(58)【調査した分野】(Int.Cl.,DB名)
少なくとも1つの第1の光ファイバブランチ(12)と、1つの第2の光ファイバブランチ(14)とを用いた光ファイバ構成(10)を有する、自動車両ヘッドランプ(30)のための光モジュールであって、
2つのブランチのそれぞれは、光入口面(12.1,14.1)と、光出口面(12.2,14.2)とを提示し、
前記光出口面は、それぞれ、2つの短辺(12.3,12.4,14.3,14.4)と、2つの長辺(12.5,12.6,14.5,14.6)とによって境界付けられ、
前記2つのブランチは、第1のブランチの第2の短辺(12.4)が、第2のブランチの前記光出口面の第1の短辺(14.3)と平行に、かつ直接隣接して配置されるように、配置され、
前記2つのブランチの前記光出口面の前記短辺は同じ長さであり、一方、前記第2のブランチの前記光出口面の前記長辺は、前記第1のブランチの前記光出口面の前記長辺より長く、
各ブランチは、2つの搬送面(12.7,12.8,14.7,14.8)を有し、前記搬送面は、各ブランチの前記光入口面と前記光出口面との間に延在する光ファイバのボリュームに境界付け、搬送面上で前記光ファイバ内を伝搬される光は全反射を受け、かつ、前記搬送面は、前記ブランチの前記光出口面の前記長辺によって境界付けられ、
第1のブランチ(12)の搬送面(12.7、12.8)は、何れも第1のブランチ(12)における第1の短辺(12.3)によって境界付けられた搬送面(12.9)に向かって傾斜し、第2のブランチ(14)の搬送面(14.7、14.8)は、何れも第2のブランチ(14)における第1の短辺(14.3)によって境界付けられた搬送面(14.9)に向かって傾斜し、
これは、関連する光入口面を介して結合された前記光が当たる前記搬送面上の全ての点の大部分にあてはまり、
ここで、相互に直接隣接してかつ平行な前記短辺は、前記第1のブランチの第2の短辺(12.4)及び前記第2のブランチの第1の短辺(14.3)である、光モジュール。
ブランチの前記短辺の相互の間隔は、前記第2のブランチ(14)の場合におけるよりも、前記第1のブランチ(12)の場合における方が小さい、請求項1に記載の光モジュール。
前記ブランチ(12,14)を貫通する断面の全てのペアについて、ペアの前記断面は、それらの光入口面及び/又は光出口面までの同じ間隔を提示する、請求項2に記載の光モジュール。
前記第1のブランチの前記光出口面(12.2)は、ビーム経路内の下流に配置された、出口レンズ面(12.a)に割り当てられ、前記第2のブランチの前記光出口面(14.2)は、前記ビーム経路内の下流に配置された出口レンズ面(14.a)に割り当てられ、これらの出口レンズ面は、各場合において、前記ブランチ(12、14)から離れるように、凸型の様式で、枕の形状で湾曲する、請求項1に記載の光モジュール。
【背景技術】
【0002】
少なくとも1つの第1の光ファイバブランチと、第2の光ファイバブランチとを有する、光ファイバ構成を提示する、独国特許公開第10 2009 053 581 B3号明細書に示されている光モジュールが、従来技術において周知である。2つのブランチのそれぞれは、光入口面と光出口面とを提示し、各場合において、光出口面は、2つの短辺と2つの長辺とによって境界付けられる。2つのブランチは、第1のブランチの短辺が、第2のブランチの光出口面の短辺と平行に、かつ直接隣接して配置されるように、配置される。2つのブランチの光出口面の短辺は、同じ長さであり、一方、第2のブランチの光出口面の長辺は、第2のブランチの光出口面の長辺より長い。各ブランチは、2つの搬送面を有し、これらの搬送面は、各ブランチの光入口面と光出口面との間に延在する光ファイバボリュームを境界付け、これらの搬送面上で、光ファイバ内を伝搬される光は全反射を受け、そして、これらの搬送面は、ブランチの光出口面の長辺によって境界付けられる。
【0003】
ブランチは、多数の他のブランチと共に、1次レンズの構成要素である。各光入口面はLEDを有し、その光はブランチ内に結合され光出口面によって分離される。光出口面は、光出口面の合計が組み合わされたピクセルの様式で面放出光を形成するようにマトリクス内に配置され、面放出光の形状は、LEDをオン及びオフに切り替えることによって変化させられ得る。光放出面は、ヘッドランプの内部に、内部光分布の形態で、その2次レンズの焦点距離の間隔において位置し、そこから、ヘッドランプの前の領域内に外部光分布の形態で投射される。この周知の光モジュールは、マトリクス光モジュールとも呼ばれる。
【0004】
自動車両ヘッドランプ内で光モジュールが使用される場合、運転面(driving surface)上の外部光分布は、1次レンズの光出口面上に形成された、組み合わされたピクセルの形態で、ヘッドランプの内部に存在する、内部光分布のイメージとして発生する。個々のLED(従って、個々のピクセル)をオン及びオフに切り替えることによって、外部光分布内のピクセルのイメージも、明又は暗として現れる。個々のLED(又は、LEDのグループ)の、オフへの切り替え又は減光は、従って、例えば、対向車が目をくらまされる可能性がある領域内の照射の目標とされる制限を可能にする。
【0005】
従来技術において周知であるように、光モジュールは、また、相互に隣接するストライプ状の個々の光分布を有する、光分布を生成してもよい。各ストライプは、1つの光ファイバブランチと、1つの光源とによって生成される。マトリクス光モジュールと比較すると、各光ファイバブランチは、この場合、マトリクスの光ファイバブランチの列に取って代わる。(ストライプ状の光分布を生成する)このタイプの光モジュールの、意図される水平方向の角度分解能は、例えば、水平面内で1.0°と1.5°との間にあり、ここで、この方向条件は、自動車両内のヘッドランプの指定された使用に関連する。この制限は、形状に関して固定された寸法を有し、制限された光束のみを放出する、自動車両ヘッドランプ内での使用のために通常入手可能な光源に関連して取得される。この要件は、更に、レンズシステムの多様性を制限する。
【0006】
好ましい、かつ、従来技術において周知のハイパワーLEDは、矩形の発光(従って、能動)光放出面と、約0.5mm
