ系化合物の具体例としては、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2−(カルバモイルアゾ)イソブチロニトリル、2−フェニルアゾ−4−メトキシ−2,4−ジメチルバレロニトリル、アゾジ−t−オクタン、アゾジ−t−ブタン等が挙げられる。
これらは単独で用いても良いし、2種以上を併用しても良い。又、有機過酸化物は還元剤と組み合わせることによりレドックス反応とすることも可能である。
【0064】
(C)成分の使用割合としては、(A)成分の合計量100重量部に対して、10重量部以下が好ましい。
熱重合開始剤を単独で用いる場合は、通常のラジカル熱重合の常套手段にしたがって行えばよく、場合によっては光重合開始剤と併用し、光硬化させた後にさらに反応率を向上させる目的で熱硬化を行うこともできる。
【0065】
2.樹脂シートの製造方法
本発明は、活性エネルギー線硬化型組成物を使用し、下記工程1及び同2を順次実施する膜厚100μm〜5mmを有する樹脂シートの製造方法に関する。
工程1:基材上に、前記組成物を塗工するか、又は
凹部を有する基材に、前記組成物を流し込むか若しくは注入する工程
工程2:基材のいずれかの側からヘイズが45%以上である光拡散板を透過した活性エネルギー線を照射して、組成物を硬化させる工程
以下、工程1及び工程2について説明する。
【0066】
2−1.工程1
工程1は、基材上に、前記組成物を塗工するか、又は凹部を有する基材に、前記組成物を流し込むか若しくは注入する工程である。
【0067】
1)基材
基材としては、剥離可能な基材及び離型性を有しない基材(以下、「非離型性基材」という)のいずれも使用することができる。
剥離可能な基材としては、金属、ガラス、離型処理されたフィルム及び剥離性を有する表面未処理フィルム(以下、まとめて「離型材」という)等が挙げられる。
離型材としては、シリコーン処理ポリエチレンテレフタレートフィルム、表面未処理ポリエチレンテレフタレートフィルム、表面未処理シクロオレフィンポリマーフィルム及び表面未処理OPPフィルム(ポリプロピレン)等が挙げられる。
【0068】
本発明の組成物から得られる樹脂シートに対して、低いヘイズにしたり表面平滑性を付与するためには、剥離可能な基材として表面粗さ(中心線平均粗さ)Raが0.15μm以下の基材を使用することが好ましく、0.001〜0.100μmの基材がより好ましい。さらに、ヘイズとしては3.0%以下が好ましい。
当該基材の具体例としては、ガラス、表面未処理ポリエチレンテレフタレートフィルムや表面未処理OPPフィルム(ポリプロピレン)等が挙げられる。
尚、本発明において表面粗さRaとは、フィルムの表面の凹凸を測定し、平均の粗さを計算したものを意味する。
【0069】
非離型性基材としては、前記以外の各種プラスチックが挙げられ、ポリビニルアルコール、トリアセチルセルロース及びジアセチルセルロース等のセルロースアセテート樹脂、アクリル樹脂、ポリエステル、ポリカーボネート、ポリアリレート、ポリエーテルサルホン、ノルボルネン等の環状オレフィンをモノマーとする環状ポリオレフィン樹脂等が挙げられる。
【0070】
空間部を有する基材としては、凹部を有する基材が挙げられる。離型材に目的の膜厚とする所定の形状の穴を空け、凹部を形成したものが挙げられる。
この場合、凹部を有する基材に組成物を流し込んだ後、当該凹部を有する基材の上に、別の基材を重ねることもできる。
空間部を有する基材の他の例としては、離型材上に、硬化物が目的の膜厚となるように堰(スペーサー)を設けたもの(以下、「成形型」という)等も挙げられる。この場合も、堰の上に、別の基材を重ねることもできる。
【0071】
この場合、基材のいずれか又は両方が活性エネルギー線を透過する透明板を使用する必要がある。
透明板としては活性エネルギー線が透過すれば良く、材質は限定しないが、表面の平滑性、剛性、耐熱性、化学的安定性の面からガラスが好ましい。基材は、湾曲していてもよい。
【0072】
成形型の例として、
図1を挙げ説明する。
図1の(a1-1)及び(a1-2)は、2枚の基材〔
図1:(a1-1)の(1)及び(a1-2)の(1)’〕、2枚の離型性に優れる基材〔
図1:(a1-1)の(2)及び(a1-2)の(2)’〕及び1枚の堰を設けるための基材〔
