【文献】
Hiroshi Ito and C. Grand Willson,Chemical Amplification in the Design of Dry Developing Resist Materials,Polymer Engineering and Science,米国,Society of Plastics Engineers,1983年12月,Vol.23, Iss.18,pp.1012-1018
(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0031】
以下で、本発明の実施形態について説明する。
【0032】
初めに、本発明の凹パターンの形成方法について説明して、本発明の凹パターンを有する基材の製造方法を説明する。その後、本発明の実施形態の組成物、特に、その成分として好適な本発明の実施形態の化合物について説明する。
【0033】
〔凹パターンを有する基材の製造方法〕
本発明の実施形態の凹パターンを有する基材の製造方法は、下記の(i)〜(iii)の工程を含み、現像工程を含まないことを特徴とする。
(i) 酸解離性基を有する化合物および酸発生剤を含む感放射線性組成物を基材に塗布し、塗膜を形成する工程、
(ii) 前記塗膜の所定部分に放射線照射を行う工程、
(iii) 前記放射線照射後の塗膜を加熱する工程
【0034】
上述の(i)〜(ii)の工程(以下、工程(i)および工程(ii)ともいう。)、さらに、上述の(iii)の工程(以下、工程(iii)ともいう。)を用いることにより、従来パターニングに必要である現像工程を用いることなく凹パターンを形成することができ、凹パターンを有する基材を製造することができる。
【0035】
以下、本発明の実施形態の凹パターンを有する基材の製造方法が有する各工程について説明する。
【0036】
[工程(i)]
図1は、基板上に形成された本発明の実施形態の感放射線性組成物の塗膜を模式的に示す断面図である。
【0037】
工程(i)は、基板上に酸解離性基を有する化合物および酸発生剤を含む組成物(以下、「感放射線性組成物」ともいう。)を塗布した後、好ましくは塗布面を加熱(プレベーク)することにより、基板1上に塗膜2を形成する工程である。
【0038】
工程(i)において、前記感放射線性組成物を用いることにより下記工程(iii)等において現像工程を行うことなく、基板1上に凹部を形成することができる。
尚、感放射線性組成物については、以下で具体的に説明する。
【0039】
使用できる基板1の材質としては、例えば、ガラス、石英、シリコン、樹脂等を挙げることができる。樹脂の具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリカーボネート、ポリイミド、環状オレフィンの開環重合体(ROMPポリマー)およびその水素添加物が挙げられる。
【0040】
また、基板1としては、本発明に係る配線の製造方法で最終的に得られる配線付基板をそのまま電子回路等に用いることが好ましいことから、従来より電子回路に用いられてきた、樹脂製基板、ガラス基板、半導体基板が好ましい。
【0041】
尚、基板1に感放射線性組成物を塗布する前に、必要に応じて基板表面を洗浄、粗面化、微少な凹凸面の付与等の前処理を施しておいてもよい。
【0042】
感放射線性組成物の塗布方法としては特に限定されず、はけやブラシを用いた塗布法、ディッピング法、スプレー法、ロールコート法、回転塗布法(スピンコート法)、スリットダイ塗布法、バー塗布法、フレキソ印刷、オフセット印刷、インクジェット印刷、ディスペンス法等の適宜の方法を採用することができる。これらの塗布方法の中でも、特にスリットダイ塗布法またはスピンコート法が好ましい。
【0043】
工程(i)で形成される塗膜2の厚みは、所望の用途に応じ適宜調整すればよいが、好ましくは0.1μm〜20μm、より好ましくは0.2μm〜18μmである。
【0044】
プレベークの条件は、用いる感放射線性組成物の組成等によっても異なるが、好ましくは60℃〜120℃で1分間〜10分間程度である。
【0045】
[工程(ii)]
工程(ii)は、工程(i)で形成した塗膜2の少なくとも一部に放射線を照射して露光を行う。
【0046】
図2は、基板上の本発明の実施形態の樹脂組成物の塗膜の露光を模式的に説明する断面図である。
【0047】
工程(ii)では、
図2に示すように、基板1上の塗膜2の一部に放射線が照射され、放射線照射部3と放射線未照射部2とを有する塗膜が形成される。
【0048】
工程(ii)により、酸解離性基が酸発生剤の効果により脱離し揮発する。その結果、放射線照射部の膜厚が放射線未照射部の膜厚に比べ薄くなり、凹パターンが形成される(尚、
図2では、この膜厚変化を明示していない)。このとき、酸解離性基がフッ素原子を有していれば、工程(i)で得られた塗膜および放射線未照射部は撥液性を示すが、放射線照射部は酸解離性基の消失に伴い、放射線未照射部に比べ親液性となる。
【0049】
したがって、工程(i)において、フッ素原子を有する酸解離性基を含有する化合物を含む組成物を用いる場合には、工程(ii)により、基板上に、撥液性の放射線未照射部と、該部分より親液性の凹パターンである放射線照射部とを有する塗膜が形成される。
【0050】
工程(ii)では、形成したい配線の形状と同様の形状の放射線照射部が形成されるように、所定のパターンを有するフォトマスクを介して、または直描式露光装置を用いて所定のパターンを描画露光することができる。
【0051】
本発明において、露光に使用される放射線としては、可視光線、紫外線、遠紫外線、荷電粒子線、X線等を使用できる。これらの放射線の中でも、波長が190nm〜450nmの範囲にある放射線が好ましく、特に365nmの紫外線を含む放射線が好ましい。
【0052】
工程(ii)における露光量は、下記工程(iii)後に得られる凹部の膜厚が、下記範囲となるように放射線を露光することが好ましく、具体的には、放射線の波長365nmにおける強度を照度計(OAI model356、OAI Optical Associates Inc.製)により測定した値として、好ましくは10mJ/cm
2〜1000mJ/cm
2、より好ましくは20mJ/cm
2〜500mJ/cm
2である。
【0053】
[工程(iii)]
図3は、一部が露光された本発明の実施形態の樹脂組成物の塗膜の加熱を模式的に説明する断面図である。
【0054】
工程(iii)では、工程(ii)で得られた塗膜を加熱することで、工程(ii)の放射線照射部であった部分に相当する凹部13と、工程(ii)の放射線未照射部であった部分に相当する凸部12とを有する塗膜を形成する。
【0055】
工程(iii)により、工程(ii)の放射線照射部において生じた、酸解離性基が酸発生剤の効果により脱離した成分を更に揮発させることができる。その結果、放射線照射部における凹状のくぼみが更に深化し(凹部13の膜厚が更に薄くなり)、凹部13の膜厚が前記凸部12の膜厚に対して10%以上薄い形状の塗膜を形成することができる。
【0056】
工程(i)において、フッ素原子を有する酸解離性基を含有する化合物を含む組成物を用いる場合には、工程(iii)により、基板上に、撥液性の凸部12と、該部分より親液性の凹部13とを有する塗膜が形成される。そして、このような塗膜上に液状の膜形成材料を塗布すると、凸部12と凹部13の膜厚差が大きいため、塗膜表面の凹凸により凹部13上に該材料が集まりやすくなるが、この塗膜表面形状の効果だけではなく、該表面の親液・撥液性により、凹部13上に該材料が集まりやすくなり、より所望の形状の、具体的には高精細な配線を形成しやすくなる。
【0057】
また、工程(i)において、フッ素原子を有する酸解離性基を含有する化合物を含む組成物を用いる場合には、放射線照射により、フッ素原子を有する基が脱離することなる。この脱離基は比較的揮発し易いため、工程(iii)において、より簡便に、凸部12と凹部13の膜厚差の大きい塗膜を形成することができる。
【0058】
工程(iii)における塗膜を加熱する方法としては、例えば、該塗膜付基板を、ホットプレート、バッチ式オーブンまたはコンベア式オーブンを用いて加熱する方法、ドライヤー等を用いて熱風乾燥する方法、真空ベークする方法が挙げられる。
【0059】
前記加熱の条件は、工程(i)で用いる感放射線性組成物の組成や、工程(ii)で得られた塗膜の厚み等によっても異なるが、好ましくは60℃〜150℃で3分間〜30分間程度である。
【0060】
工程(iii)では、凹部13の膜厚が前記凸部の膜厚に対して、好ましくは10%以上薄い、より好ましくは11%以上薄い、さらに好ましくは12%〜70%薄い形状の塗膜を形成することが望ましい。得られる塗膜がこのような形状を有していると、凹部13に膜形成材料を塗布する際に、塗膜表面の凹凸の段差により、凹部13から該材料が溢れ出にくく、また、凹部13以外の箇所に該材料が残りにくくなるため、多量の膜形成材料を塗布することができ、多量の配線材料を用いても高精細な配線を得ることができる。
【0061】
凹部13および凸部12の膜厚は、具体的には、下記実施例に記載の方法で測定することができる。
【0062】
尚、工程(iii)で得られる凹部13の膜厚は、所望の用途に応じ適宜調整すればよいが、好ましくは0.01μm〜18μm、より好ましくは0.05μm〜15μmである。
【0063】
前記凹部13表面と凸部12表面のテトラデカンに対する接触角差(凸部12表面の接触角−凹部13表面の接触角)は、好ましくは30°以上であり、より好ましくは40°以上、さらに好ましくは50°以上である。接触角差が前記範囲にあることにより、下記工程(iv)において、凸部12表面にも液状の膜形成材料を塗布した場合であっても、撥液部である凸部12において、該材料をはじき、親液部である凹部13に該材料が移動しやすくなることにより、凹部13に沿った配線の形成が可能となる。
【0064】
前記接触角差は、具体的には、下記実施例に記載の方法で測定することができる。
【0065】
尚、凹部13表面および凸部12表面とは、それぞれ
図3で示すように、基板1上に形成された塗膜の、基板1に接する側とは反対側の表面のことをいう。
【0066】
得られる凹部13と凸部12が、凹部13の膜厚が前記凸部12の膜厚に対して10%以上薄く、かつ、凹部13表面と凸部12表面のテトラデカンに対する接触角差が30°以上という条件を満たすと、前記と同様の理由から、多量の膜形成材料を凹部13上のみに容易に塗布することが可能となる。
【0067】
〔凹部上に膜を形成する方法〕
本発明に係る製造方法は、前記工程(iii)で得られた凹部13上に膜を形成する方法を含む。
【0068】
[工程(iv)]
図4は、本発明の実施形態の膜形成方法における膜形成材料の塗布を模式的に説明する断面図である。
【0069】
工程(iv)では、前記凹部13上に膜形成材料4を塗布する。
【0070】
尚、膜形成材料4については、以下で具体的に説明する。
【0071】
前記塗布の方法としては、特に限定されず、例えば、はけやブラシを用いた塗布法、ディッピング法、スプレー法、ロールコート法、回転塗布法(スピンコート法)、スリットダイ塗布法、バー塗布法、スキージ法、フレキソ印刷、オフセット印刷、インクジェット印刷、ディスペンス法等の適宜の方法を採用することができる。この中でも特にディッピング法、スプレー法、スピンコート法、スリットダイ塗布法、オフセット印刷法、インクジェット印刷、ディスペンス法が好ましい。
【0072】
また、微細で厚みがあり、低抵抗で断線しにくい配線を形成する観点からは、オフセット印刷が好ましい。オフセット印刷は、例えば、特開2010−159350号公報、特開2011−178006号公報の記載に基づいて行うことができる。
【0073】
前記工程(iii)で得られた膜形成材料4の塗膜5は、撥液性の凸部12とそれより親液性の凹部13とを有するため、液状の膜形成材料4を用いる場合には、前記いずれの方法を用いても、凸部12では該材料がはじかれ、凹部13に集まりやすいため、凹部13に沿って膜形成材料4が塗布された状態となる。
【0074】
[工程(v)]