2のサイズとを有する。能動面は、提供される光束と無関係に一定である。LED放出パターン(例えば、放出される光の角度分布)も、同様に一定である。通常、これは、いわゆるランバート特性に関する。LEDの連続動作における、いわゆる暖色の光束(warm luminous flux)は、例えば、最大許容電気動作電流において約80ルーメンである。しかし、暖色の光束は、時間の経過と共にある程度まで増加する可能性があると予想される。しかし、本発明に関しては、利用可能な光束は、制限されていると考えられなければならない。
【0007】
経済的な理由により、及び、信頼性の懸念のため、一般に、光モジュール内の光源の数はできるだけ少なく保つことが意図される。ストライプ状の光分布を生成する光モジュール(以下では、ストライプ光モジュール(striped−light modules)とも呼ばれる)は、従って、マトリクス内で作られる光分布を生成する光モジュールより好ましい。ストライプ光モジュール(従って、可能な最も少ないLED)を、光度についての、事前定義された高い最大値と、鉛直角度スケールに沿った、光度の、事前定義された変化とを有する光分布を生成するために使用して、十分な光束を運転面上に投射するために、光転移(light transference)に関する高度の効率も必要とされる。これについて、光転移に関する効率の程度は、例えば、1次レンズに入る光束に対する、2次レンズを出る光束(その標準化後)を意味すると理解される。
【発明の概要】
【発明が解決しようとする課題】
【0009】
従って、本発明の目的は、少数の光源を用いた、鉛直方向のストライプ状の光分布の生成を可能にする、光モジュールを提供することである。ストライプ状の光分布は、顕著な最大光度を有する第1の短辺を提示しなければならない。そこから開始して、ストライプ状の光分布の反対側の第2の短辺まで進みながら、光度は減少しなければならない。光分布の第1の短辺を向いた照射又は光度の最大勾配は、第2の短辺を向いた最大勾配より、はるかに急でなければならない。結果として、第1の短辺における、鋭く集光された明/暗境界と、隣接する最大光度の領域と、緩やかに集光され、かつ、継続的に減少する光度(従って、鋭く集光された明/暗境界及び光度最大値までの距離が増加するにつれて、ストライプの全長にわたって継続的に減少する光度)とを有する、照射されるストライプを作ることが可能でなければならない。光度は、最大値までの距離が増加するにつれて、距離の増加と関連して、不均衡に減少しなければならず、従って、反対方向では、光度は、第2の短辺から開始して、最大光度に向けて、第2の短辺からの距離と関連して、不均衡に増加しなければならない。
【課題を解決するための手段】
【0010】
本発明は、各ブランチの、指定された搬送面が、ブランチの2つの短辺のうちの第2の短辺よりも、ブランチの2つの短辺のうちの第1の短辺の方に多く向いた方向成分を有する、表面法線(surface norms)を提示するという点で、周知のマトリクス光モジュールと異なる。これは、関連する光入口面を介して結合された光が当たる搬送面上の全ての点の大部分にあてはまる。相互に直接隣接し、かつ平行な短辺は、第1のブランチの第2の短辺、及び第2のブランチの第1の短辺であるということも重要である。
【0011】
全反射では、点上に当たるビーム、及び、この点における反射面に対する垂直線(すなわち、この点における表面法線)のそれぞれと、この点において反射されるビームとは、同一の平面内にある。従って、所与の入射角を用いて、反射面の傾斜によって、従って表面法線の向きによって、反射されるビームの方向を制御することが可能である。
【0012】
各ブランチの、それぞれの2つの搬送面(これらは、ブランチの光出口面の長辺によって境界付けられる)の表面法線は、ブランチの2つの短辺のうちの第2の短辺の方よりも、ブランチの2つの短辺のうちの第1の短辺の方に多く向いた方向成分を提示するため、光は、反射の間に、第1の短辺に向けて偏向させられる傾向がある。これは、搬送面上の点の大部分にあてはまるため、第1の短辺に隣接する光出口面の半分において、第2の短辺によって隣接される半分におけるより大きな強度が取得される。更に、第1のブランチの一方の短辺は、これが、第2のブランチの光出口面の短辺と平行であるように、かつ直接隣接するように配置されるため、外部光分布内での光出口面のイメージは、これらが相互に隣接するように配置される。
【0013】
更にまた、相互に平行な、かつ直接隣接する短辺は、第1のブランチの第2の短辺と、第2のブランチの第1の短辺であるため、第1のブランチの光出口面のより暗い領域が、第2のブランチの光出口面のより明るい領域と隣接する構成が取得される。結果として、相互に隣接する領域は、好ましくは、境界において等しく明るい。従って、一方の面の光度最大値が、他方の面の光度最小値と交わり、ここで、一方の面の最大値は、他方の面の最小値と同じ値を有する。
【0014】
また更に、2つのブランチの光出口面の短辺は同じ長さであり、一方、第2のブランチの光出口面の長辺は、第1のブランチの光出口面の長辺より長いため、第2のブランチの光出口面は、第1のブランチの光出口面より大きい。従って、第1のブランチ内に結合される光束は、第2のブランチ内に結合される光束より小さな光出口面にわたって分布させられる。従って、各場合において同じ光源が使用される場合、第2のブランチのより大きな光出口面を用いるより、第1のブランチのより小さな光出口面を用いて、より大きな最大光度が生成されることが可能である。
【0015】
従って、2つの光ファイバブランチを有する構成は、第1のブランチの光出口面の第1の短辺と、第2のブランチの光出口面の第2の短辺とによって、ストライプの縦方向において境界付けられる、ストライプ状の光分布を提供する。これにより、光度は、第1の短辺にある顕著な最大値から減少し、反対側の第2の短辺まで進む。第1の短辺を向いた最大での照射の勾配は、第2の短辺を向いた最大値での照射の勾配より、はるかに急である。結果として、第1の短辺における明/暗境界と、他方の最大値における、緩やかに集光され、かつ、継続的に減少する光度とを有する、照射されるストライプが作られる。光度は、最大値までの距離が増加するにつれて、増加する距離と関連して、不均衡に減少する。従って、反対方向では、光度は、第2の短辺から開始して、最大値に向けて、第2の短辺からの距離と関連して、不均衡に増加する。