図1:(a1-1)の(3)〕から構成される成形型の例である。
図1の(a2)は、2枚の基材〔
図1:(a2)の(1)及び(1)’〕、及び1枚の堰を設けるための基材〔
図1:(a2)の(3)〕から構成される成形型の例である。
【0073】
堰を設けるための基材〔
図1:(a1-1)の(3)〕は、
図1に示す通り、上部に組成物を注入するための空孔部を有する形状のものが好ましい〔
図1:(a1-1)の(3-1)〕。当該堰を設けるための基材としては、種々の材料が使用でき、シリコーンゴム等を挙げることができる。
【0074】
図1の(a1-1)及び(a1-2)の具体例としては、基材として2枚のガラス、2枚の離型処理されたフィルム及び1枚の堰を設けるための基材から構成される成形型が挙げられる。
ガラス〔
図1:(a1-1)の(1)〕の上に、離型処理されたフィルム〔
図1:(a1-1)の(2)〕を重ね、その上に堰を設けるための基材〔
図1:(a1-1)の(3)〕を重ね堰(スペーサー)とする。さらにその上に、離型処理されたフィルム〔
図1:(a1-2)の(2)’〕を重ね、その上にガラス〔
図1:(a1-2)の(1)’〕を重ね成形型とする。
【0075】
図1の(a2)の具体例としては、基材〔
図1:(a2)の(1)及び(1)’〕として、離型処理されたガラスや金属を使用する場合であり、硬化物の離型性に優れるため、
図1の(a1-1)や(a1-2)における2枚の離型処理されたフィルムは不要である。
ガラスにおける離型処理とは、フッ素処理、シリコーン処理、リン酸エステル系離型剤、パラフィン系離型剤及び金属酸化膜処理等が挙げられる。
又、組成物の硬化物自体が離型性に優れる場合には、当該成形型として、離型処理されていないガラスを使用することもできる。組成物の硬化物自体が離型性に優れる例としては、組成物に離型剤を配合した例が挙げられる。
本発明においては、
図1の(a2)の成形型がより好ましい。
【0076】
成形型としては、活性エネルギー線が照射される面の基材として光拡散板を使用することができる。光拡散板としては、後記で詳述する通りである。
【0077】
2)組成物の事前処理
樹脂シートの製造に当たっては、硬化物中に気泡を含むことを防止するため、各成分を配合した後に脱泡処理することが好ましい。
脱泡処理の方法としては、静置、真空減圧、遠心分離、サイクロン(自転・公転ミキサー)、気液分離膜、超音波、圧力振動、及び多軸押出機による脱泡等が挙げられる。
【0078】
3)塗工又は注入
基材に組成物を塗工する場合の塗工方法としては、目的に応じて適宜設定すれば良く、従来公知のバーコーター、アプリケーター、ドクターブレード、ナイフコーター、コンマコーター、リバースロールコーター、ダイコーター、リップコーター、グラビアコーター及びマイクログラビアコーター等で塗工する方法が挙げられる。
空間部を有する基材に組成物を注入する場合は、組成物を注射器等の注入機器や注入装置に入れ注入する方法等が挙げられる。
この場合、活性エネルギー線硬化型組成物中又は/及び成形型内の酸素を、真空脱気あるいは窒素やアルゴン等の不活性ガスで置換しながら、注入してもよい。
【0079】
この場合の膜厚としては、後記する樹脂シートの目的とする膜厚に応じて適宜設定すれば良い。
特にガラス代替用途、好ましくはOPS用途に使用する場合、100μm〜5mmが好ましく、より好ましくは200μm〜3mmであり、特に好ましくは300μm〜2mmである。
【0080】
2−2.工程2
工程2は、基材のいずれかの側からヘイズが45%以上である光拡散板を透過した活性エネルギー線を照射して、組成物を硬化させる工程である。
光拡散板のヘイズが45%に満たない場合は、得られる樹脂シートが干渉縞を生じてしまう。
【0081】
1)光拡散板
光拡散板の材質は、活性エネルギー線を透過すれば種々の材料を使用することができる。
活性エネルギー線の拡散は、表面凹凸による表面拡散でも、拡散板内部での内部拡散でもよい。表面凹凸による光拡散板としては、ガラスをサンドブラスト等の物理的手段により加工して得られたもの、ガラスや樹脂の成形加工時に表面に凹凸を付与したもの等が挙げられる。又、内部拡散による光拡散板としては、透明樹脂中に、当該樹脂と屈折率の異なる微粒子を分散させたもの等を挙げることができる。透明樹脂としては、ポリカーボネート、ポリスチレン及びポリメチルメタクリレート等を挙げることができる。微粒子としては、シリカ微粒子や重合体微粒子を挙げることができる。
