特許第6293619号(P6293619)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシーの特許一覧

特許6293619画像処理方法および装置並びにプログラム
<>
  • 特許6293619-画像処理方法および装置並びにプログラム 図000004
  • 特許6293619-画像処理方法および装置並びにプログラム 図000005
  • 特許6293619-画像処理方法および装置並びにプログラム 図000006
  • 特許6293619-画像処理方法および装置並びにプログラム 図000007
  • 特許6293619-画像処理方法および装置並びにプログラム 図000008
  • 特許6293619-画像処理方法および装置並びにプログラム 図000009
  • 特許6293619-画像処理方法および装置並びにプログラム 図000010
  • 特許6293619-画像処理方法および装置並びにプログラム 図000011
  • 特許6293619-画像処理方法および装置並びにプログラム 図000012
  • 特許6293619-画像処理方法および装置並びにプログラム 図000013
  • 特許6293619-画像処理方法および装置並びにプログラム 図000014
  • 特許6293619-画像処理方法および装置並びにプログラム 図000015
  • 特許6293619-画像処理方法および装置並びにプログラム 図000016
  • 特許6293619-画像処理方法および装置並びにプログラム 図000017
  • 特許6293619-画像処理方法および装置並びにプログラム 図000018
  • 特許6293619-画像処理方法および装置並びにプログラム 図000019
  • 特許6293619-画像処理方法および装置並びにプログラム 図000020
  • 特許6293619-画像処理方法および装置並びにプログラム 図000021
  • 特許6293619-画像処理方法および装置並びにプログラム 図000022
  • 特許6293619-画像処理方法および装置並びにプログラム 図000023
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6293619
(24)【登録日】2018年2月23日
(45)【発行日】2018年3月14日
(54)【発明の名称】画像処理方法および装置並びにプログラム
(51)【国際特許分類】
   A61B 8/00 20060101AFI20180305BHJP
   A61B 6/03 20060101ALI20180305BHJP
   A61B 5/055 20060101ALI20180305BHJP
【FI】
   A61B8/00
   A61B6/03 377
   A61B6/03 360G
   A61B6/03 360P
   A61B5/05 380
【請求項の数】17
【全頁数】28
(21)【出願番号】特願2014-173996(P2014-173996)
(22)【出願日】2014年8月28日
(65)【公開番号】特開2016-47217(P2016-47217A)
(43)【公開日】2016年4月7日
【審査請求日】2016年9月15日
(73)【特許権者】
【識別番号】300019238
【氏名又は名称】ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー
(74)【代理人】
【識別番号】100137545
【弁理士】
【氏名又は名称】荒川 聡志
(72)【発明者】
【氏名】ハスナイン ハック
【審査官】 宮川 哲伸
(56)【参考文献】
【文献】 特開2008−259702(JP,A)
【文献】 特開2013−154127(JP,A)
【文献】 特開2009−112468(JP,A)
【文献】 特開2014−087671(JP,A)
【文献】 米国特許出願公開第2012/310092(US,A1)
【文献】 特開2014−151084(JP,A)
【文献】 特開2012−75794(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 8/00 − 8/15
A61B 6/00 − 6/14
A61B 5/055
(57)【特許請求の範囲】
【請求項1】
血管を含む部位を表す3次元医用画像において関心が持たれるスライスを特定する特定工程であって、前記部位を表す第1の3次元医用画像における第1の血管分岐を含む第1のスライスと、前記部位を表す第2の3次元医用画像における前記第1の血管分岐と同一の血管分岐である可能性がある第2の血管分岐を含む第2のスライスとを特定する特定工程と、
前記第1の3次元医用画像における前記第1のスライスを含み該第1のスライスより幅広である第1の領域について、前記第1のスライスのスライス軸方向に画素値の第1の投影処理を行うとともに、前記第2の3次元医用画像における前記第2のスライスを含み該第2のスライスより幅広である第2の領域について、前記第2のスライスのスライス軸方向に画素値の第2の投影処理を行う投影工程と、を備えた画像処理方法。
【請求項2】
記第1の投影処理により得られた第1の投影画像と、前記第2の投影処理により得られた第2の投影画像とを表示する表示工程を備える、請求項1に記載の画像処理方法。
【請求項3】
前記第1の血管分岐と前記第2の血管分岐とが重なるように、前記第1の3次元医用画像と前記第2の3次元医用画像との位置合せを行う位置合せ工程をさらに備えた、請求項1又は2に記載の画像処理方法。
【請求項4】
前記特定工程は、前記第1の血管分岐と前記第2の血管分岐とによる複数の組合せを特定し、
操作者による所定の操作に応答して、前記複数の組合せの中から1つの組合せを選択する選択工程をさらに備え、
前記位置合せ工程は、前記選択された1つの組合せを構成する前記第1の血管分岐と前記第2の血管分岐とが重なるように、前記第1の3次元医用画像と前記第2の3次元医用画像との位置合せを行う、請求項に記載の画像処理方法。
【請求項5】
血管を含む部位を表す3次元医用画像において関心が持たれるスライスを特定する特定手段であって、前記部位を表す第1の3次元医用画像における第1の血管分岐を含む第1のスライスと、前記部位を表す第2の3次元医用画像における前記第1の血管分岐と同一の血管分岐である可能性がある第2の血管分岐を含む第2のスライスとを特定する特定手段と、
前記第1の3次元医用画像における前記第1のスライスを含み該第1のスライスより幅広である第1の領域について、前記第1のスライスのスライス軸方向に画素値の第1の投影処理を行うとともに、前記第2の3次元医用画像における前記第2のスライスを含み該第2のスライスより幅広である第2の領域について、前記第2のスライスのスライス軸方向に画素値の第2の投影処理を行う投影手段と、
前記第1の投影処理により得られた第1の投影画像と、前記第2の投影処理により得られた第2の投影画像とを表示する表示手段と、を備えた画像処理装置。
【請求項6】
前記第1の血管分岐と前記第2の血管分岐とが重なるように、前記第1の3次元医用画像と前記第2の3次元医用画像との位置合せを行う位置合せ手段をさらに備えた、請求項に記載の画像処理装置。
【請求項7】
前記特定手段は、前記第1の血管分岐と前記第2の血管分岐とによる複数の組合せを特定し、
操作者による所定の操作に応答して、前記複数の組合せの中から1つの組合せを選択する選択手段をさらに備え、
前記位置合せ手段は、前記選択された1つの組合せを構成する前記第1の血管分岐と前記第2の血管分岐とが重なるように、前記第1の3次元医用画像と前記第2の3次元医用画像との位置合せを行う、請求項に記載の画像処理装置。
【請求項8】
前記特定手段は、一定レベル以上の類似度が算出された血管分岐の組合せを、前記第1及び第2の血管分岐として特定する、請求項から請求項のいずれか一項に記載の画像処理装置。
【請求項9】
前記特定手段は、操作者により指定された血管分岐の組合せを、前記第1及び第2の血管分岐として特定する、請求項から請求項のいずれか一項に記載の画像処理装置。
【請求項10】
前記投影手段は、前記投影処理として、最大値投影処理、最小値投影処理または平均値投影処理を行う、請求項から請求項のいずれか一項に記載の画像処理装置。
【請求項11】
前記投影手段は、血管に対応する画素値が他の組織に対応する平均的な画素値よりも高くなるような3次元医用画像に対しては、前記最大値投影処理を行う、請求項10に記載の画像処理装置。
【請求項12】
前記投影手段は、血管に対応する画素値が他の組織に対応する平均的な画素値よりも低くなるような3次元医用画像に対しては、前記最小値投影処理を行う、請求項10に記載の画像処理装置。
【請求項13】
前記第1及び第2の3次元医用画像は、撮像モダリティが互いに異なる画像である、請求項から請求項12のいずれか一項に記載の画像処理装置。
【請求項14】
前記第1及び第2の3次元医用画像の一方は、超音波画像である、請求項13に記載の画像処理装置。
【請求項15】
前記部位は、肝臓または肺である、請求項から請求項14のいずれか一項に記載の画像処理装置。
【請求項16】
前記第1及び第2のスライスの幅は、実空間における3mm以下の幅に
前記第1及び第2の領域の幅は、実空間における5mm以上、30mm以下の幅に相当する、請求項から請求項15のいずれか一項に記載の画像処理装置。
【請求項17】
コンピュータを、請求項から請求項16のいずれか一項に記載の画像処理装置として機能させるためのプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、3次元医用画像におけるスライス(slice)の断層画像を表示する技術に関する。