【0016】
光モジュール内の、第1の光ファイバブランチと第2の光ファイバブランチとを有する光ファイバ構成の隣接構成を用いて、本発明は、ストライプの一方の短辺における顕著な強度最大値と、他方の短辺に近付くにつれての、ストライプの、継続的に減少する強度(従って、光度における継続的な減少)とを提示する、個別のストライプから構成される、光分布の生成を可能にする。
【0017】
これらの利点は、特に、最大光度及び拡散光度に関して同等の光分布を生成することが意図されたマトリクス光モジュールのために必要とされる光源の数より少ない数の光源を用いて得られる。一実施形態では、本発明は、120ルクスを超える光度最大値を有する顕著な明/暗境界と、最大6°の鉛直角度幅まで延在する光度拡散とを有する、前述した境界条件に従ったストライプ状の光分布の生成を可能にする。
【0018】
(鉛直方向に延在する)光出口面の別の利点は、光の伝搬方向において1次レンズの下流にある2次レンズが、1次レンズの光出口面の鉛直方向の延在がない場合より、この鉛直軸において小さいことが可能である、ということである。これは、エタンデュー保存原理によって得られる。一実施形態では、1次レンズによる向上した鉛直方向光バンドリングの結果として、2次レンズの鉛直方向高さが40mmまで低減させられ得る(60〜80mmという値が従来技術において周知である)。
【0019】
(本発明による最適化された光ファイバブランチを有する)光分布を形成する集光レンズは、高度の光転移効率を有する。従って、1次レンズと2次レンズとを含むシステム(例えば、カバープレートなし)について、50%〜60%超の値を取得することが可能である。これは、1次レンズ内に結合された光エネルギーの50%〜60%超が、更に、2次レンズを出るということを意味する。この値は、光出口面のアスペクト比(短辺の長さの、長辺の長さに対する比率)と、2次レンズの光軸に関する、光ファイバの位置とに依存する。有利には、ブランチ/1次レンズ内の光転移の高度の効率により、規定に準拠する光分布を得るために、より少ないLEDが必要とされる。ロービーム光機能及びハイビーム光機能の実装のために、それぞれが80ルーメンの光束を放出する、80〜120個のLEDが、独国特許公開第10 2009 053 581 B2号明細書から周知のマトリクス光モジュールに必要である。本発明は、この数を、約60個のLEDに低減させることを可能にする。
【0020】
これらの利点は、本発明の範囲内で使用される光ファイバブランチについての高い効率と密接に関連している。これらの高い効率は、1次レンズ(又は、1次レンズの個々の光ファイバブランチのそれぞれ)が、ランバート原理に従って、LEDの光分布からバンドル(束)を生成するために、それらの中を伝搬される光を効率的に集中させ、これが、2次レンズの比較的小さな光入口面(例えば、一実施形態では、高さ40mm)上に集中させられることによって取得される。
【0021】
必要なバンドリングは、光ファイバが上述の原理に従って構築され、ブランチの光出口面の短辺が約1.9mm〜2.1mmの水平方向幅を有する場合のみ、取得されることが可能である。角度分解能は事前定義されているため、2次レンズについての好ましい焦点範囲が取得され、これは、一実施形態では、90mmと100mmとの間にある。1次レンズとして機能する金属板リフレクタ(metal−plated reflectors)に基づいて分解能を得ることは可能ではない。このタイプの1次レンズは、確立された要件を満たすことができず、その理由は、金属板リフレクタが光を吸収し(約15%/反射)、複数回の反射で、光束の大部分を急速に吸収して、これを熱に変換するからである。これは、最終的に、加熱によるリフレクタの損傷をもたらし、所望される光度値の達成を(又は、これに近付くことさえも)妨げる。透明度の高いTIR(全反射)ベースの1次レンズのみが、LED光束を、必要な程度の効率において、必要とされる角度範囲内に束める(バンドルする)ことが可能である。従って、角度分解能を有するストライプ又はマトリクスヘッドランプを扱う場合、光ファイバベースの1次レンズの使用を回避することは不可能である。すでに説明したように、1次レンズの特定の幾何学的寸法は、この場合、LEDのサイズによってすでに制限されている。
【0022】
本発明は、以前には満たされなかった境界条件を満たす可能性を有し、かつ、新たな課題に対処する解決法を提供する。更なる利点は、従属請求項、説明、及び添付の図面から理解される。上に記載した、及び、以下で更に説明する特徴は、それぞれの指定された組み合わせにおいてのみでなく、他の組み合わせにおいて、又は、個別に、(本発明の範囲を放棄することなく)使用されることが可能である、ということを理解されたい。
【0023】
各場合において、概略的な形態で、以下が図示される。
【発明を実施するための形態】
【0025】
同じ要素、及び、機能的に相互に対応する要素は、図面全体を通して同じ参照記号によって示される。
図1において破線によって示される曲線は、角度θVにわたる、ストライプ状の光分布の、所望される光度プロファイル1(これが、光モジュールの前の領域内の、光モジュールの主放出方向に垂直に配置された測定スクリーン上で発生する場合)を表す。この角度は、自動車両内の自動車両ヘッドランプ内の光モジュール(これは、車両の前の、水平線のレベルに位置する)の指定された使用に伴う、自動車両前後軸の鉛直面内での角度偏差を示す。値θV=0は、従って、水平線のレベルに対応する。一実施形態では、プロファイル1の所望される光分布は、水平線より下では実際的に光度を提示せず、続いて、大きな最大値までの急激な増加(これは、水平線よりわずかに上で発生する)と、水平線より上の角度の値が増加するにつれての、値0までの緩やかな減少とを提示する。減少は、左に向けて湾曲するプロファイルの曲線によって部分的に示されるように、水平線までの間隔が増加するにつれて、継続的な(かつ、不均衡な)比率で発生する。実線によって示される曲線は、単一の光ファイバブランチを用いて取得されることが可能で(これについては、以下でより詳細に説明する)、かつ、単一のLEDによって供給される、光度プロファイル2を表す。