光拡散板のヘイズは、45%以上であり、50%以上が好ましく、90%以上がより好ましい。
尚、本発明においてヘイズとは、JIS K−7136 プラスチック透明材料のヘイズの求め方により測定した値を意味する。
光拡散板の反対側の面には、反射板を設置することもできる。当該態様によれば、光拡散の効率を向上させることができる。
【0082】
工程2で使用する光拡散板の設置の具体例を、
図2の(b1)、(b2)及び(b3)を挙げ説明する。尚、
図2はあくまで1例であり、当該態様以外にも種々の態様が可能である。
図2の(b1)は、成形型の活性エネルギー線を照射する側の基材として、光拡散板を使用した例である。
図2の(b1)において、(4)は工程1で得られた組成物を含む成形型、(5)は活性エネルギー線照射器、(6)は光拡散板を意味する。
図2の(b2)は、成形型の活性エネルギー線を照射する側に、光拡散板を設置した例である。
図2の(b2)において、(4)は工程1で得られた組成物を含む成形型、(5)は活性エネルギー線照射器、(6)は光拡散板を意味する。
図2の(b3)は、
図2の(b1)において、(6)光拡散板の反対側に、さらに反射板(7)を設置した例である。当該態様によれば、光拡散の効率を向上させることができる。
【0083】
2)活性エネルギー線照射器
活性エネルギー線としては、電子線、紫外線、可視光線及びX線等が挙げられるが、安価な装置を使用することができるため、可視光線及び紫外線が好ましい。
紫外線照射器は特に限定されるものではなく、例えば、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、ブラックライトランプ、UV無電極ランプ、LED等が挙げられる。
活性エネルギー線の照射強度は、活性エネルギー線硬化型組成物の組成、特に(B)成分(光重合開始剤)の割合、目的とする樹脂シートの厚み等に従い、適宜調整すれば良い。
【0084】
3)温度制御
工程2においては、ピーク温度55℃以下に維持しながら、基材のいずれかの側から活性エネルギー線を照射して、組成物を硬化させる方法が、得られる樹脂シートが、外観不良や反りを起こすことがなく、高弾性率となるため好ましい。好ましいピーク温度としては20〜40℃である。
本発明においては、目的とする重合温度を決定し、その温度を維持するように後記する方法より管理する。この場合、設定温度に到達した後も直ちに温度が低下することはなく、設定温度より高い値となってしまう。本発明では、この値をピーク温度という。
設定する反応温度は、活性エネルギー線硬化型組成物の組成及び目的とする樹脂シートの厚み等により適宜選択されるが、より反応前後の体積変化を少なくするために、反応前の温度との差が50℃以下であることが望ましい。
【0085】
4)活性エネルギー線照射装置
工程2において、温度を制御する場合、温度の制御方法としては、活性エネルギー線を照射して反応を開始した後、反応中の反応温度を測定し、その検出温度に応じて、活性エネルギー線の照射を停止・開始する方法、活性エネルギー線の照射量を調整する等が挙げられる。
活性エネルギー線の照射を停止・開始や照射量の調整は、前記反応温度が設定温度を保つように、又は設定温度から大きく乖離しないように、マニュアル又はコンピュータ制御等により適宜調整する。具体的には、反応温度が設定温度を超えた場合や一定の上昇傾向を示した場合には、活性エネルギー線の照射を停止するか又は照射量を減量し、反応温度が設定値を下回った場合や一定の下降傾向を示した場合には、活性エネルギー線を再照射するか又は照射量を増加させる。
【0086】
活性エネルギー線の照射強度は、活性エネルギー線硬化型組成物の組成、特に(B)成分(光重合開始剤)の割合、目的とする樹脂シートの厚み等に従い、適宜調整すれば良い。照射強度としては、0.1〜2000mW/cm
2が好ましい。
組成物が(B)成分を比較的高濃度で含む場合は、照射強度としては、0.1〜200mW/cm
2が好ましい。一方、組成物が(B)成分を比較的低濃度で含む場合は、照射強度としては、300〜2000mW/cm
2が好ましい。