工程(v)では、工程(iv)で得られた膜形成材料付基板を加熱する。
【0075】
図5は、基板上に形成された本発明の実施形態のパターンを模式的に示す断面図である。
【0076】
この工程(v)により、パターン6が形成される。
【0077】
前記加熱の温度としては特に限定されないが、190℃以下が好ましい。また、基板1として、ポリエチレンテレフタレートなどの耐熱性に乏しいフィルムを用いる場合には、該フィルムの耐熱温度以下、具体的には150℃以下が好ましい。
【0078】
また、加熱時間も特に制限されないが、1分間〜120分間が好ましく、3分間〜60分間がより好ましい。
【0079】
前記加熱の方法としては、例えば、ホットプレート、バッチ式オーブンまたはコンベア式オーブンを用いて加熱する方法、ドライヤー等を用いて熱風乾燥する方法、真空ベークする方法が挙げられる。
【0080】
〔導電性パターンの形成方法〕
本発明においては、本発明の実施形態である凹パターンを有する基材の製造方法の工程(i)、工程(ii)および工程(iii)により形成された基材を用い、膜形成材料として導電膜形成インクや導電膜形成ペーストを用いることにより、上述した本発明の実施形態の膜形成方法と同様の方法で、本発明の導電膜を形成することができる。すなわち、上述した本発明の凹パターンを有する基材を用い、その凹パターン上に導電膜形成インクを塗布する方法、および、凹パターン上で導電膜形成を行う方法を実施することにより、本発明の導電膜として、本発明の導電性パターンを形成することができる。
【0081】
また、本実施形態の感放射線性組成物の膜上で形成された本実施形態の導電性パターンにおいては、導通性および密着性等の特性にも優れ、高精細な配線や電極の形成に有効となる。
【0082】
そして、本実施形態の導電性パターン等のパターンは、本発明の実施形態の導電膜として、本発明の実施形態の電子回路の形成に好適に用いることができる。すなわち、本発明の実施形態の電子回路は、本発明の実施形態の導電性パターン等のパターンを有して構成される。
【0083】
〔電子回路および電子デバイス〕
本発明の電子回路は、前記導電性パターンの形成方法によって製造された配線を有し、好ましくは、前記導電性パターンの形成方法によって製造された配線と基板との積層体を有する。
【0084】
また、本発明の電子デバイスは、前記電子回路を有する。このため、小型化、薄型化、高機能化された電子デバイスとなる。
【0085】
前記電子デバイスとしては、例えば、液晶ディスプレイ、携帯電話等の携帯情報機器、デジタルカメラ、有機ディスプレイ、有機EL照明、各種センサーやウェアラブルデバイスが挙げられる。
【0086】
〔感放射線性組成物〕
本発明の実施形態の感放射線性組成物は、本発明の実施形態の凹パターンを有する基材の製造方法に好適に用いられる。
【0087】
本発明の実施形態の感放射線性組成物(以下、単に、組成物と称することがある。)は、本発明の実施形態の酸解離性基を有する化合物(以下、単に、[A]化合物と称することがある。)を成分として含有する。
【0088】
本実施形態の組成物は、[A]化合物のほか、溶剤を含有することができる。また、本実施形態の組成物は、酸発生剤を含むことができる。さらに、本実施形態の組成物は、エチレン性不飽和結合を有する重合性化合物を含むことができ、また、感放射線性重合開始剤を含むことができる。
【0089】
本実施形態の組成物は、溶剤(以下、[B]溶剤と称することがある。)を含有することで液状を呈し、塗布によって塗膜を形成し、容易に下地層の形成を行うことができる。
【0090】
また、本実施形態の組成物は、酸発生剤(以下、[C]酸発生剤と称することがある。)を含有することで、所望とする高感度の感放射性を有することができる。また、酸発生剤の補助材料としてさらに増感剤(以下、[D]増感剤と称することがある。)を含んでもよい。さらに、酸発生剤からの酸の拡散抑制材としてクエンチャー(以下、[E]クエンチャーと称することがある。)を含むことができる。
【0091】
さらに、本実施形態の組成物は、エチレン性不飽和結合を有する重合性化合物(以下、[F]重合性化合物と称することがある。)を含有することができる。またさらに、本実施形態の組成物は、感放射線性重合開始剤(以下[G]感放射線性重合開始剤と称することがある)を含有することができる。
【0092】
さらに、前記組成物は、本発明の効果を損なわない限り、その他の任意成分を含有することができる。
【0093】
前記組成物の粘度(温度:20℃、剪断速度:10sec
−1)は、所望の塗布方法および形成したい塗膜の膜厚等によって調節すればよい。膜厚0.5μm〜2μmの塗膜を形成する場合であって、塗布方法としてスピンコート法を用いる場合、好ましくは5cP(0.003Pa・s)〜20cP(0.02Pa・s)を例示でき、塗布方法としてスリットダイ塗布法を用いる場合、好ましくは1cP(0.001Pa・s)〜20cP(0.01Pa・s)を例示できる。
【0094】
<[A]酸解離性基を有する化合物>
本実施形態の感放射線性組成物の成分となる[A]酸解離性基を有する化合物([A]化合物)は、アセタール結合およびヘミアセタールエステル結合の群から選ばれる少なくとも1つの構造単位を含む基を有する。より具体的には下記式(1−1)、(1−2)で示される構造単位を含むことが好ましい。
【0095】
【化3】
(式(1−1)および式(1−2)中、R
1およびR
2はそれぞれ独立して、水素原子またはメチル基を示し、Rfは独立して、フッ素原子で置換された有機基を示す。*は、結合部位を示す。)
【0096】
アセタール結合を含む化合物は、アルコールと基CH
2=C(R
1)−O−を有する化合物とを反応させることで得ることができ、ヘミアセタールエステル結合を含む化合物は、カルボン酸と基CH
2=C(R
1)−O−を有する化合物とを反応させることで得ることができる。
【0097】
前記Rfとしては、フッ素原子を有する有機基が挙げられる。
【0098】
前記Rfとしては、下記式(1−1−1)〜(1−1−33)で示す基が好ましい。
【0102】
[A]化合物は、前駆体である水酸基を有する化合物の水酸基に、下記式(1)で示されるビニルエーテル化合物(以下、「化合物(1)」と称することがある。)に由来する保護基が導入されてなる構造を有する化合物であることが好ましい。また、[A]化合物は、前駆体であるカルボキシル基を有する化合物のカルボキシル基に、化合物(1)に由来する保護基が導入されてなる構造を有する化合物であってもよい。
【0103】
これらの化合物(以下、「化合物(a)」と称することがある。)、特に前駆体として水酸基を有する化合物は、熱による保護基の脱離が生じ難いという性質を備え、一方で、放射線照射による保護基の脱離の制御ができるという性質を備えるため、[A]化合物として好適に使用できる。さらに、これらの化合物は、後述する[C]酸発生剤との組み合わせによって、放射線照射による、より高精度の保護基の脱離の制御が可能となるため好ましい。
【0105】
上記式(1)中、R
0は、水素原子またはメチル基を示す。
【0106】
上記式(1)中、R
Aは独立して、メチレン基、炭素数2〜12のアルキレン基、炭素数2〜12のアルケニレン基、炭素数6〜13の置換または非置換の芳香族炭化水素基、炭素数4〜12の置換または非置換の脂環式炭化水素基、または、これらの基の1つ以上の水素原子がフッ素原子で置換された基を示す。
【0107】
上記式(1)のR
Aにおける炭素数2〜12のアルキレン基としては、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基等が挙げられる。
【0108】
上記式(1)のR
Aにおける炭素数2〜12のアルケニレン基としては、ビニレン基、エテン−1,2−ジイル基、2−ブテン−1,4−ジイル等が挙げられる。
【0109】
上記式(1)のR
Aにおける炭素数6〜13の置換または非置換の芳香族炭化水素基としては、フェニレン基、トリレン基、メシチレン基、ナフチレン基、ビフェニレン基が挙げられる。
【0110】
上記式(1)のR
Aにおける炭素数4〜12の置換または非置換の脂環式炭化水素基としては、(シクロブチル基、シクロペンチル基、シクロへキシル基、シクロヘプチル基、ビシクロへキシル基)が挙げられる。
【0111】
上記式(1)のR
Aにおける、メチレン基、炭素数2〜12のアルキレン基、炭素数6〜13の置換または非置換の芳香族炭化水素基または炭素数4〜12の置換または非置換の脂環式炭化水素基の1つ以上の水素原子がフッ素原子で置換された基としては、前記で例示した基の1つ以上の水素原子がフッ素原子で置換された基等が挙げられる。
【0112】
上記式(1)のR
Aとしては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基、ヘキサメチレン基、フェニレン基、ビニレン基が好ましい。
【0113】
上記式(1)中、R
Bは、炭化水素基の1つ以上の水素原子がフッ素原子で置換された基を示す。
【0114】
上記式(1)中、R
Bは、例えば、前記Rfにおける前記式(1−1−1)〜(1−1−33)で示す基、2,2,2−トリフルオロエチル基、4,4,5,5,6,6,6,−ヘプタフルオロへキシル基、1,2,2−トリフルオロビニル基が挙げられ、2,2,2−トリフルオロエチル基、前記式(1−1−1)の3,3,3−トリフルオロプロピル基、式(1−1−2)の4,4,4−トリフルオロブチル基、式(1−1−4)の3,3,4,4,4−ペンタフルオロブチル基、4,4,5,5,6,6,6−ヘプタフルオロヘキシル基、式(1−1−8)の3,3,4,4,5,5,6,6,7,7,8,8,8−トリデカフルオロオクチル基、1,2,2−トリフルオロビニル基、式(1−1−29)の2,3,4,5,6−ペンタフルオロフェニル基が好ましい。
【0115】
上記式(1)中、xは0〜12の整数を示し、0〜9の整数が好ましく、0がより好ましい。
【0116】
上述した工程(i)で形成される塗膜は、[A]化合物に基づく特性を示し、[A]化合物として、前記化合物(a)を用いる場合、該化合物(a)の保護基に由来する特性を示す。具体的には、該化合物(a)を含む感放射線性組成物から塗膜を形成すると、まず、前記工程(i)において、撥液性の塗膜が形成され、この塗膜を放射線照射すると、露光部分では、保護基の脱離が生じ、保護基が脱離した部分では、水酸基が残って、保護基に起因した撥液性が失われる。
【0117】
次に、[A]化合物、具体的には、重合体である[A]化合物(以下、[A]重合体と称することがある。)を得るための方法について説明する。該重合体である[A]化合物([A]重合体)を得るための方法としては、前駆体となる化合物として重合体を用いる方法と、前駆体となる化合物としてモノマーを用いる方法の2つの方法が可能である。
【0118】
前駆体となる化合物として重合体を用いる方法では、前駆体となる重合体が水酸基またはカルボキシル基を分子内に含有し、前駆体となる重合体の水酸基に前記化合物(1)を反応させることで[A]重合体を得ることができる。
【0119】
また、前駆体となる化合物としてモノマーを用いる方法では、前駆体となるモノマーが分子内に水酸基またはカルボキシル基を含有し、前駆体となるモノマーの水酸基またはカルボキシル基に前記化合物(1)を反応させた後、得られたモノマーを重合させることで[A]重合体を得ることができる。
【0120】
以下、[A]重合体を得るための2つの方法について、より具体的に説明する。
【0121】
(1)前駆体となる化合物として重合体を用いる方法
この方法では、水酸基またはカルボキシル基を有するモノマーを重合して水酸基またはカルボキシル基を有する重合体(前駆体)を得て、その後、前駆体となる重合体の水酸基またはカルボキシル基に前記化合物(1)を反応させて、[A]重合体を得る。
【0122】