【背景技術】
【0002】
従来、被検体の部位を表す3次元医用画像を用いた画像処理が種々提案されている。また、このような画像処理の中で、3次元医用画像において関心が持たれるスライスを特定し、そのスライスに対応した断層画像を再構成して表示する処理を求められる場合がある(特許文献1等参照)。
【0003】
例えば、近年、画像診断の精度を向上させる目的で、被検体における同一の部位を複数の撮像モダリティで撮像し、得られた複数の3次元医用画像を同時に参照することが行われている。この際、通常は、これら複数の3次元医用画像の位置合せが行われ、各画像の座標系を合わせる処理が成される(非特許文献1等参照)。3次元医用画像の位置合せでは、例えば、画像処理装置に、位置合せする2つの3次元医用画像において画像間で共通する同一の組織部分を表すスライスの組合せについて候補を特定し、そのスライスに対応した断層画像を再構成して表示させる。操作者は、それらの断層画像を参照し、同一の組織部分を表すと思われるスライスの組合せを目視で特定する。画像処理装置は、このようにして特定された組合せの各スライス内の組織構造が位置的に互いに重なるように、3次元医用画像の座標変換を行う。
【0004】
一般的に、3次元医用画像において関心が持たれるスライスを特定し、その断層画像を再構成して表示する際には、断層画像の解像度をよくするとともに空間分解能を上げるため、そのスライスのスライス幅は、例えば、実空間上で0.5mm程度と比較的小さく設定する。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特表2005−522296号公報
【非特許文献】
【0006】
【非特許文献1】IEEE Trans. on Med. Imaging, 16:187-198, 1997
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特定するスライスのスライス幅が小さいと、そのスライスに含まれる組織のスライス幅方向の情報が少なくなるため、特に解剖学的なランドマーク(landmark)となる血管の構造が把握し辛い。そうかと言って、スライス幅をやみくもに大きくすると、そのスライスの空間分解能が低下するため、目的にそぐわないケース(case)もある。特に、3次元画像の位置合せを行う場合には、位置合せ精度を劣化させる要因になるため好ましくない。
【0008】
このような事情により、3次元医用画像におけるスライスの断層画像を表示する際に、そのスライスの空間分解能を損ねることなく、そのスライスに含まれる血管の構造をより把握しやすくする技術が望まれている。
【課題を解決するための手段】
【0009】
第1の観点の発明は、
血管を含む部位を表す3次元医用画像において関心が持たれるスライスを特定する特定工程と、
前記3次元医用画像における前記スライスを含み該スライスのスライス幅より幅広である領域について、該スライスのスライス軸方向に画素値の投影処理を行う投影工程と、を備えた画像処理方法を提供する。
【0010】
第2の観点の発明は、
前記投影処理により得られた投影画像を表示する表示工程をさらに備えており、
前記特定工程が、前記部位を表す第1の3次元医用画像における第1のスライスと、前記部位を表す第2の3次元医用画像における第2のスライスであって前記第1のスライスに含まれる血管部分構造体と同一の血管部分構造体を含む可能性がある第2のスライスとを特定し、
前記投影工程が、前記第1の3次元医用画像における前記第1のスライスを含み該第1のスライスより幅広である第1の領域について、前記第1のスライスのスライス軸方向に第1の投影処理を行うとともに、前記第2の3次元医用画像における前記第2のスライスを含み該第2のスライスより幅広である第2の領域について、前記第2のスライスのスライス軸方向に第2の投影処理を行い、
前記表示工程が、前記第1の投影処理により得られた第1の投影画像と、前記第2の投影処理により得られた第2の投影画像とを表示する、上記第1の観点の画像処理方法を提供する。
【0011】
第3の観点の発明は、
前記特定工程が、前記第1の3次元医用画像における第1の血管分岐を含むスライスを前記第1のスライスとして特定するとともに、前記第2の3次元医用画像における前記第1の血管分岐と同一の血管分岐である可能性がある第2の血管分岐を含むスライスを前記第2のスライスとして特定する、上記第2の観点の画像処理方法を提供する。
【0012】
第4の観点の発明は、
前記第1の血管分岐と前記第2の血管分岐とが重なるように、前記第1の3次元医用画像と前記第2の3次元医用画像との位置合せを行う位置合せ工程をさらに備えた、上記第3の観点の画像処理方法を提供する。
【0013】
第5の観点の発明は、
前記特定工程が、前記第1の血管分岐と前記第2の血管分岐とによる複数の組合せを特定し、
操作者による所定の操作に応答して、前記複数の組合せの中から1つの組合せを選択する選択工程をさらに備え、
前記位置合せ工程が、前記選択された1つの組合せを構成する前記第1の血管分岐と前記第2の血管分岐とが重なるように、前記第1の3次元医用画像と前記第2の3次元医用画像との位置合せを行う、上記第4の観点の画像処理方法を提供する。
【0014】
第6の観点の発明は、
血管を含む部位を表す3次元医用画像において関心が持たれるスライスを特定する特定手段と、
前記3次元医用画像における前記スライスを含み該スライスのスライス幅より幅広である領域について、該スライスのスライス軸方向に画素値の投影処理を行う投影手段と、
前記投影処理により得られた投影画像を表示する表示手段と、を備えた画像処理装置を提供する。
【0015】
第7の観点の発明は、
前記特定手段が、前記部位を表す第1の3次元医用画像における第1のスライスと、前記部位を表す第2の3次元医用画像における第2のスライスであって前記第1のスライスに含まれる血管部分構造体と同一の血管部分構造体を含む可能性がある第2のスライスとを特定し、
前記投影手段が、前記第1の3次元医用画像における前記第1のスライスを含み該第1のスライスより幅広である第1の領域について、前記第1のスライスのスライス軸方向に第1の投影処理を行うとともに、前記第2の3次元医用画像における前記第2のスライスを含み該第2のスライスより幅広である第2の領域について、前記第2のスライスのスライス軸方向に第2の投影処理を行い、
前記表示手段が、前記第1の投影処理により得られた第1の投影画像と、前記第2の投影処理により得られた第2の投影画像とを表示する、上記第6の観点の画像処理装置を提供する。
【0016】
第8の観点の発明は、
前記特定手段が、前記第1の3次元医用画像における第1の血管分岐を含むスライスを前記第1のスライスとして特定するとともに、前記第2の3次元医用画像における前記第1の血管分岐と同一の血管分岐である可能性がある第2の血管分岐を含むスライスを前記第2のスライスとして特定する、上記第7の観点の画像処理装置を提供する。
【0017】
第9の観点の発明は、
前記第1の血管分岐と前記第2の血管分岐とが重なるように、前記第1の3次元医用画像と前記第2の3次元医用画像との位置合せを行う位置合せ手段をさらに備えた、上記第8の観点の画像処理装置を提供する。
【0018】
第10の観点の発明は、
前記特定手段が、前記第1の血管分岐と前記第2の血管分岐とによる複数の組合せを特定し、
操作者による所定の操作に応答して、前記複数の組合せの中から1つの組合せを選択する選択手段をさらに備え、
前記位置合せ手段が、前記選択された1つの組合せを構成する前記第1の血管分岐と前記第2の血管分岐とが重なるように、前記第1の3次元医用画像と前記第2の3次元医用画像との位置合せを行う、上記第9の観点の画像処理装置を提供する。
【0019】
第11の観点の発明は、
前記特定手段が、一定レベル以上の類似度が算出された血管分岐の組合せを、前記第1及び第2の血管分岐として特定する、請求項7から請求項10のいずれか一項に記載の画像処理装置。
【0020】
第12の観点の発明は、
前記特定手段が、操作者により指定された血管分岐の組合せを、前記第1及び第2の血管分岐として特定する、上記第7の観点から第10の観点のいずれか一つの観点の画像処理装置を提供する。
【0021】
第13の観点の発明は、
前記投影手段が、前記投影処理として、最大値投影処理、最小値投影処理または平均値投影処理を行う、上記第7の観点から第12の観点のいずれか一つの観点の画像処理装置を提供する。
【0022】
第14の観点の発明は、
前記投影手段が、血管に対応する画素値が他の組織に対応する平均的な画素値よりも高くなるような3次元医用画像に対しては、前記最大値投影処理を行う、上記第13の観点の画像処理装置を提供する。
【0023】
第15の観点の発明は、
前記投影手段が、血管に対応する画素値が他の組織に対応する平均的な画素値よりも低くなるような3次元医用画像に対しては、前記最小値投影処理を行う、上記第13の観点の画像処理装置を提供する。
【0024】
第16の観点の発明は、
前記第1及び第2の3次元医用画像が、撮像モダリティ(modality)が互いに異なる画像である、上記第7の観点から第15の観点のいずれか一つの観点の画像処理装置を提供する。
【0025】
第17の観点の発明は、
前記第1及び第2の3次元医用画像の一方が、超音波画像である、上記第16の観点の画像処理装置を提供する。
【0026】
第18の観点の発明は、
前記部位が、肝臓または肺である、上記第6の観点から第17の観点のいずれか一つの観点の画像処理装置を提供する。
【0027】
第19の観点の発明は、
前記第1及び第2のスライスの幅は、実空間における3mm以下の幅に
前記第1及び第2の領域の幅は、実空間における5mm以上、30mm以下の幅に相当する、上記第6の観点から第18の観点のいずれか一つの観点の画像処理装置を提供する。