反応温度が設定温度の±20℃以内となるよう、照射強度、制御装置を選択することが好ましく、より好ましくは±10℃以内である。
【0087】
反応温度の測定は、熱電対及び測温抵抗体及びサーミスター等を用いる接触式温度測定装置、並びに赤外線等を利用した非接触式温度測定装置等が挙げられる。
本発明においては、種々の液性状を有する反応系の温度を簡便に測定することができる点から、非接触式の放射温度計を使用して行うことが好ましく、より好ましくは赤外線温度計である。
【0088】
反応初期の温度を制御する目的や反応熱を効率的に除去し活性エネルギー線照射工程を短縮する目的で、熱交換装置を用いることも可能である。熱交換装置としは、空気、窒素等の気流を発生する装置や、成形型に接触させ熱媒体を通液することが可能なジャケット装置が挙げられる。又、熱交換装置は後述する加熱装置を兼ねることもできる。
【0089】
工程2において、温度を制御する場合に使用する活性エネルギー線照射装置の具体例を、
図3の(c1)及び(c2)を挙げ説明する。
図3は、
図2の(b1)の態様で光拡散板を設置した例である。尚、
図3はあくまで1例であり、当該装置以外にも種々の装置が使用可能である。
図3の(c1)において、(4)は工程1で得られた組成物を含む成形型、(5)は活性エネルギー線照射器、(6)は光拡散板、(8)は温度制御装置、(9)は非接触式放射温度計である。
活性エネルギー線照射器(5)により活性エネルギー線を照射し、組成物を含む成形型(4)の温度を非接触式放射温度計(9)により測定する。温度計(9)により測定された温度に基づき目的とする設定温度を温度制御装置(8)により制御する。具体的には、設定温度より高くになると、温度制御装置(8)により活性エネルギー線照射器(5)の活性エネルギー線照射が停止又は照射量が提言され、逆に設定温度より低くなると、温度制御装置(8)により活性エネルギー線照射器(5)の活性エネルギー線照射が開始又は照射量が増加される。
組成物を含む成形型(4)の冷却方法としては、そのまま外気と接触させるのみでも良いが、成形型(4)において活性エネルギー線照しない側の面を空冷したり、
図2の(c2)のように、成形型(4)において活性エネルギー線照しない側の面に熱交換器を設置して冷却する方法等が挙げられる。
空冷する場合においては、窒素ガス等の不活性ガスを供給することが好ましい。
熱交換器としては、前記したもの等が挙げられる。
【0090】
2−3.工程3
本発明においては、工程2で得られた組成物の硬化物を加熱する工程3を実施することが好ましい。
工程3を実施することにより、残留応力を緩和させ、反応率を向上させることができる。
工程3は、活性エネルギー線による硬化工程で反応熱が確認されなくなった後に実施することが好ましい。反応熱が確認されないとは、活性エネルギー線照射時に反応温度を測定し、温度変化がほとんどなくなり、活性エネルギー線照射による活性種が発生しなくなるため設定温度より温度が低下して行き、最終的には活性エネルギー線照射装置内の温度に近づく状態を意味する。
加熱方法としては、工程2で得られた組成物の硬化物を、所望の温度に保たれている加熱装置に投入又は接触させることにより所望の温度及び時間で加熱する。
加熱の方法としては、得られた組成物の硬化物を成形型から脱型しても、脱型しなくても良い。後の工程が簡便になることから、脱型しない方法が好ましい。
組成物として熱硬化型組成物を使用する場合の加熱方法としては、熱及びオイル等の熱媒浴に浸漬する方法、熱プレスを用いる方法、並びに温調式恒温槽内に保持する方法等が挙げられる。
【0091】
加熱の温度としては、組成物の組成及び活性エネルギー線による硬化工程後の反応率により適宜設定されるが、着色や分解を防止できることから、250℃以下が好ましく、40〜250℃がより好ましく、100〜250℃がさらに好ましく、特に好ましくは60〜180℃である。
加熱時間は使用する組成物、及び目的とする樹脂シート等に応じて適宜設定すれば良く、3時間以上が挙げられる。加熱時間の上限は、経済性を考慮し24時間以下が好ましい。
又、目的に応じて加熱温度を変更することもできる。
【0092】
3.樹脂シート物性
本発明で得られる樹脂シートの膜厚は、100μm〜5mmとする。
特にガラス代替用途、好ましくはOPS用途に使用する場合、好ましくは200μm〜3mmであり、より好ましくは300μm〜2mmである。