上述の水酸基を有するモノマーとしては、(メタ)アクリル酸エステルが好ましく、例えば、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、2−ヒドロキシブチルメタクリレート、2−ヒドロキシブチルアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、2−アクリロイロキシエチル−2−ヒドロキシルエチルフタル酸、ジプロピレングリコールメタクリレート、ジプロピレングリコールアクリレート、4−ヒドロキシブチルメタクリレート、4−ヒドロキシブチルアクリレート、シクロヘキサンジメタノールモノアクリレート、シクロヘキサンジメタノールモノメタクリレート、エチルα−(ヒドロキシメチル)アクリレート、ポリプロピレングリコールモノメタクリレート、ポリプロピレングリコールモノアクリレート、グリセリンモノメタクリレート、グリセリンモノアクリレート、ポリエチレングリコールモノメタクリレート、ポリエチレングリコールモノアクリレート、ポリ(エチレングリコール−プロピレングリコール)モノメタクリレート、ポリ(エチレングリコール−プロピレングリコール)モノアクリレート、ポリエチレングリコール−ポリプロピレングリコールモノメタクリレート、ポリエチレングリコール−ポリプロピレングリコールモノアクリレート、ポリ(エチレングリコール−テトラメチレングリコール)モノメタクリレート、ポリ(エチレングリコール−テトラメチレングリコール)モノアクリレート、ポリ(プロピレングリコール−テトラメチレングリコール)モノメタクリレート、ポリ(プロピレングリコール−テトラメチレングリコール)モノアクリレート、プロピレングリコールポリブチレングリコールモノメタクリレート、プロピレングリコールポリブチレングリコールモノアクリレート、p−ヒドロキシフェニルメタクリレート、パラヒドロキシフェニルアクリレートを挙げることができ、以下の株式会社ダイセル製のプラクセルFM1、プラクセルFM1D、プラクセルFM2D、プラクセルFM3、プラクセルFM3X、プラクセルFM4、プラクセルFM5、プラクセルFA1、プラクセルFA1DDM、プラクセルFA2D、プラクセルFA5、プラクセルFA10Lを挙げることができる。
【0123】
上述のカルボキシル基を有するモノマーとしては、アクリル酸、メタクリル酸、2−アクリロイルオキシエチルコハク酸、2−メタクリロイルオキシエチルコハク酸、2−アクリロイルオキシエチルフタル酸、2−メタクリロイルオキシエチルフタル酸、2−アクリロイルオキシエチルテトラヒドロフタル酸、2−メタクリロイルオキシエチルテトラヒドロフタル酸、2−アクリロイルオキシエチルヘキサヒドロフタル酸、2−メタクリロイルオキシエチルヘキサヒドロフタル酸、2−アクリロイルオキシプロピルフタル酸、2−メタクリロイルオキシプロピルフタル酸、2−アクリロイルオキシプロピルテトラヒドロフタル酸、2−メタクリロイルオキシプロピルテトラヒドロフタル酸、2−アクリロイルオキシプロピルヘキサヒドロフタル酸、2−メタクリロイルオキシプロピルヘキサヒドロフタル酸を挙げることができる。
【0124】
[A]重合体の前駆体となる、水酸基またはカルボキシル基を有する重合体は、上述の水酸基またはカルボキシル基を有するモノマーのみを用いて得ることができるほか、上述の水酸基またはカルボキシル基を有するモノマーと、水酸基またはカルボキシル基を有するモノマー以外のモノマーとを共重合して得ることができる。水酸基またはカルボキシル基を有するモノマー以外のモノマーとしては、(メタ)アクリル酸鎖状アルキルエステル、(メタ)アクリル酸環状アルキルエステル、(メタ)アクリル酸アリールエステル、不飽和芳香族化合物、共役ジエン、テトラヒドロフラン骨格を含有する不飽和化合物、マレイミドおよびこれら以外のモノマー等を挙げることができる。
【0125】
より具体的に説明すると、上述の(メタ)アクリル酸鎖状アルキルエステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−ブチル、メタクリル酸sec−ブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸イソデシル、メタクリル酸n−ラウリル、メタクリル酸トリデシル、メタクリル酸n−ステアリル、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸sec−ブチル、アクリル酸t−ブチル、アクリル酸2−エチルヘキシル、アクリル酸イソデシル、アクリル酸n−ラウリル、アクリル酸トリデシル、アクリル酸n−ステアリル等が挙げられる。
【0126】
また、上述の(メタ)アクリル酸環状アルキルエステルとしては、例えば、メタクリル酸シクロヘキシル、メタクリル酸2−メチルシクロヘキシル、メタクリル酸トリシクロ[5.2.1.0
2,6]デカン−8−イル、メタクリル酸イソボルニル、シクロヘキシルアクリレート、2−メチルシクロヘキシルアクリレート、トリシクロ[5.2.1.0
2,6]デカン−8−イルアクリレート、イソボルニルアクリレート等が挙げられる。
【0127】
また、上述の(メタ)アクリル酸アリールエステルとしては、例えば、メタクリル酸フェニル、メタクリル酸ベンジル、アクリル酸フェニル、アクリル酸ベンジルが挙げられる。
【0128】
また、上述の不飽和芳香族化合物としては、例えば、スチレン、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−メトキシスチレンが挙げられる。
【0129】
また、上述の共役ジエンとしては、例えば、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエンが挙げられる。
【0130】
また、上述のテトラヒドロフラン骨格を含有する不飽和化合物としては、例えば、テトラヒドロフルフリル(メタ)アクリレート、2−メタクリロイルオキシ−プロピオン酸テトラヒドロフルフリルエステル、3−(メタ)アクリロイルオキシテトラヒドロフラン−2−オンが挙げられる。
【0131】
また、上述のマレイミドとしては、例えば、N−フェニルマレイミド、N−シクロヘキシルマレイミド、N−トリルマレイミド、N−ナフチルマレイミド、N−エチルマレイミド、N−ヘキシルマレイミド、N−ベンジルマレイミドが挙げられる。
【0132】
またそれ以外のモノマーとして、例えば、メタクリル酸グリシジル、メタクリル酸3,4−エポキシシクロヘキシル、アクリル酸3,4−エポキシシクロヘキシル、3−(メタクリロイルオキシメチル)−3−エチルオキセタン、3−(アクリロイルオキシメチル)−3−エチルオキセタン、メタクリル酸トリシクロ[5.2.1.0
2,6]デカン−8−イルオキシエチル、トリシクロ[5.2.1.0
2,6]デカン−8−イルオキシエチルアクリレートが挙げられる。
【0133】
[A]重合体の前駆体となる、水酸基またはカルボキシル基を有する重合体を合成するための重合反応に用いられる溶媒としては、例えば、アルコール、グリコールエーテル、エチレングリコールアルキルエーテルアセテート、ジエチレングリコールモノアルキルエーテル、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、プロピレングリコールモノアルキルエーテル、プロピレングリコールアルキルエーテルアセテート、プロピレングリコールモノアルキルエーテルプロピオネート、ケトン、エステルが挙げられる。
【0134】
[A]重合体の前駆体となる、水酸基またはカルボキシル基を有する重合体を得るための重合反応においては、分子量を調整するために、分子量調整剤を使用できる。分子量調整剤としては、例えば、クロロホルム、四臭化炭素等のハロゲン化炭化水素類;n−ヘキシルメルカプタン、n−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、チオグリコール酸等のメルカプタン類;ジメチルキサントゲンスルフィド、ジイソプロピルキサントゲンジスルフィド等のキサントゲン類;ターピノーレン、α−メチルスチレンダイマーが挙げられる。
【0135】
水酸基またはカルボキシル基を有する重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)としては、1000〜30000が好ましく、5000〜20000がより好ましい。水酸基またはカルボキシル基を有する重合体のMwを上述の範囲とすることで、[A]化合物としてそれを含有する感放射線性組成物の感度を高めることができる。
【0136】
次に、水酸基またはカルボキシル基を有する重合体の水酸基またはカルボキシル基に前記化合物(1)を反応させ、[A]化合物を得る方法は、下記式で示されるように、水酸基またはカルボキシル基にビニルエーテル基を付加させることによって行うことができる。
【0138】
そして、[A]化合物を得る方法は、公知の方法を参考にすることができ、例えば、特開2005−187609号公報に記載される方法を参考とすることができる。
【0139】
具体的には、水酸基を有する重合体の水酸基と前記化合物(1)のビニルエーテル基によってアセタール結合を生成して、または、カルボキシル基を有するモノマーのカルボキシル基と前記化合物(1)のビニルエーテル基によってヘキアセタールエステル結合を生成して、付加物を形成する。
【0140】
例えば、水酸基またはカルボキシル基を有する重合体を適宜の有機溶媒中に溶解した後、重合体の有する水酸基またはカルボキシル基に対して等モルまたは過剰量の前記化合物(1)を加え、得られた反応混合物を0℃から室温(25℃)程度の温度に冷却した後、上述の有機溶媒と同じ溶媒に溶解させた酸(例えば、シュウ酸溶液)を触媒として滴下し、滴下終了後、室温下で1時間〜24時間攪拌し、反応させる。反応終了後、有機溶剤を除去することにより、目的の[A]化合物を得ることができる。
【0141】
(2)前駆体となる化合物としてモノマーを用いる方法
この方法では、水酸基またはカルボキシル基を有するモノマーの水酸基またはカルボキシル基に前記化合物(1)を反応させて付加物を得て、それらを重合させることで、[A]化合物を得る。このような[A]化合物を得る方法は、公知の方法を参考にすることができる。例えば、特開2005−187609号公報に記載されているように、水酸基を有するモノマーの水酸基とビニルエーテル化合物のビニルエーテル基によってアセタール結合を生成して、または、カルボキシル基を有するモノマーのカルボキシル基と前記化合物(1)のビニルエーテル基によってヘキアセタールエステル結合を生成して、付加物を形成する。次いで、得られたモノマーを用いて、上述した水酸基またはカルボキシル基を有する重合体の製造方法と同様にして、[A]化合物を得ることができる。
【0142】
以上のようにして得られる[A]化合物の好ましい例としては、下記式(2)〜(5)で示される構成単位よりなる群から選ばれる少なくとも1つを有する重合体を挙げることができる。
【0143】
【化9】
(式(2)〜(5)中、R
3は独立して、水素原子またはメチル基を示す。R
4は独立して、メチレン基、炭素数2〜12のアルキレン基、炭素数6〜13の芳香族炭化水素基、炭素数4〜12の置換または非置換の脂環式炭化水素基、または、これらの基の1つ以上の水素原子がフッ素原子で置換された基を示す。R
5は独立して、炭化水素基の1つ以上の水素原子がフッ素原子で置換された基を示す。mは0または1を示す。nは独立して0〜12を示す。)
【0145】
[A]化合物は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。
【0146】
<[B]溶剤>
[B]溶剤としては特に限定されないが、[A]化合物のほか、後述する[C]酸発生剤および[F]重合性化合物等の各成分を均一に溶解または分散することができる溶剤が好ましい。
【0147】
好適な[B]溶剤としては、アルコール系溶剤、エーテル類、ジエチレングリコールアルキルエーテル類、エチレングリコールアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテルプロピオネート類、脂肪族炭化水素類、芳香族炭化水素類、ケトン類およびエステル類等を挙げることができる。
【0148】
上述のアルコール系溶剤としては、1−ヘキサノール、1−オクタノール、1−ノナノール、1−ドデカノール、1,6−ヘキサンジオール、1,8−オクタンジオール等の長鎖アルキルアルコール類;