【0028】
第20の観点の発明は、
コンピュータ(computer)を、上記第6の観点から第19の観点のいずれか一つの観点の画像処理装置として機能させるためのプログラム(program)を提供する。
【発明の効果】
【0029】
上記観点の発明によれば、上記構成により、3次元医用画像において特定されたスライスを含みそのスライス軸方向にそのスライス幅より幅広である領域について画素値を投影した投影画像を得ることができ、当該スライスの空間分解能を損ねることなく、そのスライスに含まれる血管の構造をより把握しやすくすることができる。
【図面の簡単な説明】
【0030】
図1】第一実施形態に係る画像処理装置の構成を概略的に示す機能ブロック(block)図である。
図2】同一被検者の肝臓を表すMR3D画像及びUS3D画像の一例を示す図である。
図3】MR血管画像、MR血管ツリー(tree)及びMR血管分岐におけるベクトル(vector)U,V,Wの算出結果の一例を示す図である。
図4】血管分岐点を検出する方法を説明するための図である。
図5】血管分岐を形成する血管部分に対応したベクトルを求める方法を説明するための図である。
図6】血管分岐のマッチング(matching)評価の概念図である。
図7】血管分岐を規定するベクトルを説明するための図である。
図8】US(Ultra Sound)分岐スライスを含むUSスライス幅広領域の設定例を示す図である。
図9】画素値の最大値投影処理及び最小値投影処理の概念を示す図である。
図10】造影剤が注入された肝臓を表す造影CT(Computed Tomography)画像と、造影剤が注入された肝臓の造影MR(Magnetic Resonance)画像との例を示す図である。
図11】MRスライス及びUSスライスを表す断層画像の例を示す図である。
図12】MRスライス幅広領域及びUSスライス幅広領域の投影画像の例を示す図である。
図13】画像表示の一例を示す図である。
図14】第一実施形態に係る画像処理装置における処理の流れを示すフロー(flow)図である。
図15】第二実施形態における不完全血管分岐ペア(pair)の構成を説明するための図である。
図16】不完全血管分岐ペアを規定するベクトルを説明するための図である。
図17】第三実施形態における血管部分ペアの構成を説明するための図である。
図18】血管部分ペアを規定するベクトルを説明するための図である。
図19】第四実施形態に係る画像処理装置の構成を概略的に示す機能ブロック図である。
図20】第四実施形態に係る画像処理装置における処理の流れを示すフロー図である。
【発明を実施するための形態】
【0031】
以下、発明の実施形態について説明する。なお、これにより発明は限定されない。
【0032】
本実施形態に係る画像処理装置は、同一の被検者における同一の部位を表す2つの3次元医用画像を位置合せし、その後、任意のスライスを表す断層画像を再構成して表示する装置である。位置合せの手法としては、上記2つの3次元医用画像の各々について血管を抽出して血管分岐などの血管部分構造体を検出し、上記2つの3次元医用画像間で共通する同一の血管部分構造体を特定して、これらが互いに重なるように3次元医用画像の座標変換を行う手法を用いる。この手法は、画像の濃淡の類似性を見るのではなく、血管部分構造体の形状の類似性を見る手法である。そのため、本手法は、物質の種類と画素値との対応関係が互いに異なるような2つの画像間の位置合せ、例えば、撮影モダリティが互いに異なる画像間の位置合せや、肝臓・肺など変形性の高い部位を表す画像間の位置合せに対して特に有効である。本実施形態では、この手法において、位置合せする画像間で共通する同一の血管部分構造体を特定する際に、その特定精度を高めるため、比較対象となる血管部分構造体だけでなく、その周辺の血管が参照できるようにする。具体的には、比較対象となる血管部分構造体とその周辺を含む領域について、最大画素値投影や最小画素値投影などの投影処理を行って、その領域内の血管が強調された投影画像を生成し、これを表示する。操作者は、この投影画像を参照することにより、血管部分構造体を含む広い範囲の血管構造の類似性を判断することができ、比較対象となる血管部分構造体が共通する同一の血管部分構造体であるか否かを高い確度で判定することができる。画像処理装置は、この判定結果を利用することで精度の高い画像の位置合せを行うことができる。
【0033】
(第一実施形態)
図1は、本実施形態に係る画像処理装置1aの構成を概略的に示す機能ブロック(block)図である。画像処理装置1aは、例えば、コンピュータ(computer)CPに所定のプログラム(program)を実行させることにより実現させることができる。
【0034】
図1に示すように、画像処理装置1aは、画像取得部2と、血管抽出部3と、血管部分構造体検出部4と、マッチング(matching)評価部5と、処理対象スライス(slice)特定部6と、スライス幅広領域投影部7と、投影画像表示部8と、マッチング確定部9と、座標変換部10と、位置合せ調整部11と、対応断層画像生成部12と、画像出力部13とを有している。なお、処理対象スライス特定部6、スライス幅広領域投影部7及び投影画像表示部8は、それぞれ、発明における特定手段、投影手段及び表示手段の一例である。また、マッチング確定部9、座標変換部10及び位置合せ調整部11は、発明における位置合せ手段の一例である。
【0035】
画像取得部2は、位置合せの対象となる2つの3次元医用画像を取得する。ここでは、ユーザ(user)の操作に応じて、入力された2つの3次元医用画像を位置合せの対象として取得する。画像取得部2は、これら2つの3次元医用画像のうち一方を、位置合せ処理において固定する“目標画像”に設定し、他方を、位置合せ処理において座標変換する“対象画像”に設定する。本例では、位置合せの対象となる2つの3次元医用画像として、同一の被検者の肝臓を表すMR3D画像GMR及びUS3D画像GUSを取得する場合を想定する。また、US3D画像GUSを“目標画像”に設定し、MR3D画像GMRを“対象画像”に設定する。なお、MR3D画像GMR及びUS3D画像GUSは、発明における第1の3次元医用画像及び第2の3次元医用画像の一例である。
【0036】
図2に、同一の被検者の肝臓を表すMR3D画像GMR及びUS3D画像GUSの一例を示す。ただし、この図では、便宜上、3次元医用画像における所定の断層画像を示している。
【0037】
血管抽出部3は、MR3D画像GMR及びUS3D画像GUSから、血管を表す血管画像をそれぞれ抽出する。血管画像の抽出には、既知の手法を用いる。例えば、非特許文献 Kirbus C and Quek F: A review of vessel extraction technique and algorithms, ACM Computer Surveys (CSUR), 36(2), 81-121, 2004.に記載されている手法を用いる。以下、MR3D画像GMRにおける血管画像をMR血管画像VMRといい、US3D画像GUSにおける血管画像をUS血管画像VUSという。本例では、血管画像として、肝臓の門脈または肝静脈を表す画像を抽出する。また、血管画像は、二値化画像として抽出する。
【0038】
図3(a)に、血管画像の一例として、MR血管画像VMRのサンプル(sample)を示す。
【0039】
血管部分構造体検出部4は、抽出されたMR血管画像VMR及びUS血管画像VUSにおいて、1つ以上の血管部分構造体をそれぞれ検出する。ここで、血管部分構造体とは、互いに近接または結合する複数の血管部分により構成される構造体のことを言う。本例では、血管部分構造体として、血管分岐を検出する。血管分岐は、血管分岐点と、その血管分岐点から枝分かれする二本の血管部分とにより構成される。そのため、血管分岐は、血管分岐点の位置と、その血管分岐点から枝分かれする二本の血管部分の走行方向及び長さとにより特定され、識別される。血管部分構造体検出部4は、具体的には、次のような処理を行う。
【0040】
まず、抽出されたMR血管画像VMR及びUS血管画像VUSに対して、スムージング(smoothing)処理を施す。これにより、境界(輪郭)が滑らかになった血管画像が得られる。スムージング処理には、例えば、3次元のガウシアンフィルタ(Gaussian Filter)や3次元のメディアンフィルタ(Median Filter)などを用いる。
【0041】
次に、スムージング処理済みのMR血管画像VMR及びUS血管画像VUSに対して、スケルトン(skeleton)処理(3次元細線化処理)を施す。これにより、血管の走行方向に沿った軸だけが枝のように線状に表された「血管ツリー(tree)」が得られる。以下、MR血管画像から得られた血管ツリーをMR血管ツリーTRMRといい、US血管画像から得られた血管ツリーをUS血管ツリーTRUSという。スケルトン処理としては、例えば、非特許文献 Lee et.al , Building skeleton models via 3-D medial surface/axis thinning algorithms. Computer Vision, Graphics, and Image Processing, 56(6):462-478, 1994 に記載されている手法を用いる。図3(b)に、血管ツリーの一例として、MR血管ツリーTRMRのサンプルを示す。図3(b)において、各血管部分に付された番号は、タグ(tag)番号である。
【0042】
次いで、MR血管ツリーTRMR及びUS血管ツリーTRUSにおいて、1つ以上の血管分岐点をそれぞれ検出する。以下、具体的な処理について説明する。
【0043】