【0093】
本発明で得られる樹脂シートとしては、物性として曲げ試験における弾性率が1GPa以上であるものが好ましい。
弾性率としては、2GPa以上が好ましく、より好ましくは3GPa以上である。
尚、本発明における曲げ試験における弾性率とは、支点間距離30mm、曲げ速度0.2mm/分で行った曲げ試験において、歪み0.1%と1%の応力から計算した値を意味する。
【0094】
さらに本発明で得られる樹脂シートとしては、物性として全光線透過率が90%以上であるものが好ましい。
全光線透過率としては、92%以上が好ましい。
尚、本発明における全光線透過率とは、JIS K7361−1(プラスチック?透明材料の全光線透過率の試験方法)に規定される拡散成分を含む光線透過率を意味する。
【0095】
組成物の硬化物のガラス転移温度(以下、「Tg」という)としては、0〜250℃が好ましく、より好ましくは20〜230℃である。Tgを0℃以上とすることにより、得られる樹脂シートが剛性や耐熱性に優れるものとなり、250℃以下とすることにより、強靭性を保持することができる。
尚、本発明におけるTgとは、周波数1Hz、昇温温度2℃/分、引張モードで測定した動的粘弾性スペクトルにおける引張損失係数tanδが最大となるときの温度を意味する。
【0096】
4.樹脂シートの用途
本発明の製造方法で得られる樹脂シートは、従来ガラスが使用され高曲げ弾性率が要求されるディスプレイ用途、建材分野及び自動車分野において使用でき、特に光学シートとして好ましく使用することができる。
本発明の組成物から形成される光学シートは、種々の光学用途に使用できるものである。より具体的には、偏光板の偏光子保護フィルム、プリズムシート用支持フィルム及び導光フィルム等の液晶表示装置やタッチパネル一体型液晶表示装置に使用されるシート、各種機能性フィルム(例えば、ハードコートシート、加飾シート、透明導電性シート)及び表面形状を付したシート(例えば、モスアイ型反射防止シートや太陽電池用テクスチャー構造付きシート)のベースシート、太陽電池等屋外用の耐光性(耐候性)シート、LED照明・有機EL照明用フィルム、フレキシブルエレクトロニクス用透明耐熱シート等の用途が挙げられる。
【0097】
本発明の組成物から形成される光学シートは、耐熱性に優れるため、透明導電性シートの製造に好ましく使用することができる。この用途で使用する組成物としては、透明導電性体層の真空成膜時のアウトガス発生を抑制できる点で、有機溶剤を含まない無溶剤型組成物が好ましい。
さらに、本発明の光学シートは、厚膜であっても耐熱性に優れるうえ可撓性を有しかつ高強度であるため、OPS用の透明導電性シート基材として使用することもでき、この場合、膜厚が0.5mm以上1.5mm以下の光学シートをより好ましく使用することができる。
【0098】
透明導電性シートの製造方法は、常法に従えば良い。
透明導電体層を形成する金属酸化物としては、酸化インジウム、酸化スズ、酸化亜鉛、酸化チタン、インジウム−スズ複合酸化物、スズ−アンチモン複合酸化物、亜鉛−アルミニウム複合酸化物、インジウム−亜鉛複合酸化物、チタン−ニオブ複合酸化物等が挙げられる。これらのうち、環境安定性や回路加工性の観点から、インジウム−スズ複合酸化物、インジウム−亜鉛複合酸化物が好ましい。
透明導電体層を形成する方法としては、常法に従えば良く、本発明の光学シートを使用して、前記金属酸化物を使用して真空成膜装置を使用してスパッタ法により形成する方法等が挙げられる。
より具体的には、前記金属酸化物をターゲット材料とし、脱水・脱ガスを行った後、排気して真空にし、光学シートを所定の温度とした後、スパッタ装置を使用して光学シート上に透明導電体層を形成する方法等が挙げられる。
【実施例】
【0099】
1.実施例1及び同2、比較例1及び同2、参考例1
1)組成物の製造
(A)成分として下記OT−1000の50重量部(以下、「部」という)、トリメチロールプロパントリアクリレート〔東亞合成(株)製アロニックスM−309〕の10部、1,6−ヘキサンジアクリレート〔大阪有機化学工業(株)製ビスコート#230〕の40部及び(B)成分(光重合開始剤)として2−ヒドロキシ−2−メチルプロピオフェノン(BASF社製ダロキュア1173)の0.5部を撹拌・混合し、得られた混合物を真空下に脱泡し、活性エネルギー線硬化型組成物を得た。