ベンジルアルコール等の芳香族アルコール類;
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル等のエチレングリコールモノアルキルエーテル類;
プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル類;
ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル等のジプロピレングリコールモノアルキルエーテル類等を挙げることができる。これらのアルコール系溶剤は、単独でまたは2種以上併用して使用することができる。
【0149】
これらアルコール系溶剤のうち、特に塗工性向上の観点から、ベンジルアルコール、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルが好ましい。
【0150】
上述のエーテル類としては、例えば、テトラヒドロフラン、ヘキシルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、1,4−ジオキサンを挙げることができる。
【0151】
上述のジエチレングリコールアルキルエーテル類としては、例えば、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル等を挙げることができる。
【0152】
上述のエチレングリコールアルキルエーテルアセテート類としては、例えば、メチルセロソルブアセテート、エチルセロソルブアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテー等を挙げることができる。
【0153】
上述のプロピレングリコールモノアルキルエーテルアセテート類としては、例えば、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテートを挙げることができる。
【0154】
上述のプロピレングリコールモノアルキルエーテルプロピオネート類としては、例えば、プロピレングリコールモノメチルエーテルプロピオネート、プロピレングリコールモノエチルエーテルプロピオネート、プロピレングリコールモノプロピルエーテルプロピオネート、プロピレングリコールモノブチルエーテルプロピオネートを挙げることができる。
【0155】
上述の脂肪族炭化水素類としては、例えば、n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、n−ノナン、n−デカン、n−ウンデカン、n−ドデカン、シクロヘキサン、デカリンを挙げることができる。
【0156】
上述の芳香族炭化水素類としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、n−プロピルベンゼン、i−プロピルベンゼン、n−ブチルベンゼン、メシチレン、クロロベンゼン、ジクロロベンゼンを挙げることができる。
【0157】
上述のケトン類としては、例えば、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、2−ヘプタノン、4−ヒドロキシ−4−メチル−2−ペンタノンを挙げることができる。
【0158】
上述のエステル類としては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸i−プロピル、酢酸ブチル、2−ヒドロキシプロピオン酸エチル、2−ヒドロキシ−2−メチルプロピオン酸メチル、2−ヒドロキシ−2−メチルプロピオン酸エチル、ヒドロキシ酢酸メチル、ヒドロキシ酢酸エチル、ヒドロキシ酢酸ブチル、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、3−ヒドロキシプロピオン酸メチル、3−ヒドロキシプロピオン酸エチル、3−ヒドロキシプロピオン酸プロピル、3−ヒドロキシプロピオン酸ブチル、2−ヒドロキシ−3−メチルブタン酸メチル、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸プロピル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル、エトキシ酢酸プロピル、エトキシ酢酸ブチル、プロポキシ酢酸メチル、プロポキシ酢酸エチル、プロポキシ酢酸プロピル、プロポキシ酢酸ブチル、ブトキシ酢酸メチル、ブトキシ酢酸エチル、ブトキシ酢酸プロピル、ブトキシ酢酸ブチル、2−メトキシプロピオン酸メチル、2−メトキシプロピオン酸エチル、2−メトキシプロピオン酸プロピル、2−メトキシプロピオン酸ブチル、2−エトキシプロピオン酸メチル、2−エトキシプロピオン酸エチル等を挙げることができる。
【0159】
以上で挙げた[B]溶剤は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。
【0160】
溶剤の使用量は、前記感放射線性組成物の溶剤を除く成分100質量部に対して、好ましくは200質量部〜1600質量部、より好ましくは400質量部〜1000質量部である。溶剤の使用量を上述の範囲内とすることによって、感放射線性組成物のガラス基板等に対する塗布性を向上し、さらに塗布ムラ(筋状ムラ、ピン跡ムラ、モヤムラ等)の発生を抑制し、膜厚均一性の向上した塗膜を得ることができる。
【0161】
<[C]酸発生剤>
[C]酸発生剤は、少なくとも放射線の照射によって酸を発生する化合物である。感放射線性組成物が、[C]酸発生剤を含有することで、[A]化合物から酸解離性基を脱離させることができる。
【0162】
[C]酸発生剤としては、例えば、オキシムスルホネート化合物、オニウム塩、スルホンイミド化合物、ハロゲン含有化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、カルボン酸エステル化合物等が挙げられる。
【0163】
[C]酸発生剤は、単独でまたは2種類以上を組み合わせて用いてもよい。
【0164】
[オキシムスルホネート化合物]
上述のオキシムスルホネート化合物としては、下記式(6)で表されるオキシムスルホネート基を含む化合物が好ましい。
【0166】
前記式(6)中、R
11は、炭素数1〜12のアルキル基、炭素数1〜12のフルオロアルキル基、炭素数4〜12の脂環式炭化水素基、炭素数6〜20のアリール基、あるいはこれらのアルキル基、脂環式炭化水素基およびアリール基が有する水素原子の一部または全部が置換基で置換された基である。
【0167】
上述のR
11で表されるアルキル基としては、炭素数1〜12の直鎖状または分岐状のアルキル基が好ましい。この炭素数1〜12の直鎖状または分岐状のアルキル基は置換基により置換されていてもよく、置換基としては、例えば、炭素数1〜10のアルコキシ基、7,7−ジメチル−2−オキソノルボルニル基等の橋かけ環式脂環基を含む脂環式基等が挙げられる。炭素数1〜12のフルオロアルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、ヘプチルフルオロプロピル基等が挙げられる。
【0168】
上述のR
11で表される炭素数4〜12の脂環式炭化水素基は置換基により置換されていてもよく、置換基としては、例えば、炭素数1〜5のアルキル基、アルコキシ基、ハロゲン原子が挙げられる。
【0169】
上述のR
11で表される炭素数6〜20のアリール基としては、フェニル基、ナフチル基、トリル基、キシリル基が好ましい。上述のアリール基は置換基により置換されていてもよく、置換基としては、例えば、炭素数1〜5のアルキル基、アルコキシ基、ハロゲン原子が挙げられる。
【0170】
前記式(6)で表されるオキシムスルホネート基を含有する化合物としては、例えば、下記式(6−1)、下記式(6−2)、下記式(6−3)で表されるオキシムスルホネート化合物が挙げられる。
【0172】
前記式(6−1)、前記式(6−2)および前記式(6−3)中、R
11は、上述した式(6)と同義である。前記式(6−1)、前記式(6−2)および前記式(6−3)中、R
15は、炭素数1〜12のアルキル基、炭素数1〜12のフルオロアルキル基である。
式(6−3)中、Xは、アルキル基、アルコキシ基またはハロゲン原子である。mは、0〜3の整数である。但し、Xが複数の場合、複数のXは同一であっても異なっていてもよい。
【0173】
前記式(6−3)のXで表されるアルキル基としては、炭素数1〜4の直鎖状または分岐状のアルキル基が好ましい。上述のXで表されるアルコキシ基としては、炭素数1〜4の直鎖状または分岐状のアルコキシ基が好ましい。上述のXで表されるハロゲン原子としては、塩素原子、フッ素原子が好ましい。mとしては、0または1が好ましい。前記式(6−3)においては、mが1であり、Xがメチル基であり、Xの置換位置がオルト位である化合物が特に好ましい。
【0174】
前記(6−3)で表されるオキシムスルホネート化合物としては、例えば、下記式(6−3−1)〜(6−3−5)で表される化合物等が挙げられる。
【0176】
前記式(6−3−1)〜前記式(6−3−5)で表される化合物は、それぞれ(5−プロピルスルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル、(5−オクチルスルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル、(カンファースルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル、(5−p−トルエンスルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル、(5−オクチルスルフォニルオキシイミノ)−(4−メトキシフェニル)アセトニトリルであり、市販品として入手できる。
【0177】
[オニウム塩]
[C]酸発生剤として好ましいオニウム塩としては、例えば、ジフェニルヨードニウム塩、トリフェニルスルホニウム塩、アルキルスルホニウム塩、ベンジルスルホニウム塩、ジベンジルスルホニウム塩、置換ベンジルスルホニウム塩、ベンゾチアゾニウム塩、テトラヒドロチオフェニウム塩が挙げられる。
【0178】
上述したジフェニルヨードニウム塩としては、例えば、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムヘキサフルオロホスホネート、ジフェニルヨードニウムヘキサフルオロアルセネート、ジフェニルヨードニウムトリフルオロメタンスルホナート、ジフェニルヨードニウムトリフルオロアセテート、ジフェニルヨードニウム−p−トルエンスルホナート、ジフェニルヨードニウムブチルトリス(2,6−ジフルオロフェニル)ボレート、4−メトキシフェニルフェニルヨードニウムテトラフルオロボレート、ビス(4−t−ブチルフェニル)ヨードニウムテトラフルオロボレート、ビス(4−t−ブチルフェニル)ヨードニウムヘキサフルオロアルセネート、ビス(4−t−ブチルフェニル)ヨードニウムトリフルオロメタンスルホナート、ビス(4−t−ブチルフェニル)ヨードニウムトリフルオロアセテート、ビス(4−t−ブチルフェニル)ヨードニウム−p−トルエンスルホナート、ビス(4−t−ブチルフェニル)ヨードニウムカンファースルホン酸が挙げられる。
【0179】
上述したトリフェニルスルホニウム塩としては、例えば、トリフェニルスルホニウムトリフルオロメタンスルホナート、トリフェニルスルホニウムカンファースルホン酸、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムトリフルオロアセテート、トリフェニルスルホニウム−p−トルエンスルホナート、トリフェニルスルホニウムブチルトリス(2、6−ジフルオロフェニル)ボレートが挙げられる。
【0180】
上述のアルキルスルホニウム塩としては、例えば、4−アセトキシフェニルジメチルスルホニウムヘキサフルオロアンチモネート、4−アセトキシフェニルジメチルスルホニウムヘキサフルオロアルセネート、ジメチル−4−(ベンジルオキシカルボニルオキシ)フェニルスルホニウムヘキサフルオロアンチモネート、ジメチル−4−(ベンゾイルオキシ)フェニルスルホニウムヘキサフルオロアンチモネート、ジメチル−4−(ベンゾイルオキシ)フェニルスルホニウムヘキサフルオロアルセネート、ジメチル−3−クロロ−4−アセトキシフェニルスルホニウムヘキサフルオロアンチモネートが挙げられる。