図4は、血管分岐点を検出する方法を説明するための図である。図4に示すように、血管ツリーTRの枝に沿って、その枝上の点を含む所定サイズ(size)の領域を解析領域A1として設定する。解析領域A1は、例えば、血管ツリーTRの枝上の点に対応した画素を中心とする[3×3×3]画素の3次元領域とする。次いで、この解析領域A1に対して解析を行い、血管分岐を形成する連続画素を検出する。解析は、血管ツリーの「幹」側から「枝先」側に向かって行われるよう、血管ツリーの元となる血管画像において最も太い血管部分に相当する枝の端部から解析を開始する。そして、連続画素が枝分かれする点を、血管分岐点BPとして検出する。なお、血管分岐は、一本の血管が二本の血管に枝分かれする二叉分岐が典型であるが、一本の血管が同一の分岐点で三本以上の血管に枝分かれする三叉以上の分岐も存在する。三叉以上の分岐は、複数の二叉分岐として認識する。以下、MR血管ツリーTRMRにおいて検出された各血管分岐点をMR血管分岐点BPMR,i(i=1,2,…)で表し、US血管ツリーTRUSにおいて検出された各血管分岐点をUS血管分岐点BPUS,j(j=1,2,…)で表す。
【0044】
なお、血管分岐点を検出する際には、簡略化のため、血管ツリーの全体において、血管分岐点から枝分かれした血管部分の長さが非常に小さい血管分岐点は排除し、枝分かれした血管部分の長さが所定の閾値を超える比較的大きめの血管分岐点のみを検出するようにしてもよい。
【0045】
次に、MR血管分岐点BPMR,i及びUS血管分岐点BPUS,jの各々について、その血管分岐点から枝分かれする二本の血管部分に対応した二つのベクトル(vector)を求める。以下、具体的な処理について説明する。
【0046】
図5は、血管分岐を形成する血管部分に対応したベクトルを求める方法を説明するための図である。図5(a)に示すように、血管ツリーTR上で、血管分岐点BPごとに、その血管分岐点BPを含む所定サイズの領域を注目領域A2として設定する。注目領域A2は、例えば、血管分岐点BPを中心とする[10×10×10]画素の3次元領域とする。注目領域A2内には、血管分岐点BPから枝分かれする二本の血管部分BV1,BV2が含まれている。次に、図5(b)に示すように、二本の血管部分BV1,BV2それぞれの走行方向と長さを表すベクトルb1,b2を求める。血管分岐点BPから枝分かれする血管部分BV1,BV2の走行方向と長さは、注目領域A2内において、対象となる血管分岐点BPから枝分かれする血管部分に次の血管分岐点BNが現れる場合には、対象となる血管分岐点BPとその次の血管分岐点BNとを結ぶ線分の方向と長さとする。一方、対象となる血管分岐点BPから枝分かれする血管部分に、終端点または注目領域A2の境界面との交点である特定点BCが現れる場合には、対象となる血管分岐点BPと特定点BCとを結ぶ線分の方向と長さとする。
【0047】
このような処理により、MR血管ツリーTRMR及びUS血管ツリーTRUSそれぞれにおいて、血管分岐を、血管分岐点に対応する画素の座標と、その血管分岐点から枝分かれする二本の血管部分に対応した二つのベクトルとで特定することができる。なお、以下、MR血管ツリーTRMRにおける血管分岐をMR血管分岐といい、US血管ツリーTRUSにおける血管分岐をUS血管分岐という。
【0048】
マッチング評価部5は、MR血管分岐とUS血管分岐との組合せごとに、血管分岐同士のマッチング評価を行う。本例では、マッチング評価の対象となるMR血管分岐とUS血管分岐とが重なるように、スムージング処理済みのMR血管画像VMRと、スムージング処理済みのUS血管画像VUSとを位置合せする。次いで、位置合せされたMR血管画像VMRとUS血管画像VUSとの間において、マッチング評価の対象となるMR血管分岐及びUS血管分岐の周辺での類似度を算出する。具体的には、マッチング評価の対象となるMR血管分岐及びUS血管分岐の組合せごとに、次のような処理を行う。
【0049】
図6に、血管分岐のマッチング評価の概念図を示す。まず、スムージング処理済みのMR血管画像VMR及びUS血管画像VUSに座標変換を行って、これらの血管画像をマッチング評価の対象となるMR血管分岐及びUS血管分岐に共通の座標空間に置く。
【0050】
この座標空間は、マッチング評価の対象となるMR血管分岐のMR血管分岐点と、マッチング評価の対象となるUS血管分岐のUS血管分岐点とが重なり、さらに、そのMR血管分岐を形成する二本の血管部分に対応した二つのベクトルを含む平面と、そのUS血管分岐を形成する二本の血管部分に対応した二つのベクトルを含む平面とが重なるように規定された座標空間である。以下、この座標空間を第一共通座標空間という。スムージング処理済みのMR血管画像VMRを第一共通座標空間に置くには、マッチング評価の対象となるMR血管分岐に対応した変換行列を求め、この変換行列を用いてMR血管画像VMRの座標変換を行う。同様に、スムージング処理済みのUS血管画像VUSを第一共通座標空間に置くには、マッチング評価の対象となるUS血管分岐に対応した変換行列を求め、この変換行列を用いてUS血管画像VUSの座標変換を行う。
【0051】
ここで、変換行列の求め方について説明する。変換行列は、第一共通座標空間の中心となる原点と、血管分岐の姿勢(向き)を規定する回転行列とによって構成される。図7に示すように、血管分岐点をP=[px,py,pz]とし、血管分岐点Pから枝分かれする血管部分に対応するベクトルをU及びV′とし、UV′面に垂直なベクトル、すなわち法線ベクトルをWとする。また、WU面に垂直なベクトルをVとする。すると、互いに直交するベクトルU,V,Wは、当該血管分岐の姿勢に応じて決定され、回転行列を規定する。図3(c)に、MR血管分岐におけるベクトルU,V,Wの算出結果のサンプルを示す。
【0052】
U=[uxyz],V′=[v’x v’y v’z]
W=U×V′=[wxyz]
V=(U×V′)×U=[vxyz]
【0053】
変換行列は、MR血管ツリーTRMRにおいて検出されたMR血管分岐と、US血管ツリーTRUSにおいて検出されたUS血管分岐との各々について求められる。MR血管分岐について求められる変換行列TMR-BFと、US血管分岐について求められる変換行列TUS-BFとは、それぞれ次のように表すことができる。
【数1】
【0054】
なお、MR3D画像GMRとUS3D画像GUSとの間にスケール(scale)の相違がある場合には、MR血管分岐またはUS血管分岐の対応する変換行列に、スケール比scalを乗ずることで、このスケールの相違をキャンセル(cancel)することができる。MR3D画像GMRとUS3D画像GUSとのスケール比の行列は、次のように表すことできる。
【数2】
【0055】
ここで、スケールパラメータ(scale parameter)fx,fy,fzは、MR3D画像GMRとUS3D画像GUSとの間における対応実空間のスケール比から求められる。
【0056】
スムージング処理済みのMR血管画像VMR及びUS血管画像VUSを、第一共通座標空間に置いたら、MR血管画像VMRとUS血管画像VUSとの類似度を算出する。具体的には、第一共通座標空間において、MR血管画像VMR及びUS血管画像VUSの各々について、第一共通座標空間の原点を含む所定サイズの領域を評価領域として設定する。評価領域は、例えば、その原点を中心とした[64×64×64]画素の3次元領域とする。そして、MR血管画像VMRとUS血管画像VUSとの間における当該評価領域での類似度を算出する。類似度としては、例えば、相互相関係数を用いる。相互相関係数の算出に用いる相関関数は、既知のものでよい。
【0057】
このようなMR血管画像及びUS血管画像の第一共通座標空間への座標変換と、類似度の算出とを、MR血管分岐及びUS血管分岐の組合せごとにそれぞれ行う。すなわち、MR血管分岐の数をm個とし、US血管分岐の数をn個とすると、m個のMR血管分岐それぞれの変換行列と、n個のUS血管分岐それぞれの変換行列とは、次のように表すことができる。
【0058】
{T1MR-BF,T2MR-BF,…,TmMR-BF} {T1US-BF,T2US-BF,…,TnUS-BF
そして、上記したマッチング評価処理を、MR血管分岐とUS血管分岐との組合せの数、すなわちm×nの数だけ行う。ただし、MR血管分岐を構成するどちらの血管部分とUS血管分岐を構成するどちらの血管部分とが共通の同じ血管となる可能性があるのかは、マッチング評価を行うまで不明である。そのため、実際には、MR血管分岐とUS血管分岐との組合せごとに、MR血管分岐またはUS血管分岐のいずれかに対して、血管分岐を形成する二本の血管部分の一方と他方とを位置的に入れ換えた場合についても、マッチング評価を行う必要がある。したがって、厳密には、上記マッチング評価処理は、m×n×2の数だけ行うことになる。
【0059】
マッチング評価部5は、さらに、一定レベル(level)以上の類似度が算出されたMR血管分岐とUS血管分岐との組合せを、MR3D画像GMRとUS3D画像GUSとで共通する同一の血管分岐を表す組合せの候補として特定する。例えば、類似度が大きい順に上位所定数以内となるMR血管分岐とUS血管分岐との組合せ、あるいは、類似度が所定の閾値以上となるMR血管分岐とUS血管分岐との組合せを、上記候補として特定する。
【0060】
処理対象スライス特定部16は、上記候補として特定された血管分岐の組合せごとに、MR3D画像GMRにおける当該組合せを構成するMR血管分岐が含まれるスライスと、US3D画像GUSにおける当該組合せを構成するUS血管分岐が含まれるスライスとを特定する。ここでは、MR3D画像GMRにおけるMR血管分岐が含まれるスライスをMRスライスSLMRと呼び、US3D画像GUSにおけるUS血管分岐が含まれるスライスをUSスライスSLUSと呼ぶことにする。MRスライスSLMRは、MR血管分岐を形成する2本の血管部分に対応した2つのベクトルを含む平面に平行なスライス面を持つスライスである。同様に、USスライスSLUSは、US血管分岐を形成する2本の血管部分に対応した2つのベクトルを含む平面に平行なスライス面を持つスライスである。