尚、真空下の脱泡の方法としては、密栓したベルジャー内に得られた混合物の入ったビーカーを入れ、真空減圧方式により10分間脱泡した。脱泡時の温度は室温、圧力は約0.1kPaとした。
・OT−1000:ペンタエリスリトールトリアクリレートとヘキサメチレンジイソシアネートの付加反応物(「アダクト」という)とペンタエリスリトールテトラアクリレート(「PETeA」という)の混合物〔62:38(重量比)〕、東亞合成(株)製アロニックスOT−1000
【0100】
2)工程1
樹脂シートを製造するための成形型として、
図1の(a2)示す成形型を使用し、さらに
図2の(b1)の態様で光拡散板を使用した。
拡散板となるすりガラスは、厚み3mmのフロートガラス板を、粒度範囲125〜106μm、250〜210μm、600〜500μmの3種のセラミック系研磨材〔アルミナ粒子からなる研磨材、(株)不二製作所製、「フジランダムA」)を使用し、サンドブラスト処理し、処理後のヘイズがそれぞれ90、50、30%の拡散板を作成した。未処理の厚み3mmフロートガラスのヘイズは0.7%であった。
前記で製造した光拡散板、フロートガラス板〔100mm×100mm、厚さ3mm〕、及び1枚のシリコーンゴム製板(厚さ1.0mm)を使用した。ガラスの組成物と接触する面は、フッ素系コート剤〔サーフ工業(株)製MX031〕によりにより離型処理を行ったものを使用した。
前記で製造した光拡散板の平滑面〔
図1の(a2):(1)〕の上に、その上にシリコーンゴム製板〔
図1の(a2):(3)〕を重ね堰(スペーサー)とし、その上にガラス板〔
図1の(a2):(1)'〕を重ね成形型とした。
尚、参考例1では、厚さ1.0mmのシリコーンゴム板の代わりに厚さ50μmのシリコーンボム板をスペーサとして用いた。
成形型のシリコーンゴム製板の空孔部〔
図1:(3-1)〕から、上記で得られた組成物を、注射器により注液した。
【0101】
3)工程2
活性エネルギー線照射器として、オプトコード(株)製のLED照射器(LED365−9UV033B)、照射面側の拡散板を透過した照度を3.6mW/cm
2(ウシオ製「UIT−250、受光器365nm」)となるように照射ランプの位置を決定した。
活性エネルギー線の照射は、23℃で行い、硬化中の組成物の温度が25℃以下となるまで行った。反応終了までの積算光量は12J/cm
2であった。
【0102】
4)工程3
紫外線照射後、窒素気流中で硬化物を150℃で16時間加熱し、樹脂シートを得た。
得られた樹脂シートについて、下記の方法に従い、反り、外観、反応率及び曲げ弾性率を評価した。それらの結果を表1に示す。
【0103】
(1)評価方法
a)ヘイズ
拡散板のヘイズは、JIS K−7136(プラスチック透明材料のヘイズの求め方)に従い、NDH−2000(日本電色工業社製)で測定した。
b)外観
得られた樹脂シートを照明光源に対して、様々な角度でかざし、干渉縞の有無を評価した。
c)反応率
C=C結合の消費率を、FT−IR−ATR法にて行った。1720cm-1のC=O伸縮振動の吸収を基準に、硬化前後での810cm
-1のC=Cの変角振動の吸収の減少より算出した。
d)曲げ弾性率
80mm×80mm、厚さ1mmの樹脂シートから、長さ40(mm)×幅10(mm)の試験片5個を切り出し、インストロン5566A(支点間距離30mm、0.2mm/秒、25℃、50%RH)で測定し、平均値を曲げ弾性率(GPa)とした。
e)全光線透過率
得られた樹脂シートを使用し、JIS K7361−1に従い、日本電色工業(株)製NDH2000を使用し、全光線透過率を測定した。
実施例1及び同2、比較例1及び同2並びに参考例1で得られた樹脂シートの全光線透過率は、全て90%以上であり、後記表1への記載を省略した。
【0104】
【表1】
【0105】
2.総括
実施例1及び同2の製造方法は、得られた樹脂シートの干渉縞が観察されず、曲げ弾性率3GPa以上と高曲げ弾性率であった。
参考例1の拡散板としてサンドブラスト未処理(ヘイズ0.7%)のフロートガラスを使用した成形体の厚みが46μmでは干渉縞は見られなかったが、厚みが0.9mmとなった比較例1では干渉縞が発生した。
又、ヘイズが30%の拡散板を使用した比較例3の製造方法でも干渉縞が発生した。