【0181】
上述のベンジルスルホニウム塩としては、例えば、ベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート、4−アセトキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル−4−メトキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル−2−メチル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル−3−クロロ−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアルセネート、4−メトキシベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェートが挙げられる。
【0182】
上述のジベンジルスルホニウム塩としては、例えば、ジベンジル−4−ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート、ジベンジル−4−ヒドロキシフェニルスルホニウムヘキサフルオロホスフェート、4−アセトキシフェニルジベンジルスルホニウムヘキサフルオロアンチモネート、ジベンジル−4−メトキシフェニルスルホニウムヘキサフルオロアンチモネート、ジベンジル−3−クロロ−4−ヒドロキシフェニルスルホニウムヘキサフルオロアルセネート、ジベンジル−3−メチル−4−ヒドロキシ−5−t−ブチルフェニルスルホニウムヘキサフルオロアンチモネート、ベンジル−4−メトキシベンジル−4−ヒドロキシフェニルスルホニウムヘキサフルオロホスフェートが挙げられる。
【0183】
上述の置換ベンジルスルホニウム塩としては、例えば、p−クロロベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、p−ニトロベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、p−クロロベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート、p−ニトロベンジル−3−メチル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、3,5−ジクロロベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、o−クロロベンジル−3−クロロ−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネートが挙げられる。
【0184】
上述したベンゾチアゾニウム塩としては、例えば、3−ベンジルベンゾチアゾニウムヘキサフルオロアンチモネート、3−ベンジルベンゾチアゾニウムヘキサフルオロホスフェート、3−ベンジルベンゾチアゾニウムテトラフルオロボレート、3−(p−メトキシベンジル)ベンゾチアゾニウムヘキサフルオロアンチモネート、3−ベンジル−2−メチルチオベンゾチアゾニウムヘキサフルオロアンチモネート、3−ベンジル−5−クロロベンゾチアゾニウムヘキサフルオロアンチモネートが挙げられる。
【0185】
上述したテトラヒドロチオフェニウム塩としては、例えば、4,7−ジ−n−ブトキシ−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウム−1,1,2,2−テトラフルオロ−2−(ノルボルナン−2−イル)エタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウム−2−(5−t−ブトキシカルボニルオキシビシクロ[2.2.1]ヘプタン−2−イル)−1,1,2,2−テトラフルオロエタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウム−2−(6−t−ブトキシカルボニルオキシビシクロ[2.2.1]ヘプタン−2−イル)−1,1,2,2−テトラフルオロエタンスルホネートが挙げられる。
【0186】
[スルホンイミド化合物]
[C]酸発生剤として好ましいスルホンイミド化合物としては、例えば、N−(トリフルオロメチルスルホニルオキシ)スクシンイミド、N−(カンファスルホニルオキシ)スクシンイミド、N−(4−メチルフェニルスルホニルオキシ)スクシンイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)スクシンイミド、N−(4−フルオロフェニルスルホニルオキシ)スクシンイミド、N−(トリフルオロメチルスルホニルオキシ)フタルイミド、N−(カンファスルホニルオキシ)フタルイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)フタルイミド、N−(2−フルオロフェニルスルホニルオキシ)フタルイミド、N−(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N−(カンファスルホニルオキシ)ジフェニルマレイミド、4−メチルフェニルスルホニルオキシ)ジフェニルマレイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)ジフェニルマレイミド、N−(4−フルオロフェニルスルホニルオキシ)ジフェニルマレイミド、N−(4−フルオロフェニルスルホニルオキシ)ジフェニルマレイミド、N−(フェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(ノナフルオロブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(カンファスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(カンファスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(トリフルオロメチルスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−メチルフェニルスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−フルオロフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−フルオロフェニルスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシイミド、N−(カンファスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシイミド、N−(4−メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシイミド、N−(4−フルオロフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシイミド、N−(トリフルオロメチルスルホニルオキシ)ナフチルジカルボキシイミド、N−(カンファスルホニルオキシ)ナフチルジカルボキシイミド、N−(4−メチルフェニルスルホニルオキシ)ナフチルジカルボキシイミド、N−(フェニルスルホニルオキシ)ナフチルジカルボキシイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)ナフチルジカルボキシイミド、N−(4−フルオロフェニルスルホニルオキシ)ナフチルジカルボキシイミド、N−(ペンタフルオロエチルスルホニルオキシ)ナフチルジカルボキシイミド、N−(ヘプタフルオロプロピルスルホニルオキシ)ナフチルジカルボキシイミド、N−(ノナフルオロブチルスルホニルオキシ)ナフチルジカルボキシイミド、N−(エチルスルホニルオキシ)ナフチルジカルボキシイミド、N−(プロピルスルホニルオキシ)ナフチルジカルボキシイミド、N−(ブチルスルホニルオキシ)ナフチルジカルボキシイミド、N−(ペンチルスルホニルオキシ)ナフチルジカルボキシイミド、N−(ヘキシルスルホニルオキシ)ナフチルジカルボキシイミド、N−(ヘプチルスルホニルオキシ)ナフチルジカルボキシイミド、N−(オクチルスルホニルオキシ)ナフチルジカルボキシイミド、N−(ノニルスルホニルオキシ)ナフチルジカルボキシイミド等が挙げられる
【0187】
[ハロゲン含有化合物]
[C]酸発生剤として好ましいハロゲン含有化合物としては、例えば、ハロアルキル基含有炭化水素化合物、ハロアルキル基含有ヘテロ環状化合物が挙げられる。
【0188】
[ジアゾメタン化合物]
[C]酸発生剤として好ましいジアゾメタン化合物としては、例えば、ビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン、ビス(p−トリルスルホニル)ジアゾメタン、ビス(2,4−キシリルスルホニル)ジアゾメタン、ビス(p−クロロフェニルスルホニル)ジアゾメタン、メチルスルホニル−p−トルエンスルホニルジアゾメタン、シクロヘキシルスルホニル(1,1−ジメチルエチルスルホニル)ジアゾメタン、ビス(1,1−ジメチルエチルスルホニル)ジアゾメタン、フェニルスルホニル(ベンゾイル)ジアゾメタン等が挙げられる。
【0189】
[スルホン化合物]
[C]酸発生剤として好ましいスルホン化合物としては、例えば、β−ケトスルホン化合物、β−スルホニルスルホン化合物、ジアリールジスルホン化合物が挙げられる。
【0190】
[スルホン酸エステル化合物]
[C]酸発生剤として好ましいスルホン酸エステル化合物としては、例えば、アルキルスルホン酸エステル、ハロアルキルスルホン酸エステル、アリールスルホン酸エステル、イミノスルホネートが挙げられる。
【0191】
[カルボン酸エステル化合物]
[C]酸発生剤として好ましいカルボン酸エステル化合物としては、例えば、カルボン酸o−ニトロベンジルエステルが挙げられる。
【0192】
[C]酸発生剤としては、オキシムスルホネート化合物、オニウム塩、スルホン酸エステル化合物が好ましく、オキシムスルホネート化合物がより好ましい。上述したオキシムスルホネート化合物としては、前記式(6−3−1)〜(6−3−5)で表されるオキシムスルホネート基を含む化合物が好ましく、前記式(6−3−5)で表される化合物がより好ましい。
【0193】
また、上述したオニウム塩としては、テトラヒドロチオフェニウム塩、ベンジルスルホニウム塩が好ましく、4,7−ジ−n−ブトキシ−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、ベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェートがより好ましく、4,7−ジ−n−ブトキシ−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネートがさらに好ましい。上述したスルホン酸エステル化合物としては、ハロアルキルスルホン酸エステルが好ましく、N−ヒドロキシナフタルイミド−トリフルオロメタンスルホン酸エステルがより好ましい。[C]酸発生剤を上述の化合物とすることで、本実施形態の感放射線性組成物は感度を向上させることができ、さらに溶解性を向上させることができる。
【0194】
[C]酸発生剤の含有量としては、[A]化合物100質量部に対して、0.1質量部〜10質量部が好ましく、1質量部〜5質量部がより好ましい。[C]酸発生剤の含有量を上述の範囲とすることで、感放射線性組成物の感度を最適化できるため、上述した工程(i)〜(vi)を経ることで高解像度な凹パターンを形成できる。
【0195】
<[D]増感剤>
本発明の実施形態の感放射線性組成物は、[D]増感剤を含有することができる。
【0196】