このプロファイル2は、所望されるプロファイル1に非常に類似した形状を提示するが、その絶対値において、所望されるプロファイル1の値より下に留まる。この理由は、LEDの光束(これは、単一のブランチに光を提供する)が少なすぎるからである。取得されることが可能なプロファイルの形状は、自動車両ヘッドランプの光モジュール内で、光ファイバブランチの光入口面の直前に配置される、使用される半導体光源の光出口面の形状及びサイズにも依存する。取得可能な曲線は、特定の光束を提供する(自動車両内のヘッドランプのために通常使用される)半導体光源の使用に基づく。所望されるプロファイル1は、次に、同じ形状の、しかし、それ相応により高い光束を有する光源が使用されることが可能な場合、構成に対する更なる変更なしに、プロファイル2から取得される。このタイプの光源は、しかし、入手可能ではない。
【0026】
より高い光束を提供するために、1つではなく2つのLEDを使用することは、少なくとも、光ファイバの光入口面が2つの光源からの光の結合を可能にする程度までの、光ファイバの修正を必要とする。従って、光入口面は、特に、これが単一の光源からの光の結合を可能にするのみである場合より、大きくなければならない。これは、光ファイバの形状(例えば、その不変の光出口面の、今やより大きな光入口面に対する比率)における変更を必要とする。これは、プロファイル3をもたらす。従って、プロファイル3のために必要とされるものと同じ供給光束が、プロファイル1について必要とされる。更に、プロファイル3は、より低く、かつ、鉛直方向により広い拡張を有する、最大値を提示する。
図1及び
図2の右側に見られるように、鉛直軸における光度拡散は急速に減少し、比較的大量の光が上方に、従って明/暗境界から離れる方に分布させられる。(プロファイル2と比較して)倍の光束にもかかわらず、プロファイル3は最大値の倍増を提示しない。代わりに、最大値の望ましくない広がりと、所望されるプロファイル1の形状も高さも有さないプロファイルとが発生する。
【0027】
対照的に、所望されるプロファイル1は、本発明では、入手可能な半導体光源を使用することによって取得される。本発明の実質的な要素は、少なくとも2つの光ファイバブランチ(これらのそれぞれは、単一の半導体光源によって供給される)の、記載される構成を含む。少なくとも2つの光ファイバブランチのそれぞれは、それによって、所望される光分布の鉛直角度幅の一部のみを照射する。プロファイル1は、本発明の範囲内の、各ストライプのための2つのブランチによって生成されるものなどの、ストライプに対応する。プロファイル1の最大値は、同じ光束を用いて生成されるプロファイル3の最大値より約1/4だけ大きい。プロファイル1の拡散は、その上、より顕著である。
【0028】
図3は、少なくとも1つの第1の光ファイバブランチ12と、第2の光ファイバブランチ14とを有する、光ファイバ構成10を示す。第1のブランチ12は、光入口面12.1と、光出口面12.2とを有する。光出口面12.2は、2つの短辺12.3及び12.4と、2つの長辺12.5及び12.6とによって境界付けられる。第2のブランチ14は、光入口面14.1と、光出口面14.2とを有する。光出口面14.2は、2つの短辺14.3及び14.4と、2つの長辺14.5及び14.6とによって境界付けられる。2つのブランチ12、14は、第1のブランチ12の短辺12.4が、第2のブランチ14の光出口面14.2の短辺14.3と平行に、かつ直接隣接して配置されるように、配置される。2つのブランチの短辺は、等しい長さであり、一方、第2のブランチの光出口面の長辺14.5及び14.6は、第1のブランチの光出口面の長辺12.5及び12.6より長い。各ブランチは、2つの搬送面を有し、これらの搬送面は、各ブランチの光入口面と光出口面との間に延在する光ファイバボリュームを境界付け、これらの搬送面は、次に、光出口面の長辺によって境界付けられ、そして、これらの搬送面上で、光ファイバ内を伝搬される光は全反射を受ける。
【0029】
図3は、第1のブランチの光出口面の長辺12.6によって境界付けられる、第1のブランチ12の搬送面12.7を示す。もう一方の長辺12.5によって境界付けられる、もう一方の搬送面は、光ファイバブランチ12によって隠されている。搬送面は、光ファイバの境界面(その上で全反射が発生する)である。
図3は、第2のブランチの光出口面の長辺14.6によって境界付けられる、第2のブランチ14の搬送面14.7も示す。もう一方の長辺14.5によって境界付けられる、もう一方の搬送面は、光ファイバブランチ14によって隠されている。これらの搬送面は、これらがブランチの光出口面の長辺によって境界付けられるという点で、それぞれの光ファイバの他の搬送面と異なり、ここで、1つの搬送面は、各場合において、長辺によって境界付けられる。2つのブランチの、他の搬送面は、各場合において、それぞれのブランチの短辺によって境界付けられる。
【0030】
第1のブランチの光出口面12.2は、ビーム経路内の下流に配置された、出口レンズ面12.aに割り当てられる。同様に、第2のブランチ14の光出口面14.2は、ビーム経路内の下流に配置された、出口レンズ面14.aに割り当てられる。これらの出口レンズ面は、各場合において、ブランチ12、14から離れるように、凸型の様式で、枕の形態で湾曲する。このようにして、ブランチ12、14の光出口面を出る光は、2次レンズに向けてバンドルされる(
図9を参照)。1つのブランチの光出口面を出る場合に、主ビーム方向に対して望ましくないほどに大きな角度を有する迷光ビーム(これは、例えば、運転面上の望ましくないほどに明るいグリッド構造に寄与する)は、好ましくは、出口レンズ面によって、2次レンズを通過するように偏向させられる。これは、放出される光分布における、暗い領域の、意図しない拡散照射を防止することを可能にする。出口レンズ面は、境界面であってもよく(例えば、これは、ブランチの光出口面であってもよく)、又は、これは、割り当てられたブランチから分離した出口レンズの光出口面であってもよい。ブランチ及び出口レンズは、ガラス、PMMA、又はPCなどの透明な材料でできている。光ファイバブランチ12、14は、特に、搬送面が、ブランチの2つの短辺のうちの第2の短辺の方よりも、ブランチの2つの短辺のうちの第1の短辺の方に多く向いた方向成分を有する、表面法線を提示する(ここで、これは、関連する光入口面によって結合された光が当たる搬送面の全ての点の大部分にあてはまる)という点で区別される。これについては、
