【実施例】
【0040】
以下に、実施例及び比較例を挙げて、本発明の線材Fの構成及び効果をさらに詳しく説明する。なお、本発明はその要旨を超えない限り、以下の実施例に何ら限定されるものではない。上記及び以下の実施例における線材Fの特性の評価は次の方法により行った。
【0041】
[平均繊維長]
図2に示す通り、線材Fの試験片をその中心軸である線材長軸方向Xに沿って切断し(図中、上からの断面図(横断面))、島津製作所製マイクロフォーカスX線CT装置 SMX−160LT、撮像倍率 56倍、撮像面積 4.9mm
2による切断面の撮像による写真から、写真撮像の範囲内における、ガラス繊維Gの平均繊維長を算出した。算出方法は、線材F中の任意のガラス繊維Gの20本について、始点と終点の座標を記録し、それから長さ及びそれらのばらつきを標準偏差として算出した。
【0042】
[ガラス繊維Gの配向]
図2に示す通り、ガラス繊維Gを含む線材Fの試験片をその中心軸である線材長軸方向Xに沿って切断し(図中、上からの断面図(横断面))、島津製作所製マイクロフォーカスX線CT装置 SMX−160LT、撮像倍率 56倍、撮像面積 4.9mm
2による切断面の撮像による写真から、写真撮像の範囲内における、線材の配向を算出した。算出方法は、線材F中の任意のガラス繊維Gの20本について、始点と終点の座標XYZを記録し、それから傾き及びそれらのばらつきを標準偏差として算出した。線材長軸方向Xに対して
図3に示す通り、緯度θ、経度φを求め、これから、配向角αを求め、平均値を2とした。配向角αの定義については、放射線による非破壊評価シンポジウム講演論文集、第6巻、7-13ページ、発行年2008年、著者 滝克彦(日本ビジュアルサイエンス)、高塩創(日本ビジュアルサイエンス)、CHEON Yong‐Sung(日本ビジュアルサイエンス)を参照されたい。
【0043】
[引張強度]
JISK7162:1994
試験片:JISK71621B形
試験速度:5mm/min
試験機容量:ロードセル式20kN
室温:23℃
【0044】
[シャルピー衝撃試験]
JISK7111−1:2012
試験片:JISK7111−1/1eA
支持台間距離:62mm
公称振り子エネルギー(ひょう量):1.00J
室温:23℃
【0045】
[ワーク表面仕上げ性]
ハンド工具に線材を束ねたブラシを取り付け、荷重1Kg、回転数は1000r.p.m、時間は5分で、ステンレス鋼板にブラシを上から押し付けて接触させて、表面の研磨加工を行ない、ステンレス鋼板の表面の模様を目視観察して、次の4規準に評価分類した。
A:表面の模様がきめ細かく目立たない。
B:表面の模様が少し目立つ。
C:表面の模様が目立つ。
D:表面の模様がかなり目立つ。
【0046】
[融着防止性]
ハンド工具に線材を束ねたブラシを取り付け、荷重1Kg、回転数は1000r.p.m、時間は5分で、ステンレス鋼板にブラシを上から押し付けて接触させて、表面の研磨加工を行ない、ブラシの線材を目視観察して、次の2規準に評価分類した。
A:線材同士の融着がない。
B:線材同士の融着がある。
【0047】
[粒状物付着性]
ハンド工具に線材を束ねたブラシを取り付け、荷重1Kg、回転数は1000r.p.m、時間は5分で、ステンレス鋼板にブラシを上から押し付けて接触させて、表面の研磨加工を行ない、ステンレス鋼板の表面に対する線材から出る粒状物の付着状況(汚れ)を目視観察して、次の4規準に評価分類した。
A:粒状物の付着がない。
B:粒状物の付着は僅かにあるが、殆ど目立たない。
C:粒状物の付着が少しある。
D:粒状物の付着が多い。
【0048】
[実施例1]