本発明の実施形態の組成物が、[D]増感剤をさらに含有することで、その組成物の放射線感度をより向上することができる。[D]増感剤は、活性光線または放射線を吸収して電子励起状態となる化合物であることが好ましい。電子励起状態となった[D]増感剤は、[C]酸発生剤と接触して、電子移動、エネルギー移動、発熱等が生じ、これにより[C]酸発生剤は化学変化を起こして分解し酸を生成する。
【0197】
[D]増感剤としては、以下の化合物類に属しており、かつ350nm〜450nmの領域に吸収波長を有する化合物等が挙げられる。
【0198】
[D]増感剤としては、以下の化合物類に属しており、かつ350nm〜450nmの領域に吸収波長を有する化合物等が挙げられる。
【0199】
[D]増感剤としては、例えば、ピレン、ペリレン、トリフェニレン、アントラセン、9,10−ジブトキシアントラセン、9,10−ジエトキシアントラセン,3,7−ジメトキシアントラセン、9,10−ジプロピルオキシアントラセン等の多核芳香族類;
フルオレッセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル等のキサンテン類;
キサントン、チオキサントン、ジメチルチオキサントン、ジエチルチオキサントン、イソプロピルチオキサントン等のキサントン類;
チアカルボシアニン、オキサカルボシアニン等のシアニン類;
メロシアニン、カルボメロシアニン等のメロシアニン類;
ローダシアニン類;
オキソノール類;
チオニン、メチレンブルー、トルイジンブルー等のチアジン類;
アクリジンオレンジ、クロロフラビン、アクリフラビン等のアクリジン類;
アクリドン、10−ブチル−2−クロロアクリドン等のアクリドン類;
アントラキノン等のアントラキノン類;
スクアリウム等のスクアリウム類;
スチリル類;
2−[2−[4−(ジメチルアミノ)フェニル]エテニル]ベンゾオキサゾール等のベーススチリル類;
7−ジエチルアミノ4−メチルクマリン、7−ヒドロキシ4−メチルクマリン、2,3,6,7−テトラヒドロ−9−メチル−1H,5H,11H[l]ベンゾピラノ[6,7,8−ij]キノリジン−11−ノン等のクマリン類等が挙げられる。
【0200】
これらの[D]増感剤のうち、多核芳香族類、アクリドン類、スチリル類、ベーススチリル類、クマリン類、キサントン類が好ましく、キサントン類がより好ましい。キサントン類の中でもジエチルチオキサントンおよびイソプロピルチオキサントンが特に好ましい
【0201】
[D]増感剤は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。[D]増感剤の含有量としては、[A]化合物100質量部に対して、0.1質量部〜8質量部が好ましく、1質量部〜4質量部がより好ましい。[D]増感剤の含有量を上述の範囲とすることで、感放射線性組成物の感度を最適化できるため、前記工程(i)〜(iii)を経ることで高解像度な凹パターンを形成できる。
【0202】
<[E]クエンチャー>
本発明の実施形態の組成物は、上述した[A]酸解離性基を有する化合物、[C]酸発生剤、[D]増感剤のほか、[E]クエンチャーを含有することができる。
【0203】
[E]クエンチャーは、[C]酸発生剤からの酸の拡散を防止する酸拡散抑制材として機能する。[E]クエンチャーとしては、露光により感光し弱酸を発生する光崩壊性塩基を用いることができる。光崩壊性塩基は、露光部においては酸を発生する一方、未露光部ではアニオンによる高い酸捕捉機能が発揮されて、[C]酸発生剤からの酸を補足し、露光部から未露光部拡散する酸を失活させる。すなわち、未露光部のみにおいて酸を失活させるため、保護基の脱離反応のコントラストが向上し、結果として解像性をより向上させることができる。光崩壊性塩基の一例として、露光により分解して酸拡散制御性を失うオニウム塩化合物がある。
【0204】
[E]クエンチャーは、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。
【0205】
[E]クエンチャーの含有量としては、[A]化合物100質量部に対して、0.001質量部〜5質量部が好ましく、0.005質量部〜3質量部がより好ましい。[D]増感剤の含有量を上述の範囲とすることで、感放射線性組成物の反応性を最適化できるため、前記工程(i)〜(iii)を経ることで高解像度な凹パターンを形成できる。
【0206】
<[F]重合性化合物>
感放射線性組成物は、[F]重合性化合物を含有することで、該組成物の硬化を行うことができる。
【0207】
[F]重合性化合物は、エチレン性不飽和結合を有する重合性化合物である。但し、[A]化合物以外の化合物である。
【0208】
このような[F]重合性化合物としては、重合性が良好であり、感放射線性組成物から得られる膜の強度が向上するという観点から、単官能、2官能または3官能以上の(メタ)アクリル酸エステルが好ましい。
【0209】
尚、単官能化合物とは、(メタ)アクリロイル基を1つ有する化合物のことをいい、2官能または3官能以上の化合物とは、それぞれ、(メタ)アクリロイル基を2つまたは3つ以上有する化合物のことをいう。
【0210】
上述した単官能(メタ)アクリル酸エステルとしては、例えば、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、ジエチレングリコールモノエチルエーテルアクリレート、ジエチレングリコールモノエチルエーテルメタクリレート、(2−アクリロイルオキシエチル)(2−ヒドロキシプロピル)フタレート、(2−メタクリロイルオキシエチル)(2−ヒドロキシプロピル)フタレート、ω−カルボキシポリカプロラクトンモノアクリレートが挙げられる。市販品としては、例えば、アロニックス(登録商標)M−101、同M−111、同M−114、同M−5300(以上、東亞合成社);KAYARAD(登録商標)TC−110S、同TC−120S(以上、日本化薬社);ビスコート158、同2311(以上、大阪有機化学工業社)が挙げられる。
【0211】
上述した2官能(メタ)アクリル酸エステルとしては、例えば、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、プロピレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、テトラエチレングリコールジアクリレート、テトラエチレングリコールジメタクリレート、1,6−ヘキサンジオールジアクリレート、1,6−ヘキサンジオールジメタクリレート、1,9−ノナンジオールジアクリレート、1,9−ノナンジオールジメタクリレートが挙げられる。市販品としては、例えば、アロニックス(登録商標)M−210、同M−240、同M−6200(以上、東亞合成社);KAYARAD(登録商標) HDDA、同HX−220、同R−604(以上、日本化薬社);ビスコート260、同312、同335HP(以上、大阪有機化学工業社);ライトアクリレート1,9−NDA(共栄社化学社)が挙げられる。
【0212】
上述した3官能以上の(メタ)アクリル酸エステルとしては、例えば、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物、ジペンタエリスリトールヘキサメタクリレート、エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート、トリ(2−アクリロイルオキシエチル)フォスフェート、トリ(2−メタクリロイルオキシエチル)フォスフェート、コハク酸変性ペンタエリスリトールトリアクリレート、コハク酸変性ジペンタエリスリトールペンタアクリレート、トリス(アクリロキシエチル)イソシアヌレートのほか、直鎖アルキレン基および脂環式構造を有し、かつ2個以上のイソシアネート基を有する化合物と、分子内に1個以上の水酸基とを有し、かつ3個、4個または5個の(メタ)アクリロイルオキシ基を有する化合物と反応させて得られる多官能ウレタンアクリレート系化合物が挙げられる。市販品としては、例えば、アロニックス(登録商標)M−309、同M−315、同M−400、同M−405、同M−450、同M−7100、同M−8030、同M−8060、同TO−1450(以上、東亞合成社);KAYARAD(登録商標) TMPTA、同DPHA、同DPCA−20、同DPCA−30、同DPCA−60、同DPCA−120、同DPEA−12(以上、日本化薬社);ビスコート295、同300、同360、同GPT、同3PA、同400(以上、大阪有機化学工業社);多官能ウレタンアクリレート系化合物を含有する市販品としては、ニューフロンティア(登録商標)R−1150(第一工業製薬社)、KAYARAD(登録商標) DPHA−40H(日本化薬社)等が挙げられる。
【0213】
これらの[F]重合性化合物のうち、ω−カルボキシポリカプロラクトンモノアクリレート、1,9−ノナンジオールジメタクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサアクリレートとジペンタエリスリトールペンタアクリレートとの混合物、エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート、コハク酸変性ペンタエリスリトールトリアクリレート、コハク酸変性ジペンタエリスリトールペンタアクリレート、多官能ウレタンアクリレート系化合物を含有する市販品等が好ましい。中でも、3官能以上の(メタ)アクリル酸エステルが好ましく、ジペンタエリスリトールヘキサアクリレートとジペンタエリスリトールペンタアクリレートとの混合物が特に好ましい。
【0214】
[F]重合性化合物は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。[F]重合性化合物の使用量は、[A]化合物100質量部に対して、1質量部〜300質量部が好ましく、3質量部〜200質量部がより好ましく、5質量部〜100質量部がさらに好ましい。[F]重合性化合物の使用量を上述の範囲内とすることで、感放射線性樹脂組成物から得られる塗膜の高度を高め、耐熱性をより良好とすることができる。
【0215】
<[G]感放射線性重合開始剤>
[G]感放射線性重合開始剤は、放射線の照射を受けて、[F]重合性化合物の重合を促進する化合物である。したがって、感放射線性組成物が[F]重合性化合物を含有する場合、[G]感放射線性重合開始剤を用いることが好ましい。
【0216】
[G]感放射線性重合開始剤としては、O−アシルオキシム化合物、アセトフェノン化合物、ビイミダゾール化合物等を挙げることができる。
【0217】
上述したO−アシルオキシム化合物の具体例としては、エタノン−1−〔9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル〕−1−(O−アセチルオキシム)、1−〔9−エチル−6−ベンゾイル−9.H.−カルバゾール−3−イル〕−オクタン−1−オンオキシム−O−アセテート、1−〔9−エチル−6−(2−メチルベンゾイル)−9.H.−カルバゾール−3−イル〕−エタン−1−オンオキシム−O−ベンゾエート、1−〔9−n−ブチル−6−(2−エチルベンゾイル)−9.H.−カルバゾール−3−イル〕−エタン−1−オンオキシム−O−ベンゾエート、エタノン−1−〔9−エチル−6−(2−メチル−4−テトラヒドロフラニルベンゾイル)−9.H.−カルバゾール−3−イル〕−1−(O−アセチルオキシム)、エタノン−1−〔9−エチル−6−(2−メチル−4−テトラヒドロピラニルベンゾイル)−9.H.−カルバゾール−3−イル〕−1−(O−アセチルオキシム)、エタノン−1−〔9−エチル−6−(2−メチル−5−テトラヒドロフラニルベンゾイル)−9.H.−カルバゾール−3−イル〕−1−(O−アセチルオキシム)、エタノン−1−〔9−エチル−6−{2−メチル−4−(2,2−ジメチル−1,3−ジオキソラニル)メトキシベンゾイル}−9.H.−カルバゾール−3−イル〕−1−(O−アセチルオキシム)、エタノン−1−〔9−エチル−6−(2−メチル−4−テトラヒドロフラニルメトキシベンゾイル)−9.H.−カルバゾール−3−イル〕−1−(O−アセチルオキシム)が挙げられる。これらのO−アシルオキシム化合物は、単独でまたは2種以上を混合して使用することができる。
【0218】