図4(これは、
図3による構成10を貫通する、光出口面12.2及び14.2と平行する断面を定性的に示す)を参照して、以下でより詳細に説明する。詳細には、
図4は構成10の断面を示し、ここで、この断面は、第1のブランチ12、及び第2のブランチ14の両方を貫通する断面から構成される。
【0031】
第1のブランチ12の断面は、複数の搬送面12.7、12.8、12.9、及び12.10(これらは、
図4では、切断端として見える)によって境界付けられる。搬送面12.7は、長辺12.6によって境界付けられる搬送面である。搬送面12.8は、長辺12.5によって境界付けられる搬送面である。搬送面12.9は、短辺12.3によって境界付けられる搬送面である。搬送面12.10は、短辺12.4によって境界付けられる搬送面である。第1のブランチ12の光出口面の長辺12.6及び12.5によって境界付けられる、搬送面12.7及び12.8は、表面法線を提示する。
図4は、搬送面12.7についての表面法線12.7nと、搬送面12.8についての表面法線12.8nとを示す。これらの2つの表面法線は、ブランチ12の2つの短辺のうちの第2の短辺12.10の方よりも、ブランチの2つの短辺のうちの第1の短辺12.9の方に多く向いた方向成分15を提示する。これは、
図4では、方向成分15が、短辺12.3によって境界付けられる搬送面12.9の方を向いている、として示されている。短辺12.3は、従って、一実施形態では、第1の短辺を表す。逆に、方向成分15は、短辺12.4によって境界付けられる搬送面12.10から離れる方を向く。短辺12.4は、従って、一実施形態では、第2の短辺を表す。
【0032】
第2のブランチ14の断面は、複数の搬送面14.7、14.8、14.9、14.10(これらは、
図4では、切断端として示されている)によって境界付けられる。搬送面14.7は、長辺14.6によって境界付けられる搬送面である。搬送面14.8は、長辺14.5によって境界付けられる搬送面である。搬送面14.9は、短辺14.3によって境界付けられる搬送面である。搬送面14.10は、短辺14.4によって境界付けられる搬送面である。第2のブランチ14の光出口面の長辺14.6及び14.5によって境界付けられる、搬送面14.7及び14.8は、表面法線を提示する。
図4は、搬送面14.7についての表面法線14.7nと、搬送面14.8についての表面法線14.8nとを示す。これらの2つの表面法線は、同様に、ブランチ14の2つの短辺のうちの第2の短辺の方よりも、ブランチ14の2つの短辺のうちの第1の短辺の方に多く向いた方向成分15を提示する。これは、
図4では、方向成分15が、短辺14.3によって境界付けられる搬送面14.9の方を向いている、という点で示されている。短辺14.3は、従って、一実施形態では、第1の短辺を表す。逆に、方向成分15は、短辺14.4によって境界付けられる搬送面14.10から離れる方を向く。短辺14.4は、従って、一実施形態では、第2の短辺を表す。ブランチ12、14、及びそれらのそれぞれの搬送面は、
図4に関連して示される相互関係が、関連する光入口面によって結合された光が当たる搬送面上の全ての点の大部分にあてはまるように設計される。
【0033】
示された構成10では、相互に直接隣接し、かつ平行な短辺12.4及び14.3は、第1のブランチ12の第2の短辺12.4、及び、第2のブランチ14の第1の短辺14.3である。表面法線14.7nが、ブランチ14の短辺のうちの第2の短辺14.10の方よりも、ブランチ14の2つの短辺のうちの第1の短辺14.9の方に多く向いた方向成分15を有するということは、第2のブランチ14の、指定された横方向搬送面上の点のうちの、少なくとも大部分(但し、好ましくは、全て)にあてはまらなければならない。第1のブランチの表面法線12.7n、12.8nが、同様に、ブランチ12の短辺のうちの第2の短辺12.10の方よりも、ブランチ12の2つの短辺のうちの第1の短辺12.9の方に多く向いた方向成分を提示するということは、ブランチ12の場合、第1のブランチ12の、指定された搬送面上の点のうちの、少なくとも大部分(但し、好ましくは、全て)にやはりあてはまらなければならない。
【0034】
第1の上部ブランチ12、及び第2の下部ブランチ14を通した断面の間の、実質的な違いが、短辺の幅における違い(第2のブランチ14の場合は、第1のブランチ12の場合より大きい)という事実のため、存在する。更なる違いは、ブランチの短辺の相互の間隔が、第2のブランチ14の場合より、第1のブランチ12の場合の方が小さいということである。これは、好ましくは、ブランチ12、14を貫通する断面の全てのペアにあてはまる(ここで、ペアの断面は、それらの光入口面、及び/又は、光出口面までの、同じ間隔を提示する)。両方の違いが、第1のブランチ12の表面法線が第1のブランチ12のより広い短辺の方を向くより、第2のブランチ14の表面法線が第2のブランチ14のより広い短辺14.9の方を、もっと急角度で向くという点で、これに寄与する。結果として、第2のブランチ14内を伝搬される光は、第2のブランチのより広い短辺の近くに、比較的より強く集中させられる。第1のブランチ12内を伝搬される光は、逆に、第1のブランチ12のより広い短辺の近くに、比較的より弱く集中させられる。
【0035】
一実施形態では、搬送面12.7、12.8、14.7、14.8は、直線によって境界付けられる。境界線は、他の設計では、搬送面の形状が平坦面によって境界付けられないように曲がる。これらの面は、また、凸型又は凹形の様式で湾曲してもよい。但し、表面法線について指定される条件が維持されることが重要である。上部及び下部搬送面12.9、12.10、14.9、14.10は、好ましくは、平坦面であり、これは、上面図において、台形形状(ここで、より広い辺が、それぞれのブランチの光出口側にある)を提示する。結果として、ストライプ幅上への光の集中が、やはり取得される。まっすぐな端によって境界付けられる台形形状の代替として、長辺は、また、凹形又は凸型の様式で湾曲してもよく、但し、面の幅は、光入口面までの間隔が増加し、光出口面までの間隔が減少するにつれて、継続的により大きくなる。これは、