【0061】
処理対象スライス特定部16は、上記候補である組合せごとに、その組合せを構成するMRスライスSLMR及びUSスライスSLUSを、処理対象として順次特定する。
【0062】
スライス幅広領域投影部17は、MR3D画像GMRにおいて、処理対象となったMRスライスSLMRを含み、そのMRスライスSLMRのスライス軸方向にそのスライス幅より幅広である領域を、MRスライス幅広領域WRMRとして設定する。また、US3D画像GUSにおいても同様に、処理対象となったUSスライスSLUSを含み、そのUSスライスSLUSのスライス軸方向にそのスライス幅より幅広である領域を、USスライス幅広領域WRUSとして設定する。
【0063】
図8に、USスライスを含むUSスライス幅広領域の設定例を示す。本例では、US3D画像GUSにおいて、USスライスSLUSを中心に、そのスライス軸方向に幅Δwの厚さを有するUSスライス幅広領域WRUSが設定された様子を示している。
【0064】
スライス幅広領域投影部17は、さらに、MRスライス幅広領域WRMRについて、そのMRスライスSLMRのスライス軸方向に画素値の投影処理を行い、MRスライス幅広投影画GPMR像を得る。また、USスライス幅広領域WRUSについても同様に、そのUSスライスSLUSのスライス軸方向に画素値の投影処理を行い、USスライス幅広投影画像GPUSを得る。
【0065】
投影処理の種類としては、例えば、最大値投影(MIP;Maximum Intensity Projection)処理、最小値投影(MinIP;Minimum Intensity Projection)処理または平均値投影(AIP;Average Intensity Projection)処理等を考えることができる。ここで、画素値の最大値投影処理及び最小値投影処理について簡単に説明する。
【0066】
図9は、画素値の最大値投影処理及び最小値投影処理の概念を示す図である。図9(a)に示すように、画素値の最大値投影(MIP)処理は、投影領域において投影方向に並ぶ画素の画素値のうち最大の画素値を投影する処理である。また、画素値の最小値投影(MinIP)処理は、投影領域において投影方向に並ぶ画素の画素値のうち最小の画素値を投影する処理である。今、図9(b)に示すように、投影領域Rを矢印eの方向に投影することを考える。また、矢印eに沿った画素値のプロファイルが、例えば、図9(c)に示すようなプロファイルPRであったとする。この場合、矢印eに沿った画素値の最大値投影処理では、プロファイルPR上の点c2に対応する最大画素値が投影される。また、矢印eに沿った画素値の最小値投影処理では、プロファイルPR上の点c1に対応する最小画素値が投影される。
【0067】
スライス幅広領域投影部17が実行する投影処理の種類は、処理対象となる画像において血管がどのような画素値で描写されるか、すなわち、処理対象となる画像の撮影モダリティや被写体である部位の種類、血管への造影剤の注入の有無等に応じて決定される。
【0068】
ここで、投影処理の種類の決定方法について簡単に説明する。
【0069】
図10に、断層画像の例を示す。図10(a)は、造影剤が注入された被検体の肝臓を表すCT3D画像における所定のCTスライスに対応した断層画像である。また、図10(b)は、造影剤が注入された被検体の肝臓を表すMR3D画像における所定のMRスライスに対応した断層画像である。例えば、図10(a)に示すように、造影剤が注入された被検体の肝臓を表すCT画像など、血管がその周辺の組織の平均的な画素値よりも高い画素値(輝度値)で表されるような場合には、投影処理の種類として最大値投影処理が用いられる。一方、図10(b)に示すように、造影剤が注入された被検体の肝臓を表すMR画像など、血管がその周辺の組織の平均的な画素値よりも低い画素値(輝度値)で表されるような場合には、投影処理の種類として最小値投影処理が用いられる。
【0070】
図11に、投影画像の例を示す。図11(a)は、造影剤が注入された被検体の肝臓を表すCT3D画像における所定のCTスライス幅広領域に最大値投影処理を行って得られた投影画像である。また、図11(b)は、造影剤が注入された被検体の肝臓を表すMR3D画像における所定のMRスライス幅広領域に最小値投影処理を行って得られた投影画像である。図11から分かるように、投影画像では、一般的なスライス幅のスライスには含まれない立体的な血管の構造がしっかり投影される。
【0071】
なお、MRスライスSLMR及びUSスライスSLUSに対応する実空間上のスライス幅と、MRスライス幅広領域WRMR及びUSスライス幅広領域WRUSに対応する実空間上の領域幅との好適な例は、処理対象となる3次元医用画像が表す部位、すなわち血管の太さ等に応じて異なる。例えば、部位が肝臓や肺などである場合には、MRスライス及びUSスライスに対応する実空間上のスライス幅は、0.5mm以上、3mm以下程度が好適であり、MRスライス幅広領域WRMR及びUSスライス幅広領域WRUSに対応する実空間上の領域幅は、5mm以上、30mm以下程度である。
【0072】
このような投影処理によって得られた投影画像によれば、MRスライスやUSスライスを表す断層画像には含まれない、その周辺領域に及ぶ血管構造が描写される。操作者は、このような投影画像を見ることで、対象としている血管分岐だけでなく、その周りの血管構造をも把握することができる。そのため、操作者は、これらの投影画像を見比べることにより、対象としている血管分岐の類似性をより高い精度で評価することができ、指定されたMR血管分岐とUS血管分岐とが同一の血管分岐であるか否かを、高い確信度を持って判断することができる。
【0073】
図12に、断層画像と投影画像との比較例を示す。図12(a)は、超音波撮像装置を用いて被検体の肝臓をBモードで撮像して得られた、あるスライスに対応した断層画像である。図12(b)は、そのスライスを含むUSスライス幅広領域の投影画像である。また、図12(c)は、MR撮像装置を用いて造影剤が注入された同じ被検体の肝臓を撮像して得られた、実質的にほぼ同じスライスを含むMRスライス幅広領域の投影画像である。なお、各画像において、解剖学的な幾つかの位置に符号a〜cの矢印を付してあるが、同じ符号の矢印は、解剖学的にほぼ同じ位置を示している。図12から分かるように、通常の断層画像では血管分岐が認識し辛い場合があるが、投影画像では血管分岐の周辺における血管の構造がしっかり強調される。
【0074】
投影画像表示部18は、上記候補の組合せごとに、MRスライス幅広投影画像及びUSスライス幅広投影画像を表示する。
【0075】
ここで、操作者は、表示されたこれらの投影画像を参照して、同一の血管分岐を表すと思われるMR血管分岐とUS血管分岐との組合せを選択する。
【0076】
マッチング確定部19は、操作者により選択されたMR血管分岐とUS血管分岐との組合せを同一の血管分岐を表すベストマッチングの血管分岐として確定する。
【0077】
座標変換部6は、ベストマッチングとして確定された血管分岐の組合せについて、この組合せに対応した変換行列に基づいて、MR3D画像GMRの座標変換に用いる変換行列を決定する。
【0078】
粗い位置合せに最適な変換行列は、次式により求められる。
【0079】
MR-US=[TMR-BF]best[TUS-BF]-1best[scal]
【0080】
ここで、[TMR-BF]bestは、ベストマッチングとなったMR血管分岐に対応する変換行列であり、[TUS-BF]-1bestは、ベストマッチングとなったUS血管分岐に対応する変換行列の逆行列である。
【0081】
座標変換部6は、この最適な変換行列TMR-USを用いて、MR3D画像GMRの座標変換を行うことにより、MR3D画像GMRをUS3D画像GUSに粗く位置合せをする。
【0082】
位置合せ調整部7は、粗く位置合せされたMR3D画像GMR及びUS3D画像GUSに対して、細かい位置合せを行う。細かい位置合せには、位置合せする画像間における画素値や濃度勾配、エッジなどの特徴部分が合致するように座標変換を行う手法などを用いる。
【0083】
本例における細かい位置合せに適した手法の一つとして、標準勾配場(Normalized Gradient Field:NGF)を用いる手法、例えば、非特許文献 Proceeding of SPIE Vol.7261, 72610G-1, 2009 や、特許文献 特願2013−230466号の明細書に記載されている手法が挙げられる。標準勾配場とは、画像上の座標において各方向x,y,zの1次偏微分、すなわち勾配ベクトル(Gradient Vector)を算出した後、その勾配ベクトルをその勾配ベクトルの長さ(Vector Norm)で規格化(normalized)したものである。つまり、標準勾配場は、画素値あるいは輝度値の大小や勾配の大きさに依存せず、勾配の方向だけを表す特徴量である。仮に、ある2つの画像において互いに対応する位置に同じ方向の標準勾配場が発生しているならば、これら2つの画像の位置は合っていると見なすことができる。したがって、この手法では、標準勾配場が示す方向の揃い具合を最適化することで、位置合せを行うことができる。
【0084】
対応断面像生成部8は、位置合せが成されたMR3D画像GMR及びUS3D画像GUSにおいて、互いに対応する断面像を生成する。生成する断面像の断面位置は、例えば、操作者によって指定される。
【0085】