これらのうちで、好ましいO−アシルオキシム化合物としては、エタノン−1−〔9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル〕−1−(O−アセチルオキシム)、エタノン−1−〔9−エチル−6−(2−メチル−4−テトラヒドロフラニルメトキシベンゾイル)−9.H.−カルバゾール−3−イル〕−1−(O−アセチルオキシム)、エタノン−1−〔9−エチル−6−{2−メチル−4−(2,2−ジメチル−1,3−ジオキソラニル)メトキシベンゾイル}−9.H.−カルバゾール−3−イル〕−1−(O−アセチルオキシム)を挙げることができる。
【0219】
上述したアセトフェノン化合物としては、例えば、α−アミノケトン化合物、α−ヒドロキシケトン化合物を挙げることができる。
【0220】
上述のα−アミノケトン化合物の具体例としては、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン、2−ジメチルアミノ−2−(4−メチルベンジル)−1−(4−モルフォリン−4−イル−フェニル)−ブタン−1−オン、2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オンを挙げることができる。
【0221】
上述のα−ヒドロキシケトン化合物の具体例としては、1−フェニル−2−ヒドロキシ−2−メチルプロパン−1−オン、1−(4−i−プロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、1−ヒドロキシシクロヘキシルフェニルケトンを挙げることができる。
【0222】
以上のアセトフェノン化合物は、単独でまたは2種以上を混合して使用することができる。
【0223】
これらのアセトフェノン化合物のうちα−アミノケトン化合物が好ましく、2−ジメチルアミノ−2−(4−メチルベンジル)−1−(4−モルフォリン−4−イル−フェニル)−ブタン−1−オン、2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オンが特に好ましい。
【0224】
上述したビイミダゾール化合物の具体例としては、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラキス(4−エトキシカルボニルフェニル)−1,2’−ビイミダゾール、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラフェニル−1,2’−ビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラフェニル−1,2’−ビイミダゾール、2,2’−ビス(2,4,6−トリクロロフェニル)−4,4’,5,5’−テトラフェニル−1,2’−ビイミダゾールを挙げることができる。これらのビイミダゾール化合物は、単独でまたは2種以上を混合して使用することができる。
【0225】
これらのビイミダゾール化合物のうち、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラフェニル−1,2’−ビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラフェニル−1,2’−ビイミダゾール、2,2’−ビス(2,4,6−トリクロロフェニル)−4,4’,5,5’−テトラフェニル−1,2’−ビイミダゾールが好ましく、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラフェニル−1,2’−ビイミダゾールが特に好ましい。
【0226】
前記感放射線性組成物において、[G]感放射線性重合開始剤としてビイミダゾール化合物を使用する場合、これを増感するために、ジアルキルアミノ基を有する脂肪族または芳香族化合物(以下、「アミノ系増感剤」という。)を添加することができる。
【0227】
このようなアミノ系増感剤としては、例えば、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノンを挙げることができる。これらのアミノ系増感剤のうち、4,4’−ビス(ジエチルアミノ)ベンゾフェノンが特に好ましい。これらのアミノ系増感剤は、単独でまたは2種以上を混合して使用することができる。
【0228】
さらに、ビイミダゾール化合物とアミノ系増感剤とを併用する場合、水素ラジカル供与剤としてチオール化合物を添加することができる。ビイミダゾール化合物は、アミノ系増感剤によって増感されて開裂し、イミダゾールラジカルを発生するが、そのままでは高い重合開始能が発現しない場合がある。しかし、ビイミダゾール化合物とアミノ系増感剤とが共存する系に、チオール化合物を添加することにより、イミダゾールラジカルにチオール化合物から水素ラジカルが供与される。その結果、イミダゾールラジカルが中性のイミダゾールに変換されると共に、重合開始能の高い硫黄ラジカルを有する成分が発生する。このため、前記感放射線性組成物に、ビイミダゾール化合物、アミノ系増感剤およびチオール化合物を添加する場合、低放射線照射量であっても硬度の高い膜を形成することができる。
【0229】
そのようなチオール化合物の具体例としては、2−メルカプトベンゾチアゾール、2−メルカプトベンゾオキサゾール、2−メルカプトベンゾイミダゾール、2−メルカプト−5−メトキシベンゾチアゾール等の芳香族チオール化合物;
3−メルカプトプロピオン酸、3−メルカプトプロピオン酸メチル等の脂肪族モノチオール化合物;
ペンタエリストールテトラ(メルカプトアセテート)、ペンタエリストールテトラ(3−メルカプトプロピオネート)等の2官能以上の脂肪族チオール化合物を挙げることができる。
【0230】
これらのチオール化合物は、単独でまたは2種以上を混合して使用することができる。
【0231】
これらのチオール化合物の中でも、2−メルカプトベンゾチアゾールが特に好ましい。
【0232】
ビイミダゾール化合物とアミノ系増感剤とを併用する場合、アミノ系増感剤の使用量としては、ビイミダゾール化合物100質量部に対して、好ましくは0.1質量部〜50質量部であり、より好ましくは1質量部〜20質量部である。アミノ系増感剤の使用量を上述の範囲内とすることによって、露光時の反応性を向上させることができる。
【0233】
また、ビイミダゾール化合物、アミノ系増感剤およびチオール化合物を併用する場合、チオール化合物の使用量としては、ビイミダゾール化合物100質量部に対して、好ましくは0.1質量部〜50質量部であり、より好ましくは1質量部〜20質量部である。チオール化合物の使用量を上述の範囲内とすることによって、露光時の反応性をより向上させることができる。
【0234】
感放射線性組成物は、[G]感放射線性重合開始剤を含有する場合、O−アシルオキシム化合物およびアセトフェノン化合物からなる群より選択される少なくとも1種を含有することが好ましく、さらにビイミダゾール化合物を含有してもよい。
【0235】
[G]感放射線性重合開始剤は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。
【0236】
[G]感放射線性重合開始剤の使用量は、[A]化合物100質量部に対して、好ましくは0.05質量部〜30質量部、より好ましくは0.1質量部〜15質量部である。[G]感放射線性重合開始剤の使用量を上述の範囲内とすることによって、感放射線性組成物は、低露光量でも、高い放射線感度で塗膜の硬化を行うことができる。
【0237】
<その他の任意成分>
前記感放射線性組成物は、さらに、本発明の効果を損なわない限りその他の任意成分を
含有することができる。
【0238】
その他の任意成分としては、界面活性剤、保存安定剤、接着助剤、耐熱性向上剤等を挙げることができる。
【0239】
その他の任意成分は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。
【0240】
次に、本発明の実施形態の凹パターンを有する基材を用いて、高精細なパターンを形成するのに好適な膜形成材料について説明する。
【0241】
〔膜形成材料〕
前記膜形成材料は特に限定されるものではない。例えば、配線を形成できるような材料であればよく、流動性を持った液状のインク、ペーストであることが好ましい。
【0242】
膜形成材料としては、例えば、導電膜形成インク、導電膜形成ペースト、膜を形成可能な樹脂溶液インク、樹脂溶液ペースト、顔料や染料を含む着色性インク、着色性ペースト、有機半導体溶液や酸化物半導体分散体、有機EL発光体溶液や量子ドット、ナノカーボン導電膜形成インク、カーボンナノチューブや、グラフェン、カーボンブラック等のナノカーボンの機能性インク、導電膜形成ペースト等が挙げられる。
【0243】
これらの中でも、導電膜形成インクおよび導電膜形成ペーストが好ましく、具体的には、金属粒子を分散したインクまたはペースト、金属塩と還元剤とを含むインクまたはペースト、還元雰囲気下による加熱で金属化が可能な金属酸化物粒子を分散したインクまたはペースト、導電性高分子の分散体または溶液、カーボンナノチューブやグラフェン等のナノカーボンを分散したインクまたはペーストが好ましく、特に導電性と塗工性の観点から金属粒子を分散したインクまたはペースト、金属塩と還元剤を含むインクまたはペーストが好ましい。
【0244】
これらのインクまたはペーストは各種の印刷法、塗布法により塗膜の形成が可能であり、またその塗膜は、加熱されて導電性の導通性膜(配線)となる。
【0245】
このようなインクやペーストとしては、粘度(温度:20℃、剪断速度:10sec
−1)が、好ましくは0.001Pa・s〜100Pa・s、より好ましくは0.001Pa・s〜1Pa・sの範囲にある材料が望ましい。
【0246】
尚、上述した工程(iv)において、オフセット印刷、スクリーン印刷等の方法によって膜形成材料を塗布する場合、高粘度領域の材料が適しており、この際の該材料の粘度は、1Pa・s〜50Pa・sが好ましい。特にオフセット印刷の場合、粘度は、10Pa・s〜50Pa・sが好ましい。
【0247】
(金属塩)
前記金属塩は、その金属塩に含まれる金属イオンが前記還元剤により還元されて金属単体となる。そして、形成される配線において、導電性を発現させる役割を果たす。例えば、金属塩が銅塩である場合、銅塩に含まれる銅イオンは還元剤により還元され、銅単体となり、導電性の配線が形成される。
【0248】
前記金属塩としては銅塩、銀塩が好ましい。
【0249】
前記金属塩は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。
【0250】
銅塩としては、銅イオンを含有する化合物であればよく、特に限定するものではないが、例えば、銅イオンと、無機アニオン種および有機アニオン種のうちの少なくとも一方とからなる銅塩が挙げられる。これらの中でも、溶解度の観点から、銅カルボン酸塩、銅の水酸化物、および銅とアセチルアセトン誘導体との錯塩からなる群より選ばれる1種または2種以上を用いることが好ましい。
【0251】
上述した銅カルボン酸塩としては、例えば、マロン酸銅、コハク酸銅、マレイン酸銅等のジカルボン酸との銅塩、安息香酸銅、サリチル酸銅等の芳香族カルボン酸との銅塩、酢酸銅、トリフルオロ酢酸銅、プロピオン酸銅、酪酸銅、イソ酪酸銅、2−メチル酪酸銅、2−エチル酪酸銅、吉草酸銅、イソ吉草酸銅、ピバリン酸銅、ヘキサン酸銅、ヘプタン酸銅、オクタン酸銅、2−エチルヘキサン酸銅、ノナン酸銅、ギ酸銅、ヒドロキシ酢酸銅、グリオキシル酸銅、乳酸銅、シュウ酸銅、酒石酸銅、リンゴ酸銅、クエン酸銅等のモノカルボキシ基を有する有機酸との銅塩が好適な化合物として挙げられる。尚、ギ酸銅は、無水和物でもよく、水和していてもよい。ギ酸銅の水和物としては、四水和物が挙げられる。
【0252】
また、上述した銅とアセチルアセトン誘導体との錯塩としては、例えば、アセチルアセトナト銅、1,1,1−トリメチルアセチルアセトナト銅、1,1,1,5,5,5−ヘキサメチルアセチルアセトナト銅、1,1,1−トリフルオロアセチルアセトナト銅、および1,1,1,5,5,5−ヘキサフルオロアセチルアセトナト銅が好適な化合物として挙げられる。