図4に示す断面に平行な、
図3における構成を貫通する全ての断面に同様にあてはまる。
【0036】
結果として、第2のブランチ14は、それ自体の、ストライプ状の光分布(ここで、光分布の短辺の間の光度は、第1のブランチの場合より比較的強く変化する)を生成する。第1のブランチは、逆に、それ自体の光分布(ここで、光分布の短辺の間の光度は、第2のブランチの場合より比較的弱く変化する)を生成する。別の違いは、第2のブランチによって生成される光ストライプの長さが、第1のブランチによって生成される光ストライプの長さより大きいということである。2つのブランチ12、14の間の構造違いに起因して、これらは、異なる光分布をそれらの光出口面上に生成する。
【0037】
光度最大値は、第1のブランチの光出口面上の第1の短辺の近くで得られる。第1のブランチの光出口面の第1の短辺までの間隔が増加し、第1のブランチの光出口面の第2の短辺までの間隔が減少するにつれて、光度は、好ましくは、第2のブランチの光出口面におけるその第1の短辺14.3の近くで取得される値に対応する値まで減少する。第2のブランチの光出口面の第1の短辺14.3までの間隔、及び、第2のブランチの光出口面の第2の短辺までの間隔が増加するにつれて、光度は、第1の短辺までの間隔が増加するに従い、徐々に、かつ不均衡に急速に、非常に低い値まで減少し、これにより、よりソフトな光度拡散が取得される。
【0038】
図5は、角度θVにわたる、第1のブランチによって生成される光分布、第2のブランチによって生成される光分布、及びこれらの2つの光分布から構成される光分布の、光度(すなわち、光強度I)の鉛直プロファイルを定性的に示す。
図5aは、第1のブランチ12によって生成される光分布を示し、
図5bは、第2のブランチ14によって生成される光分布を示し、
図5cは、個々の光分布の合計として取得される全体的な光分布を示す。
【0039】
図5に示すように、第1のブランチ12は、横方向に約1.5°の比較的狭い範囲にわたって生成される光度について、(値Iのレベルにおける)顕著な最大値を有する。0度から始まる、光度における強い増加は、鋭い明/暗境界に対応する。これは、短辺12.3に割り当てられる。この鋭い明/暗境界は、
図5cの、合計の光分布でも取得される。同様に鋭い明/暗境界が、第1のブランチによって、第2の短辺12.4に割り当てられる側においても生成される。
図5cに示す、合計の光分布では、しかし、この明/暗境界は示されておらず、その理由は、第1のブランチ12によって生成される光分布における光度の減少が、第2のブランチ14によって生成される、
図5bの光分布の光度における増加によって、そこで補償されるからである。第2の光ファイバ14によって生成される光分布は、
図5bでは約5度の幅であり、その光度は、角度値が増加するにつれて、(最大光度から開始して)継続的に減少し、約6.5度において、消えていく低い値に到達する。所与の角度値は、無作為に選択された値ではなく、従来技術において周知のLEDの、ストライプ幅、ストライプ高さ、及び光束についての、所望される値から導き出される。
【0040】
従って、第2の光ファイバ14は、光ファイバ14の光出口面の短辺に向けての、鋭い明/暗境界として知覚されない、拡張された光度拡散(例えば、光度の継続的な減少)を生成する。
図5では、値θV=6.5°が、この短辺に割り当てられている。同時に、第2の光ファイバ14は、その光出口面の、他方の短辺において、比較的鋭く境界付けられた光度最大値を生成する。
図5では、値θV=1.5°が、この短辺に割り当てられている。第1の光ファイバ12によって生成される、更に高い最大値が、この光度最大値に隣接する。ここで示される、水平線の上方の明るいストライプの位置は、自動車両ヘッドランプのための光分布のハイビーム部分を生成する光モジュールに特徴的である。しかし、本発明は、ロービーム光分布を生成するためにも好適であるということを理解されたい。これは、光度最大値の一方の側上で鋭い明/暗境界を生成する能力から既に導き出されている。
【0041】
ロービームヘッドランプは、同じ原理を用いて構築され得る。これのために、ストライプは、(下に向けてではなく)上に向けて拡散しなければならない。この構成は、2次レンズが、その前の領域内(例えば、測定スクリーン、又は運転面上)に、上下逆さの、かつ、横方向に反転した様式で、構成を投射するという点で取得される。ハイビーム機能、及びロービーム機能の両方を実装する、2機能のヘッドランプが、本明細書で提示される原理を用いて同様に構築され得る。ブランチ12及び14は、実際に、
図4及び関連する説明から導き出されることが可能な、同じ原理を用いて構築される。しかし、これらは、異なる効果をもたらす違いを提示する(ブランチのうちの少なくとも1つ(この場合は、ブランチ12)は、最大値の生成に関与し、少なくとも1つの他方のブランチ(この場合は、ブランチ14)は、拡散された生成に関与する)。集合的に、これらは、高い最大値と、指数関数的コースに接近する顕著な光度拡散とを有する、複合ストライプを生成する。
【0042】
(第1のブランチ12によって生成される)集中プロファイルの端から、(第2のブランチ14によって生成される)拡散プロファイルの最大値に向けての移行は、継ぎ目のない、かつ、知覚不能な様式で発生しなければならない。集中プロファイルから拡散プロファイルへの移行を、可能な最大限まで知覚不能であるように設計するために、単一の主要な出口レンズ面が、(ビーム経路内に配置される)隣接する光出口面のそれぞれに、それぞれの場合において、光出口面の背後に、割り当てられることが好ましい。1つの光ファイバの主要な出口レンズ面は、次に、それぞれ、隣接する光ファイバのための2次出口レンズ面を形成する。主要な出口面の端領域から出る、及び、2次出口面に入る光は、その伝搬方向に起因して、好ましくは、それが2次レンズに到達しないように、そこで偏向させられ、従って、2つの個々の光分布の間の移行領域の、目をそらさせる強い増光に寄与しない。このようにして、(個々のブランチによって生成される)個々の光分布を接合して、(プロファイルの形状に関して、及び、所望される最大値に関して、所望されるプロファイルに一致する)ストライプ状の光分布を形成することが可能である。