画像出力部9は、生成された断面像を画面に表示させたり、画像データとして外部に出力したりする。このとき、ベストマッチングの血管分岐の組合せを、画像化して共に出力してもよい。例えば、MR血管ツリーTRMRとUS血管ツリーTRUSとを並べて表示し、これらの画像の上に、ベストマッチングの血管分岐を構成する血管分岐点と、その血管分岐を形成する血管部分のベクトルとを、色づけするなどして強調して表示する。図13に、画像表示の一例を示す。図13において、上段左の画像は、US血管分岐に対応するベクトルU,V,Wを求めて表示した結果を含むUS血管ツリーTRMR1であり、上段右の画像は、MR血管分岐に対応するベクトルU,V,Wを求めて表示した結果を含むMR血管ツリーTRUS1である。また、下段左の画像は、特定されたベストマッチングのUS血管分岐を含む、座標変換済みUS3D画像の所定断面像GUS1であり、下段中央の画像は、特定されたベストマッチングのMR血管分岐を含む、座標変換済みMR3D画像GMRの所定断面像GMR1である。下段右の画像は、US3D画像GUSに粗い位置合せが成されたMR3D画像GMRの任意断面像GMR-USである。
【0086】
これより、第一実施形態に係る画像処理装置1aにおける処理の流れについて説明する。図14は、第一実施形態に係る画像処理装置1aにおける処理の流れを示すフロー図である。
【0087】
ステップ(step)S1では、画像取得部2が、同一被検者の肝臓を表すMR3D画像GMR及びUS3D画像GUSを取得する。本例では、US3D画像GUSを目標画像とし、MR3D画像GMRを対象画像とする。
【0088】
ステップS2では、血管抽出部3が、MR3D画像GMR及びUS3D画像GUSそれぞれについて、肝臓の門脈または肝静脈に相当する血管を表す血管画像を抽出する。抽出には既知の手法を用いる。血管画像は二値化画像として抽出する。
【0089】
ステップS3では、血管部分構造体検出部4が、MR3D画像GMRにおいて抽出されたMR血管画像VMRと、US3D画像GUSにおいて抽出されたUS血管画像VUSのそれぞれに対して、スムージング処理及びスケルトン処理を施して、MR血管ツリーTRMR及びUS血管ツリーTRUSを得る。
【0090】
ステップS4では、血管部分構造体検出部4が、MR血管ツリーTRMR及びUS血管ツリーTRUSそれぞれにおいて、枝骨に沿って追跡しながら解析を行う。この解析により、血管分岐点の位置と、その血管分岐点から枝分かれする二本の血管部分に対応するベクトルとを求めることにより、1つ以上の血管分岐を検出する。
【0091】
ステップS5では、マッチング評価部5が、マッチング評価の対象となるMR血管分岐とUS血管分岐との組合せごとに、血管分岐同士が重なるように、スムージング処理済みのMR血管画像VMRと、スムージング処理済みのUS血管画像VUSとを位置合せする。そして、位置合せされたMR血管画像VMRとUS血管画像VUSとの間において、対象となるMR血管分岐及びUS血管分岐の周辺での類似度を算出する。
【0092】
ステップS6では、マッチング評価部5が、算出された類似度に基づいて、MR3D画像GMRとUS3D画像GUSとで共通する同一の血管分岐を表すMR血管分岐とUS血管分岐との組合せの候補を特定する。なお、ここでは、MR血管分岐とUS血管分岐との組合せを、MR/US分岐組合せと呼ぶことにする。
【0093】
ステップS7では、処理対象スライス特定部16が、候補として特定されたMR/US分岐組合せごとに、MR3D画像GMRにおける当該組合せを構成するMR血管分岐が含まれるMRスライスと、US3D画像GUSにおける当該組合せを構成するUS血管分岐が含まれるUSスライスとを、処理対象として特定する。
【0094】
ステップS8では、スライス幅広領域投影部17が、MR3D画像GMRにおいて、処理対象となったMRスライスを含み、そのMRスライスのスライス軸方向にそのスライス幅より大きい幅を有する幅広の領域を、MRスライス幅広領域として設定する。US3D画像GUSにおいても同様に、処理対象となったUSスライスを含み、そのUSスライスのスライス軸方向にそのスライス幅より大きい幅を有する幅広の領域を、USスライス幅広領域として設定する。
【0095】
ステップS9では、スライス幅広領域投影部17が、MRスライス幅広領域について、そのMRスライスのスライス軸方向に画素値の最小値投影(MinIP)を行い、MRスライス幅広投影画像を得る。USスライス幅広領域についても同様に、そのUSスライスのスライス軸方向に画素値の最小値投影(MinIP)を行い、USスライス幅広投影画像を得る。
【0096】
ステップS10では、投影画像表示部18が、得られたMRスライス幅広投影画像及びUSスライス幅広投影画像を表示する。
【0097】
ステップS11では、操作者は、表示されたこれらの投影画像を参照して、上記候補である、MR血管分岐とUS血管分岐とによる複数の組合せの中から、同一の血管分岐を表すと思われる組合せを選択する。
【0098】
ステップS12では、マッチング確定部19が、操作者により選択された組合せを、同一の血管分岐を表すMR血管分岐及びUS血管分岐として、すなわちベストマッチングの血管分岐の組合せとして確定する。
【0099】
ステップS13では、座標変換部6が、ベストマッチングとなった血管分岐の組合せに対応した変換行列に基づいて、粗い位置合せのための画像の座標変換に用いる変換行列TMR-USを決定する。
【0100】
ステップS14では、座標変換部6が、MR画像GMRを、ステップS7で決定した変換行列TMR-USを用いて座標変換を行うことにより、US画像GUSに粗く位置合せをする。
【0101】
ステップS15では、位置合せ調整部7が、粗く位置合せされたMR画像GMR及びUS画像GUSに対して、細かい位置合せを行い、位置合せの調整を行う。細かい位置合せには、位置合せの対象となる画像間における画素値や、濃度勾配、エッジ(edge)などの特徴部分が合致するように座標変換を行う手法などを用いる。
【0102】
ステップS16では、対応断面像生成部8が、位置合せが成されたMR3D画像GMR及びUS3D画像GUSにおいて、互いに対応するスライスの断層画像を生成する。生成する断層画像のスライス位置は、例えば、操作者によって指定される。
【0103】
ステップS17では、画像出力部9が、生成された断層画像を画面に表示させたり、画像データ(data)として外部に出力したりする。
【0104】
(第二実施形態)
本実施形態に係る画像処理装置1bは、血管ツリーにおいて、血管分岐点から枝分かれする血管部分が一本しか見つからないような場合であっても、画像の位置合せを可能にするものである。本実施形態では、第一実施形態による画像処理装置1aをベース(base)として、血管部分構造体検出部4、及びマッチング評価部5が、第一実施形態とは異なる処理を行う。
【0105】
血管部分構造体検出部4は、MR血管ツリーTRMR及びUS血管ツリーTRUSそれぞれにおいて、1つ以上の血管部分構造体を検出する。本例では、その血管部分構造体として、不完全血管分岐ペア(pair)を検出する。不完全血管分岐ペアは、図15に示すように、血管ツリーTRにおいて、第一血管分岐点BP1と、この第一血管分岐点BP1から伸びる一本の第一血管部分VP1と、第一血管分岐点BP1に近接しており第一血管分岐点BP1とは異なる第二血管分岐点BP2と、この第二血管分岐点BP2から伸びる一本の第二血管部分VP2とにより構成される。そのため、不完全血管分岐ペアは、第一血管分岐点BP1の位置と、その第一血管分岐点BP1から伸びる第一血管部分VP1の走行方向及び長さ(ベクトルu)と、第二血管分岐点BP2の位置と、その第二血管分岐点からBP2伸びる第二血管部分VP2の走行方向及び長さ(ベクトルv)とにより特定され、識別される。
【0106】
なお、血管部分構造体検出部4は、血管ツリーにおいて、血管の伸びる方向が急激に変化する位置を、血管分岐点として認識し、その位置から先に伸びる血管部分を、分岐点から枝分かれする血管部分として認識する。これにより、血管分岐点から伸びる血管部分が一本しか見つからない場合であっても、血管分岐点とこの分岐点から伸びる血管部分とを的確に検出することができる。
【0107】
血管部分構造体検出部4は、具体的には、次のような処理を行う。
【0108】
まず、第一実施形態と同じ要領で、MR画像GMR及びUS画像GUSから、MR血管ツリーTRMR及びUS血管ツリーTRUSとを得る。また、MR血管ツリーTRMR及びUS血管ツリーTRUSそれぞれにおいて、2つ以上の血管分岐点を検出する。
【0109】
次に、MR血管分岐点BPMR,i及びUS血管分岐点BPUS,jの各々について、その血管分岐点から伸びる一本の血管部分に対応した一つのベクトルを求める。
【0110】
このような処理により、MR血管ツリーTRMR及びUS血管ツリーTRUSそれぞれにおいて、不完全血管分岐ペアを、第一血管分岐点に対応する画素の座標と、その第一血管分岐点から伸びる一本の第一血管部分に対応した一つのベクトルと、第二血管分岐点に対応する画素の座標と、その第二血管分岐点から伸びる一本の第二血管部分に対応した一つのベクトルとで特定することができる。なお、以下、MR血管ツリーTRMRにおいて検出された不完全血管分岐ペアをMR不完全血管分岐ペアといい、US血管ツリーTRUSにおいて検出された不完全血管分岐ペアをUS不完全血管分岐ペアという。
【0111】