GFRPの一種であるPA6GF30(ガラス繊維を重量部で30%混入したナイロン6)からなる自動車樹脂部品を異品種混入なしで分別回収し、破砕し破砕材とする。この破砕材は、引張強さが83.6MPa(サンプル数3)、シャルピー衝撃試験結果が11(サンプル数5)、ガラス繊維Gの平均ガラス繊維長が0.6mmである。この破砕材を切削し、切削材をフルフライト型スクリューを備えたPSV75mmベント式押出機(L/D=32)に投入し、孔径4mmΦの11本の紡糸ノズルから溶融温度280℃、スクリュー回転数160rpmで樹脂を溶融押出し、ストランドを得た。得られたストランドを冷却固化しサイクルペレットに成形する。切削材を粉体に粉砕し、この粉体を、熱風乾燥機又は真空乾燥機で、120℃で6〜8時間、乾燥させて、水分率を低くしてから、前記押出機に投入する。これにより、リサイクルペレットの水分含有率が例えば0.2%、好ましくは、0.1%以下となる。破砕材とリサイクルペレットの物性評価を行ったところ、表2の通りであった。リサイクルペレットにすると破砕材よりも引張強度と耐衝撃性が高くなったが、シャルピー衝撃試験はほぼ同様の効果が得られた。また、ガラス繊維Gが破断されず、ほぼ均一な長さを保持することが確認された。樹脂の劣化が少なく、ボイドの少ない溶融押出ができたためと考察される。ガラス繊維強化プラスチックのガラス繊維Gの直径については、3〜30μmのものが使用できる。
【0049】
【表2】
【0050】
上記のリサイクルペレットを(TECHNOVEL社製)のニ軸型押出機KZW20TWIN−30MG(L/D=30、スクリュー内径20mmΦ、スクリュー長さ60cm)に投入し、孔径3mmの2本の紡糸ノズルから溶融温度240℃、樹脂圧力1.6MPa、スクリューモータ回転数160rpm、スクリューモータ電流25.7Aで樹脂を溶融押出した。その後、水道水を満たした冷却水浴中を通過させ、未だ完全に固化しない状態の線材Fを、手動ワイヤー巻取り機で延伸度を調節しながら巻取り、直径が0.6〜1.4mmの線材を製造した。得られた線材Fを使用してカップ状ブラシ(軸方向全長98mm、ブラシ突出長34mm)に加工した。
【0051】
ガラス繊維Gの平均繊維長さ及びガラス繊維Gの配向については、リサイクル前後のGFRPの配向、長さを、試料1 リサイクル前 板材 (自動車樹脂部品から平面の部位を切削し取り出した)、試料2 リサイクル前 U型材(自動車樹脂部品からR部の部位を切削し取り出した)、試料3 リサイクル後 線材F(自動車樹脂部品を粉砕した後、リサイクルペレットから製造した線材F)について測定した結果は下表の通りである。線材Fのガラス繊維Gの配向度のX線CT評価結果を
図4、
図5に示す。また、リサイクルペレットのガラス繊維配向度のX線CT評価結果を
図9、
図10に示す。リサイクルペレットのガラス繊維配向度X線CT(
図9は
図10に対し長さで2倍、面積で4倍に拡大したものである。線材F中のガラス繊維Gも、リサイクルペレット中のガラス繊維Gも、ばらつきが大変狭く、配向度が高い。
【0052】
【表3】
【0053】
ただし、経度φ、緯度θはガラス繊維Gの始点を原点とし、X軸が線材の中心軸方向であり、Y軸とZ軸はX軸と直交する軸であり、X軸の方向を基準として算出した。配向角αは経度φと緯度θのいずれか、大きな数値である。長さについては、ばらつきも考えるとほぼ等しいと考えて問題ない。右欄の数値は標準偏差を示す。リサイクル前の製品は
図7、
図8に示す通り、経度φのばらつきが大きく、平面内でばらばらの方向を向いている。また、緯度θについてはばらつきが小さく、平面内から大幅に外れたガラス繊維Gは存在していない。これらの結果からガラス繊維がランダムに散布された樹脂フィルム層が積層された成形品と考察される。一方、リサイクル後の線材Fは
図4、
図5に示す通り、ばらつきが大変狭く、配向の度合いが高い。また表3の結果も合わせると線材F中の平均ガラス繊維長は0.62mmでばらつきも少ない(標準偏差(σ)±0.18mm)。
【0054】
実施例1の実施例1のワーク表面仕上げ性については、評価Aが得られた。実施例1は錆がよりきめ細かく除去され、ワーク表面の仕上がりが良好であり、結果的には同じ処理時間でよく研磨された表面が得られることが確認され、評価Aが得られた。融着防止性については、評価Aが得られた。粒状物付着性については、評価A又はBが得られた。
【0055】
[実施例2]