【0043】
光源を制御する回路に関しては、制御回路は、ストライプの光源を集合的に操作するように構成されることが好ましい。別の設計は、生成される光分布の追加の可変性が取得されるように、これらの光源の個別の制御を提供する。このようにして、例えば、端の照射を強調するために、光度最大値を生成している光源が減光されてもよく、又は、運転者の注意を、最大光度で照射されている領域により強く向けさせるために、端の照射を生成している光源が減光されてもよい。また、光ビーム内に含まれる関連するストライプ内に現在位置している対向車の目くらましを防止するために、個々のストライプを減光することも可能である。本発明は、特に、LEDの光束の倍増(例えば、ブランチの各ペアについて、80Lmから160Lmまで)を用いた、プロファイルスケーリングを可能にする(ここで、プロファイルの全ての光度値が同様に倍増される)。
【0044】
図6は、ブランチのペアの多数の構成を有する、1次レンズ20の実施形態の例を、斜視図で示し、ここで、特に、光入口面22、24が可視である。自動車両の光モジュール内での指定された使用では、ペアは、水平方向Hにおいて相互に隣接して配置され、ペアのブランチは、鉛直方向Vにおいて相互に上に配置される。上段は、第1のブランチ12によって形成される。下段は、第2のブランチ14によって形成される。各第1のブランチ12及び第2のブランチ14は、集合的に、
図3に示す構成を形成し、これは、集合的に、光分布の1つのストライプを生成する。ここでの、相互に隣接する6つのペアは、相互に直接隣接するペアによって生成されるストライプ状の光分布が、境界において相互に直接隣接し、又は移行するような相互の間隔で、(水平軸Hに沿って)横方向に配置される。このために、個々のブランチの光出口面、及び/又はこれらに割り当てられる1次レンズ面は、好ましくは、それらが相互に隣接するように配置される。これは一体成形によって取得されることが特に好ましく、構成全体の一体的に接合された実装は、この場合、それぞれが2つのブランチを含む、6ペアを含む。ペアの数は、6と異なってもよいということを理解されたい。
【0045】
凸型の出口レンズも、この構成内に一体化されることが特に好ましい。結果として、凸型の光出口面を、ブランチの光出口面の前のそれらの位置に関して構成するための、調節するステップは不要となり、構成を正しい位置にしっかりと取り付けるための、取り付けも不要となる。これは、ブランチ自体にも同様にあてはまる(ブランチは、一体成形実装では、一体成形構成内で、正しい位置において相互に構成内にしっかりと保持される)。
【0046】
図6に示す設計では、第1のブランチ12は、能動光放出LED面よりわずかに広い、かつ、矩形ではない、多角形の(例えば、8辺の)光入口面22を有する。第1のブランチ12は、好ましくは、
図4における参照記号を考慮する場合、第1のブランチ12の上辺12.9が、断面プロファイルの中間における、上辺12.9から下辺12.10までの間隔の中間点におけるのと基本的に同じ幅を有する、断面を有する。これと対照的に、下辺12.10は、好ましくは、参照記号12.7及び12.8を用いて提供される側面の下半分が逆台形を形成するように、幾分、より狭い。これは、
図4において、点線によって示されている。この台形形状は、上部分離端により近い集中の形成を促進する。逆台形は、第1のブランチにおいては、第2のブランチ14(ここで、この形状は、
図6において明確に識別できる)におけるほど顕著ではないため、上部ブランチ12内では、光度拡散の強い減少は形成されない。
【0047】
ペア12及び14のそれぞれのうちの1つの光出口面は、それぞれのブランチの光入口面22より広い。これは、ブランチが、結合された光束に対してバンドリング効果を発揮できるようにするための、重要な前提条件である。使用されるマッピング2次レンズの焦点距離と組み合わせて、この断面(ピクセル)が、運転面上に投射される。第1のブランチ12について、これに対して垂直に立つ測定壁上の、この投射の高低角は、0.9°〜1.5°、好ましくは、約1°である。
【0048】
図6における第2のブランチによって示されるように、光入口面24は、第1のブランチ12のものとは異なる形状を有する。第2のブランチ14の光入口面は、多角形である。第2のブランチは、第1のブランチ12と同じ数の辺を有してもよい。しかし、第2のブランチは、鉛直方向において、第1のブランチ12より大きな角度範囲にわたって延在するということが重要である。これは、少なくともブランチの光出口面の近くにおいて、しかし、好ましくはブランチの全長についてあてはまる。この様式で逆台形として形成された第2のブランチ14は、底部においてより鋭い(
図4も参照)。LEDの観点からは、結合の後、結合された光束のより大きな部分が、これらの角度を付けられた側面(これらは、
図4において、端14.7及び14.8と関連付けられている)に到達する。光束のこの部分は、ブランチの短辺のうちの、より幅の広い短辺の方に偏向させられる。より幅の広い短辺は、好ましくは平坦面として実現される。偏向の結果として、光度最大値は、上部の狭い分離端において取得され、従って、ブランチの光出口面の、より幅の広い短辺(及び、ブランチ14のより狭い短辺に向けた、指数関数的拡散に類似した光度の拡散)が取得される。
【0049】