マッチング評価部5は、MR不完全血管分岐ペアとUS不完全血管分岐ペアとの組合せごとに、不完全血管分岐ペア同士のマッチング評価を行う。本例では、マッチング評価の対象となるMR不完全血管分岐ペアとUS不完全血管分岐ペアとが重なるように、スムージング処理済みのMR血管画像VMRと、スムージング処理済みのUS血管画像VUSとを位置合せする。位置合せされたMR血管画像VMRとUS血管画像VUSとの間において、マッチング評価の対象となるMR不完全血管分岐ペア及びUS不完全血管分岐ペアの周辺での類似度を算出する。そして、この類似度の値が大きいほど、よりマッチングしているとの評価を行う。具体的には、マッチング評価の対象となるMR不完全血管分岐ペアとUS不完全血管分岐ペアとの組合せごとに、次のような処理を行う。
【0112】
まず、スムージング処理済みのMR血管画像VMR及びUS血管画像VUSを、マッチング評価の対象となるMR不完全血管分岐ペア及びUS不完全血管分岐ペアに共通の座標空間に置く。
【0113】
この座標空間は、マッチング評価の対象となるMR不完全血管分岐ペアにおける「第一血管分岐点」、「第二血管分岐点」、または「第一血管部分に沿って伸びる直線と第二血管部分に沿って伸びる直線とを最短距離で結ぶ線分の中点」のうちの所定の一点と、マッチング評価の対象となるUS不完全血管分岐ペアにおける上記所定の一点とが重なり、さらに、マッチング評価の対象となるMR不完全血管分岐ペアにおける第一血管部分に対応するベクトルと第二血管部分に対応するベクトルとを当該MR不完全血管分岐ペアにおける上記所定の一点に置いたときにこれらのベクトルを含む平面と、マッチング評価の対象となるUS不完全血管分岐ペアにおける第一血管部分に対応するベクトルと第二血管部分に対応するベクトルとを当該US不完全血管分岐ペアにおける上記所定の一点に置いたときにこれらのベクトルを含む平面とが重なるように規定された座標空間である。以下、この座標空間を第二共通座標空間という。
【0114】
スムージング処理済みのMR血管画像VMRを第二共通座標空間に置くには、マッチング評価の対象となるMR不完全血管分岐ペアに対応した変換行列を求め、この変換行列を用いてMR血管画像VMRの座標変換を行う。同様に、スムージング処理済みのUS血管画像VUSを第二共通座標空間に置くには、マッチング評価の対象となるUS不完全血管分岐ペアに対応した変換行列を求め、この変換行列を用いてUS血管画像VUSの座標変換を行う。
【0115】
ここで、変換行列の求め方について説明する。変換行列は、第二共通座標空間の中心となる原点と、不完全血管分岐ペアの姿勢(向き)を規定する回転行列とによって構成される。図16(a)に示すように、第一血管分岐点をP0=[px,py,pz]とし、第一血管分岐点P0から伸びる第一血管部分に対応するベクトルをu=[ux,uy,uz]とする。また、第二血管分岐点をQ0=[qx,qy,qz]とし、第二血管分岐点Q0から伸びる第二血管部分に対応したベクトルをv=[vx,vy,vz]とする。そして、ベクトルuに沿って伸びる直線とベクトルvに沿って伸びる直線とを最短距離で結ぶ線分をLとする。すると、第二共通座標空間の中心となる原点は、図16(b)に示すように、第一血管分岐点P0、第二血管分岐点Q0、または、最短距離線分Lの中点Oとすることができる。また、ベクトルu及びvは、第二共通座標空間の中心すなわち原点に移動して配置させることができる。ここでのベクトルu,vは、第一実施形態における二本の血管部分に対応したベクトルU,V′と同様に扱うことができる。あとは、第一実施形態と同様の方法を用いることで、不完全血管分岐ペアから、第二共通座標空間への座標変換のための変換行列を算出することができる。
【0116】
なお、最短距離線分Lは、次のようにして求めることができる。
【0117】
第一血管分岐点P0を通り、ベクトルUに沿って伸びる3次元での線ベクトルの式は、次のように表すことができる。
【0118】
P(s)=P0+s・u
ここで、sは連続可変のパラメータ値である。
【0119】
第一血管分岐点P0と第二血管分岐点Q0との間の線ベクトルをWとすると、
w=P0−Q0
であるから、
P(s)−Q0=w+s・u
という式が成り立つ。
【0120】
同様に、
Q(t)−P0=−w+t・v
という式が成り立つ。ここで、tは、連続可変のパラメータ値である。
【0121】
これら2つの式を合成すると、
(P(s)−Q(t))+(P0−Q0)=2・w+s・u−t・v
(P(s)−Q(t))+w=2・w+s・u−t・v (i)
となる。
【0122】
線ベクトルP(s)と線ベクトルQ(t)とを結ぶ線分は、その線分が線ベクトルP(s)及び線ベクトルQ(t)に対してそれぞれ直角となるときに最短距離を取る。ここで、線ベクトルP(s)と線ベクトルQ(t)とを最短距離で結ぶ線分の両端点をP(s1),Q(t1)とする。すると、互いに直交する2つのベクトルの内積は0であるから、
u・(P(s1)−Q(t1))=0
となる。
【0123】
また、この式に、式(i)を代入すると、
u・(w+s1・u−t1・v)=0
となる。
【0124】
したがって、
s1=(u・v)[s1・(u・v)+v・w]−u・w
=s1・(u・v)2+(u・v)(v・w)−u・w
s1=[(u・v)(v・w)−u・w]/[1−(u・v)2]
となる。
【0125】
同様に、
t1=[v・w−(u・v)(u・w)]/[1−(u・v)2]
となる。
【0126】
最短距離線分Lは、
L=P(s1)−Q(t1)
であり、ベクトルu,v,wから求めることができる。
【0127】
スムージング処理済みのMR血管画像VMR及びUS血管画像VUSを、第二共通座標空間に置いたら、MR血管画像VMRとUS血管画像VUSとの相互相関係数を算出する。具体的には、第二共通座標空間において、MR血管画像VMR及びUS血管画像VUSそれぞれについて、第二共通座標空間の原点を含む所定サイズの領域を評価領域として設定する。評価領域は、例えば、その原点を中心とした[64×64×64]画素の3次元領域とする。そして、MR血管画像VMRとUS血管画像VUSとの間における当該評価領域での類似度、例えば相互相関係数を算出する。
【0128】
(第三実施形態)
本実施形態に係る画像処理装置1cは、血管ツリーにおいて、血管分岐点が見つからず、互いに近接する血管部分しか見つからないような場合であっても、画像の位置合せを可能にするものである。本実施形態では、第一実施形態による画像処理装置1aをベースとして、血管部分構造体検出部4、及びマッチング評価部5が、第一実施形態とは異なる処理を行う。
【0129】
血管部分構造体検出部4は、MR血管ツリーTRMR及びUS血管ツリーTRUSそれぞれにおいて、1つ以上の血管部分構造体を検出する。本例では、その血管部分構造体として、血管部分ペアを検出する。血管部分ペアは、図17に示すように、血管ツリーTRにおいて、第一血管部分VP1と、第一血管部分VP1に近接しており第一血管部分VP1とは異なる第二血管部分VP2とにより構成される。そのため、血管部分ペアは、第一血管部分端点KP1の位置と、その第一血管部分端点KP1から伸びる第一血管部分VP1の走行方向及び長さ(ベクトルu)と、第二血管部分端点KP2の位置と、その第二血管部分端点KP2から伸びる第二血管部分VP2の走行方向及び長さ(ベクトルv)とにより特定され、識別される。
【0130】
なお、血管部分構造体検出部4は、血管ツリーにおいて、血管分岐点を含まない血管部分を認識し、その血管部分の端点を、血管部分端点として認識する。
【0131】
血管部分構造体検出部4は、具体的には、次のような処理を行う。
【0132】
まず、第一実施形態と同じ要領で、MR画像GMR及びUS画像GUSから、MR血管ツリーTRMR及びUS血管ツリーTRUSとを得る。また、MR血管ツリーTRMR及びUS血管ツリーTRUSそれぞれにおいて、互いに異なる2つ以上の血管部分端点を検出する。
【0133】
次に、MR血管部分端点KPMR,i及びUS血管部分端点KPUS,jの各々について、その血管部分端点から伸びる一本の血管部分に対応した一つのベクトルを求める。
【0134】
このような処理により、MR血管ツリーTRMR及びUS血管ツリーTRUSそれぞれにおいて、血管部分ペアを、第一血管部分端点に対応する画素の座標と、その第一血管部分端点から伸びる一本の第一血管部分に対応した一つのベクトルと、第二血管部分端点に対応する画素の座標と、その第二血管部分端点から伸びる一本の第二血管部分に対応した一つのベクトルとで特定することができる。なお、以下、MR血管ツリーTRMRにおいて検出された血管部分ペアをMR血管部分ペアといい、US血管ツリーTRUSにおいて検出された血管部分ペアをUS血管部分ペアという。
【0135】
マッチング評価部5は、MR血管部分ペアとUS血管部分ペアとの組合せごとに、血管部分ペア同士のマッチング評価を行う。本例では、マッチング評価の対象となるMR血管部分ペアとUS血管部分ペアとが重なるように、スムージング処理済みのMR血管画像VMRと、スムージング処理済みのUS血管画像VUSとを位置合せする。位置合せされたMR血管画像VMRとUS血管画像VUSとの間において、マッチング評価の対象となるMR血管部分ペア及びUS血管部分ペアの周辺での類似度を算出する。具体的には、マッチング評価の対象となるMR血管部分ペアとUS血管部分ペアとの組合せごとに、次のような処理を行う。
【0136】
まず、スムージング処理済みのMR血管画像VMR及びUS血管画像VUSを、マッチング評価の対象となるMR血管部分ペア及びUS血管部分ペアに共通の座標空間に置く。
【0137】