実施例2は実施例1と同様であるが、カップ状ブラシに代えて、
図11に示す通り、ねじりブラシ(軸方向全長80mm、ブラシ突出長30mm、直径10〜20mm)に加工した。このねじりブラシを用いて、
図12〜
図14に示す空洞を有する円柱状金属部材に対して、回転数1000rpmにて約5秒間、矢印箇所に示す通り、この円柱状の空洞の周辺の部位にねじりブラシを挿入し、バリ取り試験を行い、目にみえないような微細なバリも除去できたことを確認した。
【0056】
[実施例3]
実施例3は実施例1と同様であるが、リサイクルペレットに高密度ポリエチレン(HDPE)を、リサイクルペレットに対する重量%で0.5%、2%を混練したものである。引張強さとシャルピー衝撃強さの比較を表4に示す。ポリアミド樹脂の柔軟性向上(シャルピー衝撃試験)を目的として、ポリオレフィン、たとえば高密度ポリエチレン(HDPE)を少量添加することで、GFRP線材にHDPEを添加するものである。
【0057】
【表4】
【0058】
(1)は実施例1記載のリサイクルペレットを再掲し、(2)(3)は、このリサイクルペレットにHDPEを混練して製造した試料のデータである。(2)(3)は熱履歴が(1)より1回多い為、樹脂部分の熱劣化で全体の物性は低下していると推定できる。(2)(3)を比較すると引っ張り強さに差は無いが、(3)の衝撃強さは(2)の衝撃強さに対して、30%向上している。
【0059】
[実施例4]
上記のGFRPペレットは再生品に代えて新品であること以外は実施例1と同様に製造するので、説明は援用する。実施例1〜3のニ軸型押出機に代えて、卓上型混練機MC15(オランダXplore Instruments BV製)に再生GFRPペレットを投入し、高温溶融押出の設定温度を280℃、再生GFRPペレットを完全溶融させ、スクリュー回転数が30r.p.mで樹脂を溶融押出した。円錐形の同方向2軸コニカルスクリュー(L/D=7.8〜19.1、スクリュー内径22〜9mmΦ、スクリュー長さ172mm)吐出孔径1mmの円錐形ノズルから線材を吐出させる。その後、自然落下させ、線材を巻取り(巻取速度5.3m/min)、直径が0.5〜0.6mmφの線材を製造した。線材Fは実施例1と同様のX線CTを得られた。得られた線材Fを使用してカップ状ブラシ(軸方向全長98mm、ブラシ突出長34mm)に加工した。
【0060】
実施例4の線材Fによれば、実施例1〜3と同様の特性以上の性能が得られたので、説明は援用する。
【0061】
[比較例1]
自動車樹脂部品(PA6−GF30)の破砕材のガラス繊維配向度X線CT評価結果を
図7、
図8に示す。
【0062】
ガラス繊維Gの配向性については、リサイクル原料である比較例1の自動車樹脂部品では、
図7、
図8に示す通り、ガラス繊維Gの配向性が殆ど認められないが、実施例1では、
図4、
図5に示す通り、ガラス繊維Gにかなり配向性が認められる。
【0063】
[比較例2]
市販の砥粒入りナイロンブラシ線材の横断面のX線CTを模式図にしたものを
図15に示す。これによれば、砥粒Tの組織に鋭角部分と周辺に巣Sらしきものがあるが、本実施形態ではこのような組織は存在しないので、本実施形態のブラシを構成する線材Fとは、平均繊維長、配向性は全く相違しており、性能は明らかに低下すると考えられる。
【0064】
比較例2の線材について、ワーク表面仕上性の試験を行った結果、その評価はDであり、比較例2は実施例1〜4より劣ることがわかった。
【0065】
ワークとして錆びた鉄板を利用して摩耗試験を行い、ワーク表面の仕上げ性を比較した結果、比較例2の市販の砥粒入りナイロン線材FP使用のカップブラシでは、ワーク表面の錆落ちは粗い状態であり、同心円状の模様が生じ、評価Dである。
【0066】
以上の実施形態は、本発明の実施のための好ましい実施形態の例示である。また、当業者は、本発明の開示に鑑みて、本発明の要旨から離れることなく多数の改良、変更、置換、欠失、追加等が可能である。例えば、上記製造方法は一例を示したものであり、製造条件は、適宜変更が可能である。