第2のブランチ14の光出口面の、鉛直方向の拡張は、ここでは、第1のブランチ12の光出口面の、鉛直方向の拡張よりかなり大きい。光出口面の水平方向幅は、対照的に、好ましくは、ブランチのペア内で一定である。第1のブランチ12では、その上、それぞれの光出口面の水平方向幅は、ブランチの関連する光入口面の水平方向幅より広い。これは、特に鉛直方向において、水平方向におけるよりはるかに強いバンドリングが発生することをもたらす。第2のブランチ14によって生成されるストライプについての、投射システム内の2次レンズによってマッピングされる高低角は、4°〜6°、好ましくは、5°である。集合的なストライプ高さは、例えば、鉛直方向において1°+5.0°=6°である。このストライプ高さ、及び、必要とされる光度値は、1つのみのブランチと、ブランチに光を供給する単一の(従来の、従って、ヘッドランプのために入手可能な)LEDとを用いて取得されることはできず、その理由は、単一の光源(LED)の光束は十分ではないからである。各LEDについての光束を倍増することのみが、これを修正できる。これは、しかし、物理的に可能ではない。第2のLEDが同じ光ファイバに適用されることが可能なように結合を拡張する場合、必要とされる集中は依然として取得することは不可能であり、その理由は、光源が、少なくとも2倍の広さの、分離面に対する開口角を規定するからである。特定の構成における、ここで提案された、分離した光ファイバ12、14のみが、光束の関数としての光度プロファイルのスケーリングを可能にする。第2の光ファイバ14の上端における光度最大値は、関連する第1のブランチ12の下端の光度値に調節される。
【0050】
2つのLEDを用いた単一のストライプの照射は、1つのみのLEDを使用した照射と比較して、2倍の、LEDのチップ内で解放される熱出力が、排出されなければならないという事実を伴う。このために、ヒートシンクが使用されることが知られている(かつ、ここで提供される)。各ストライプのための、2つのブランチの現在の使用と組み合わせて、更なる利点が取得される。
【0051】
2つのLEDからの光が同じブランチ内で結合される代替の設計に関して、(ここで提案される)各ストライプのための2つのブランチを使用すれば、ペア内のブランチの光入口面が、この場合、相互からの間隔を提示することに起因して、LEDの間のより大きな間隔が取得される。これは、LEDのための電気的接続として働く回路基板のレイアウト(配線など)を単純化し、局所的な熱負荷を低減させる。これは、製造コストに対する好ましい効果を有する、標準回路基板の使用を可能にする。異なる高さの光ファイバが組み合わされる場合、ストライプヘッドランプ(striped headlamp)のための1次レンズ26が生成されてもよい。これは、
図7及び
図8に示す外観を有してもよい。これについて、1次レンズは、ブランチ及びそれらの関連する出口レンズの全体であると理解される(これらの要素が、一体成形の構造ユニット、一体的に接合された構造ユニット、粘着性のある構造ユニットを形成する、又は、個別の構成要素から構成されるかどうかに関係なく)。
【0052】
図7は、ストライプハイビームモジュールのための1次レンズ26の正面図(従って、光出口面の図)を示す。ストライプヘッドランプの水平方向の中央において、境界ストライプにおけるより高い最大値が必要とされる。更に、中央領域(例えば、−0.57°Vから+6°Vまでの範囲)について、より高いストライプが必要とされる。この様式で拡張されたストライプのためには、単一の光源の光束では不十分である。エネルギープロファイルは、少なくとも2つの光源を含まなければならず、ここで、1つは、鉛直方向に狭い最大値範囲を形成し、2つ目は、拡散を形成する。示された設計では、1次レンズ26は、鉛直方向に相互に上にある、中央に配置された、ブランチのペアを有する。このようにして、高い最大光度、及び、鉛直方向におけるよりソフトな光度拡散が取得される。
【0053】
これと対照的に、水平方向Hにおける、中央の左及び右側にある境界領域においては、水平方向におけるよりソフトな拡散が望ましく、必要な最大光度は、中央において必要とされるものほど高くない。この理由のため、ペアの代わりに、個別のブランチのみが、中央の右及び左側に配置される。これに関して、多数の個別のブランチが各側において使用されること、及び、中央からより遠くにある個別のブランチの水平方向幅が、中央のより近くにある個別のブランチの水平方向幅より大きいことが、特に好ましい。中央からより遠くにある個別のブランチの鉛直方向高さが、中央のより近くにある個別のブランチの鉛直方向高さより小さいことも好ましい。単独で、及び、それぞれの他の特性と組み合わせて考慮される、これらの特性のそれぞれは、側方に向けたソフトな拡散を有する、水平方向に広い光分布に寄与する。
【0054】
図8は、対照的に、ストライプハイビームモジュールのための、このタイプの1次レンズ26の背面図(従って、光入口面の図)を示す。
図7及び
図8の組み合わせは、各ブランチに、1つの関連する出口レンズが割り当てられることを示す。
【0055】
図9は、透明なカバープレート34によって覆われ、かつ、本発明の光モジュールの実施形態の例が内部に配置されたハウジング32を有する、自動車両ヘッドランプ30を概略的に示す。光モジュールは、投射モジュールに関係する。これは、特に、1次レンズ28を提示する。1次レンズは、
図7及び
図8の対象に対応する。この1次レンズの出口レンズの光出口面は、2次レンズの前の光経路内の、2次レンズの光軸の方向における、2次レンズ36についての焦点距離の間隔において位置する。2次レンズは、好ましくは、透明な材料(特に、ガラス、あるいは、PC又はPMMAなどのプラスチック)でできている。別の設計では、2次レンズは、両方がプラスチックでできた、二層の色消しレンズとして生産される。2次レンズは、出口レンズの光出口面全体上に作られる内部光分布を、ヘッドランプの前の外部光分布の形態でマッピングする。投射モジュールの構成要素として、1次レンズ及び2次レンズは、できる限り少ない光が2次レンズの脇を通るように、1次レンズが、その出口レンズから放出される光束を、2次レンズ上に集中させるように、相互に対して配置される。光は、LEDによって放出され、ここで、好ましくは、1つのLEDが、ブランチのうちの1つの各光入口面の前に配置される。色収差を防止するために、色消しレンズ特性を示す2次レンズが、均一な、又は不規則な様式で分布させられた散乱微細構造が配置されたレンズ表面上に使用される。
【0056】
本発明について例示的に説明した。使用された用語は、限定の語ではなく、説明の語の性質を帯びることが意図されていることを理解されたい。上記の教示を考慮して、本発明の多くの修正及び変形が可能である。従って、添付の特許請求の範囲内で、本発明は、具体的に説明された通りの実施以外の実施もなされ得る。