この座標空間は、マッチング評価の対象となるMR血管部分ペアにおける「第一血管部分に沿って伸びる直線と第二血管部分に沿って伸びる直線とを最短距離で結ぶ線分の中点」と、マッチング評価の対象となるUS血管部分ペアにおける「第一血管部分に沿って伸びる直線と第二血管部分に沿って伸びる直線とを最短距離で結ぶ線分の中点」とが重なり、さらに、マッチング評価の対象となるMR血管部分ペアにおける第一血管部分に対応するベクトルと第二血管部分に対応するベクトルとを当該MR血管部分ペアにおける上記最短距離線分の中点に置いたときにこれらのベクトルを含む平面と、マッチング評価の対象となるUS血管部分ペアにおける第一血管部分に対応するベクトルと第二血管部分に対応するベクトルとを当該US血管部分ペアにおける上記最短距離線分の中点に置いたときにこれらのベクトルを含む平面とが重なるように規定された座標空間である。以下、この座標空間を第三共通座標空間という。
【0138】
スムージング処理済みのMR血管画像VMRを第三共通座標空間に置くには、マッチング評価の対象となるMR血管部分ペアに対応した変換行列を求め、この変換行列を用いてMR血管画像VMRの座標変換を行う。同様に、スムージング処理済みのUS血管画像VUSを第三共通座標空間に置くには、マッチング評価の対象となるUS血管部分ペアに対応した変換行列を求め、この変換行列を用いてUS血管画像VUSの座標変換を行う。
【0139】
ここで、変換行列の求め方について説明する。変換行列は、第三共通座標空間の中心となる原点と、血管部分ペアの姿勢(向き)を規定する回転行列とによって構成される。図18(a)に示すように、第一血管部分端点をP1=[px,py,pz]とし、第一血管部分端点P1から伸びる第一血管部分に対応するベクトルをu=[ux,uy,uz]とする。また、第二血管部分端点をQ1=[qx,qy,qz]とし、第二血管部分端点Q1から伸びる第二血管部分に対応したベクトルをv=[vx,vy,vz]とする。そして、ベクトルuに沿って伸びる直線とベクトルvに沿って伸びる直線とを最短距離で結ぶ線分をLとする。すると、第三共通座標空間の中心となる原点は、図18(b)に示すように、最短距離線分Lの中点Oとすることができる。また、ベクトルu及びvは、第三共通座標空間の中心すなわち原点に移動して配置させることができる。ここでのベクトルu,vは、第一実施形態における二本の血管部分に対応したベクトルU,V′と同様に扱うことができる。あとは、第一実施形態と同様の方法を用いることで、血管部分ペアから、第三共通座標空間への座標変換のための変換行列を算出することができる。
【0140】
スムージング処理済みのMR血管画像VMR及びUS血管画像VUSを、第三共通座標空間に置いたら、MR血管画像VMRとUS血管画像VUSとの相互相関係数を算出する。具体的には、第三共通座標空間において、MR血管画像VMR及びUS血管画像VUSそれぞれについて、第三共通座標空間の原点を含む所定サイズの領域を評価領域として設定する。評価領域は、例えば、その原点を中心とした[64×64×64]画素の3次元領域とする。そして、MR血管画像VMRとUS血管画像VUSとの間における当該評価領域での類似度、例えば相互相関係数を算出する。
【0141】
(第四実施形態)
第四実施形態に係る画像処理装置1dは、同一の血管部分構造体(血管分岐、不完全血管分岐ペア、または血管部分ペア)を表すと思われるMR血管部分構造体(MR血管分岐、MR不完全血管分岐ペア、またはMR血管部分ペア)とUS血管部分構造体(US血管分岐、US不完全血管分岐ペア、またはUS血管部分ペア)との組合せを、手動で特定するものである。
【0142】
図19は、第四実施形態に係る画像処理装置1dの構成を概略的に示す機能ブロック図である。第四実施形態に係る画像処理装置1dは、第一〜第三実施形態に係る画像処理装置1a〜1cをベースに、マッチング評価部5を除いた構成である。
【0143】
第四実施形態では、操作者が、検出されたMR血管部分構造体及びUS血管部分構造体の中から所望の血管部分構造体を指定する。
【0144】
処理対象スライス特定部16は、操作者により指定されたMR血管部分構造体を含むスライスを処理対象となるMRスライスSLMRとして特定し、操作者により指定されたUS血管部分構造体を含むスライスを処理対象となるUSスライスSLUSとして特定する。
【0145】
図20は、第四実施形態に係る画像処理装置1dにおける処理の流れを示すフロー図である。第四実施形態に係る画像処理装置1dでは、図20に示すように、第一実施形態のステップS5,S6における“候補”を自動で特定する処理に代えて、ステップT5における候補を手動で特定する処理を行うことになる。
【0146】
このように、上記実施形態によれば、3次元医用画像において特定されたスライスを含みそのスライス軸方向にそのスライス幅より幅広である領域について画素値投影処理を行い、得られた投影画像を表示するので、当該スライスのスライス幅はそのままで、当該スライス周辺のスライス軸方向における血管構造の情報をより多く可視化することができ、当該スライスの空間分解能を損ねることなく、そのスライスに含まれる血管の構造をより把握しやすく表示することができる。
【0147】
また、上記の実施形態によれば、操作者は、表示された投影画像を参照することによって、位置合せする2つの3次元医用画像間で共通する同一の血管部分構造体を含むスライスの特定が順調に行われているかを確認したり、誤った特定を回避したりすることができ、当該位置合せの精度を向上させることができる。特に、撮像モダリティが互いに異なる2つの3次元医用画像同士の位置合せでは、共通する同一の血管部分構造体を自動で特定することは容易でない。そのため、上記の実施形態に係る画像処理装置のように投影画像を表示することは、位置合せの精度を向上させる上で非常に効果的である。
【0148】
なお、第二実施形態、第三実施形態による画像位置合せ手法は、完全な血管分岐を検出できない時にのみ行ってもよいし、完全な血管分岐を検出できるか否かに関係なく行ってもよい。
【0149】
また、上記実施形態では、マッチング評価を、MR血管画像におけるm個の血管部分構造体(血管分岐、不完全血管分岐ペア、または血管部分ペア)と、US血管画像におけるn個の血管部分構造体との総当たりの組合せについて行っているが、これに限定されるものではない。例えば、マッチング評価を、US血管画像におけるn個の血管部分構造体のうち、ユーザによって選択された単一の血管部分構造体と、MR血管画像におけるm個の血管構造体との組合せごとに行ってもよいし、MR血管画像におけるm個の血管部分構造体のうち、ユーザによって選択された単一の血管部分構造体と、US血管画像におけるn個の血管構造体との組合せごとに行ってもよい。ユーザによって選択される単一の血管部分構造体は、例えば、MR画像またはUS画像における腫瘤などを含む関心領域の近傍に存在する血管部分構造体とすることができる。このようにすれば、関心領域の周辺において特に高い精度での位置合せを期待することができ、診断効率をより向上させることが可能になる。
【0150】
また、位置合せを行う2つの画像の組合せとしては、MR画像とUS画像の組合せだけでなく、CT画像とUS画像や、MR画像とCT画像の組合せなど、あらゆる撮像モダリティの画像に適用できる。ただし、本提案による位置合せ手法は、位置合せの対象となる2つの画像間で輝度値の関連性が薄い場合にも、その影響をほとんど受けずに位置合せを行うことができる。そのため、本提案による位置合せ手法は、位置合せ対象の画像として、特殊な描写形態・コントラスト(contrast)を有するUS画像が含まれる場合に、特に有効である。
【0151】
また、上記実施形態は、発明を、撮像モダリティが互いに異なる画像同士の位置合せに適用した例であるが、撮像モダリティが同一であって撮像の時相が互いに異なる画像同士の位置合せに適用することもできる。このような画像としては、例えば、手術前後の画像や造影撮影における早期相と後期相の画像などが考えられる。また、発明は、人体の医用画像だけでなく、動物の医用画像にも適用可能である。
【0152】
また、上記実施形態は、発明を、2つの3次元医用画像の位置合せ処理に適用した例であるが、別の例として、例えば、単一の3次元医用画像における血管の探索処理に適用することもできる。この場合、画像処理装置は、単一の3次元医用画像において関心が持たれるスライスを特定し、特定されたスライスを含みそのスライス幅より幅広な領域についてスライス軸方向に投影処理を行い、得られた投影画像を表示する。操作者は、血管の探索処理において、探索が難しいと判断される個所を含むなど関心が持たれたスライスの断層画像を参照することで、真の血管が探索されているか否かを判定し、真の血管だけが探索されるように調整することができる。
【0153】
また、上記実施形態では、被検体の肝臓を表す3次元医用画像を処理対象としているが、被検体の肺を表す3次元医用画像を処理対象とすることもできる。肺は、肝臓と同様に変形性があり、血管を有しているので、血管構造を解剖学的ランドマークとして利用することができる。そのため、肺を表す3次元医用画像は、上記実施形態における3次元医用画像同士の位置合せ処理や投影画像の表示処理の処理対象として好適である。
【0154】
また、上記実施形態は、画像処理装置であるが、コンピュータをこのような画像処理装置として機能させるためのプログラムや、当該プログラムが記憶されたコンピュータ読み取り可能な記憶媒体もまた発明の実施形態の一例である。なお、当該記憶媒体としては、一過性のものだけでなく、非一過性のものも考えることができる。
【符号の説明】
【0155】
1a〜1d 画像処理装置
2 画像取得部
3 血管抽出部
4 血管部分構造体検出部
5 マッチング評価部
6 処理対象スライス特定部(特定手段)
7 スライス幅広領域投影部(投影手段)
8 投影画像表示部(表示手段)
9 マッチング確定部(位置合せ手段)
10 座標変換部(位置合せ手段)
11 位置合せ調整部(位置合せ手段)
12 対応断層画像生成部
13 画像出力部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20