【0253】
これらの中でも、還元剤または溶剤に対する溶解性や分散性、形成される配線の電気抵抗特性を考慮した場合、酢酸銅、プロピオン酸銅、イソ酪酸銅、吉草酸銅、イソ吉草酸銅、ギ酸銅、ギ酸銅四水和物、グリオキシル酸銅等の銅カルボン酸塩が好ましい。
【0254】
銀塩としては、銀の塩であれば特に限定されない。
【0255】
例えば、硝酸銀、酢酸銀、酸化銀、アセチルアセトン銀、安息香酸銀、臭素酸銀、臭化銀、炭酸銀、塩化銀、クエン酸銀、フッ化銀、ヨウ素酸銀、ヨウ化銀、乳酸銀、亜硝酸銀、過塩素酸銀、リン酸銀、硫酸銀、硫化銀、およびトリフルオロ酢酸銀を挙げることができる。
【0256】
前記金属塩としては、形成される配線において、金属原子のマイグレーションを抑制する観点から、銅塩の使用が好ましい。銅塩の中でも、特に還元性に優れるギ酸銅が好ましい。ギ酸銅としては、無水和物でもよく、ギ酸銅四水和物でもよい。
【0257】
膜形成材料における金属塩の含有量としては、膜形成材料の全量に対して0.01質量%〜50質量%の範囲が好ましく、0.1質量%〜30質量%の範囲がより好ましい。金属塩の含有量を前記範囲とすることによって、安定かつ優れた導電性を有する配線を形成することができる。低抵抗値の配線を得る観点からは、金属塩の含有量は0.01質量%以上であることが好ましい。また、化学的に安定した膜形成材料を得る観点からは、金属塩の含有量が50質量%以下であることが好ましい。
【0258】
(還元剤)
前記膜形成材料は、金属塩に含まれる金属イオンを還元して金属単体とすることを目的として、上述した金属塩とともに、還元剤を含有することが好ましい。還元剤は、用いられる金属塩に含まれる金属イオンに対し還元性を有していれば特に限定するものではない。
【0259】
前記還元剤としては、例えば、チオール基、ニトリル基、アミノ基、ヒドロキシ基およびヒドロキシカルボニル基からなる群より選ばれる1種または2種以上の官能基を有する単分子化合物や、窒素原子、酸素原子および硫黄原子からなる群より選ばれる1種または2種以上のヘテロ原子を分子構造内に有するポリマーが挙げられる。
【0260】
前記単分子化合物としては、例えば、アルカンチオール類、アミン類、ヒドラジン類、モノアルコール類、ジオール類、ヒドロキシアミン類、α−ヒドロキシケトン類およびカルボン酸類が挙げられる。
【0261】
前記ポリマーとしては、例えば、ポリビニルピロリドン、ポリエチレンイミン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアクリルアミド、ポリアクリル酸、カルボキシメチルセルロース、ポリビニルアルコールおよびポリエチレンオキシドが挙げられる。
【0262】
これらの中でも、金属塩の溶解性等を考慮すると、アルカンチオール類およびアミン類からなる群より選ばれる1種以上が好ましい。
【0263】
上述のアルカンチオール類としては、例えば、エタンチオール、n−プロパンチオール、i−プロパンチオール、n−ブタンチオール、i−ブタンチオール、t−ブタンチオール、n−ペンタンチオール、n−ヘキサンチオール、n−ヘプタンチオール、n−オクタンチオール、2−エチルヘキサンチオールが挙げられる。
【0264】
また、上述のアミン類としてはアミン化合物を挙げることができ、例えば、3−(2−エチルヘキシルオキシ)プロピルアミン、エチルアミン、n−プロピルアミン、i−プロピルアミン、n−ブチルアミン、i−ブチルアミン、t−ブチルアミン、n−ペンチルアミン、n−ヘキシルアミン、シクロヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、2−エチルヘキシルアミン、2−エチルヘキシルプロピルアミン、3−エトキシプロピルアミン、n−ノニルアミン、n−デシルアミン、n−ウンデシルアミン、n−ドデシルアミン、n−トリデシルアミン、n−テトラデシルアミン、n−ペンタデシルアミン、n−ヘキサデシルアミン、ベンジルアミン、アミノアセトアルデヒドジエチルアセタール等のモノアミン化合物、エチレンジアミン、N−メチルエチレンジアミン、N,N’−ジメチルエチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N−エチルエチレンジアミン、N,N’−ジエチルエチレンジアミン、1,3−プロパンジアミン、N,N’−ジメチル−1,3−プロパンジアミン、1,4−ブタンジアミン、N,N’−ジメチル−1,4−ブタンジアミン、1,5−ペンタンジアミン、N,N’−ジメチル−1,5−ペンタンジアミン、1,6−ヘキサンジアミン、N,N’−ジメチル−1,6−ヘキサンジアミン、イソホロンジアミン等のジアミン化合物、ジエチレントリアミン、N,N,N’,N’’N’’−ペンタメチルジエチレントリアミン、N−(アミノエチル)ピペラジン、N−(アミノプロピル)ピペラジン等のトリアミン化合物が挙げられる。
【0265】
上述したヒドラジン類としては、例えば、1,1−ジ−n−ブチルヒドラジン、1,1−ジ−t−ブチルヒドラジン、1,1−ジ−n−ペンチルドラジン、1,1−ジ−n−ヘキシルヒドラジン、1,1−ジシクロヘキシルヒドラジン、1,1−ジ−n−ヘプチルヒドラジン、1,1−ジ−n−オクチルヒドラジン、1,1−ジ−(2−エチルヘキシル)ヒドラジン、1,1−ジフェニルヒドラジン、1,1−ジベンジルヒドラジン、1,2−ジ−n−ブチルヒドラジン、1,2−ジ−t−ブチルヒドラジン、1,2−ジ−n−ペンチルドラジン、1,2−ジ−n−ヘキシルヒドラジン、1,2−ジシクロヘキシルヒドラジン、1,2−ジ−n−ヘプチルヒドラジン、1,2−ジ−n−オクチルヒドラジン、1,2−ジ−(2−エチルヘキシル)ヒドラジン、1,2−ジフェニルヒドラジンおよび1,2−ジベンジルヒドラジンが挙げられる。
【0266】
上述したモノアルコール類としては、例えば、メタノール、エタノール、n−プロピアルコール、i−プロピルアルコール、n−ブチルアルコール、i−ブチルアルコール、sec−ブチルアルコール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、シクロヘキサノール、ベンジルアルコール、ターピネオールが挙げられる。
【0267】
上述したジオール類としては、例えば、エチレングリコール、プロピレングリコール、1,2−ブタンジオール、1,2−ペンタンジオール、1,2−ヘキサンジオール、2,3−ブタンジオール、2,3−ペンタンジオール、2,3−ヘキサンジオール、2,3−ヘプタンジオール、3,4−ヘキサンジオール、3,4−ヘプタンジオール、3,4−オクタンジオール、3,4−ノナンジオール、3,4−デカンジオール、4,5−オクタンジオール、4,5−ノナンジオール、4,5−デカンジオール、5,6−デカンジオール、3−N,N−ジメチルアミノ−1,2−プロパンジオール、3−N,N−ジエチルアミノ−1,2−プロパンジオール、3−N,N−ジ−n−プロピルアミノ−1,2−プロパンジオール、3−N,N−ジ−i−プロピルアミノ−1,2−プロパンジオール、3−N,N−ジ−n−ブチルアミノ−1,2−プロパンジオール、3−N,N−ジ−i−ブチルアミノ−1,2−プロパンジオールおよび3−N,N−ジ−t−ブチルアミノ−1,2−プロパンジオールが挙げられる。
【0268】
上述したヒドロキシアミン類としては、例えば、N,N−ジエチルヒドロキシルアミン、N,N−ジ−n−プロピルヒドロキシルアミン、N,N−ジ−n−ブチルヒドロキシルアミン、N,N−ジ−n−ペンチルヒドロキシルアミンおよびN,N−ジ−n−ヘキシルヒドロキシルアミンが挙げられる。
【0269】
上述したα−ヒドロキシケトン類としては、例えば、ヒドロキシアセトン、1−ヒドロキシ−2−ブタノン、3−ヒドロキシ−2−ブタノン、1−ヒドロキシ−2−ペンタノン、3−ヒドロキシ−2−ペンタノン、2−ヒドロキシ−3−ペンタノン、3−ヒドロキシ−2−ヘキサノン、2−ヒドロキシ−3−ヘキサノン、4−ヒドロキシ−3−ヘキサノン、4−ヒドロキシ−3−ヘプタノン、3−ヒドロキシ−4−ヘプタノンおよび5−ヒドロキシ−4−オクタノンが挙げられる。
【0270】
上述したカルボン酸類としては、金属塩に対し還元性を有するものであれば特に限定するものではないが、例えば、ギ酸、ヒドロキシ酢酸、グリオキシル酸、乳酸、シュウ酸、酒石酸、リンゴ酸およびクエン酸が挙げられる。
【0271】
以上の還元剤は、上述の金属塩の種類に応じて、これを還元できるものを1種または2種以上、適宜選択または組み合わせて用いることができる。例えば、金属塩としてギ酸銅を用いる場合、還元剤はアミン化合物が好ましく、2−エチルヘキシルプロピルアミンおよび3−エトキシプロピルアミンがより好ましい。
【0272】
前記膜形成材料における還元剤の含有量としては、膜形成材料の全量に対して、1質量%〜99質量%の範囲が好ましく、10質量%〜90質量%の範囲がより好ましい。還元剤の含有量を1質量%〜99質量%の範囲とすることによって、優れた導電性を有する配線を形成できる。またさらに、10質量%〜90質量%の範囲とすることによって、低い抵抗値を有し、電極との密着性に優れた配線を形成することができる。
【0273】
(金属微粒子)
前記膜形成材料は、金属塩の還元析出速度を向上させる目的、または、膜形成材料の粘度を調節する目的で、金属微粒子を含有することができる。
【0274】
金属微粒子としては、特に限定されるものではないが、該粒子の導電性と安定性の観点からは、例えば、金、銀、銅、白金およびパラジウムからなる群より選ばれる1種または2種以上の金属種を含有する粒子であることが好ましい。これらの金属種は、単体であってもその他の金属との合金であってもよい。これらの金属種が単体である場合、好ましい金属微粒子としては、金微粒子、銀微粒子、銅微粒子、白金微粒子およびパラジウム微粒子からなる群より選択される少なくとも1種または2種以上の組み合わせが挙げられる。
【0275】
前記金属微粒子の中でもコスト面、入手の容易さ、および配線を形成するときの触媒能から、銀、銅およびパラジウムからなる群より選ばれる1種または2種以上の金属種を含有する金属微粒子が好ましい。これら以外の金属微粒子を使用してもよいが、例えば、金属塩に銅塩を用いた場合、銅イオンにより金属微粒子が酸化を受けたり、触媒能が低下して銅塩から金属銅への還元析出速度が低下したりするおそれがあるため、上述した金属微粒子を使用することがより好ましい。
【0276】
前記金属微粒子の平均粒子径は、0.05μm〜5μmの範囲であることが好ましい。金属表面の活性が高くなって酸化反応が生じることを防止する観点、および、金属微粒子同士の凝集を防止する観点から、金属微粒子の粒子径は0.05μm以上が好ましい。また、膜形成材料を長期保存する際に金属微粒子の沈降を防止する観点から、金属微粒子の平均粒子径は5μm以下であることが好ましい。
【0277】
前記平均粒子径の測定方法は以下の通りである。
【0278】
透過型電子顕微鏡(TEM)、電界放射型透過電子顕微鏡(FE−TEM)、電界放射型走査電子顕微鏡(FE−SEM)等の顕微鏡を用いて観測された視野の中から、任意に3箇所選択し、粒径測定に最も適した倍率で撮影する。得られた各々の写真から、任意に粒子を100個選択し、粒子の長軸を透過型電子顕微鏡(TEM)、電界放射型透過電子顕微鏡(FE−TEM)、電界放射型走査電子顕微鏡(FE−SEM)等で測定し、測定倍率を除して粒子径を算出し、これらの値を算術平均することにより求めることができる。また、標準偏差については、上述の観察時に個々の金属微粒子の粒子径と数により求めることができる。
【0279】
前記金属微粒子は市販のものでもよいし、公知の方法により合成したものでもよく、特に限定されない。公知の合成方法としては、例えば、スパッタリング法やガス中蒸着法等の気相法(乾式法)や、金属化合物溶液を表面保護剤の存在下、還元して金属微粒子を析出させる等の液相法(湿式法)が挙げられる。
【0280】
金属微粒子中の金属純度については特に限定するものではないが、低純度であると得られる配線の導電性に悪影響を与えるおそれがあるため、95%以上が好ましく、99%以上がより好ましい。
【0281】
前記膜形成材料における金属微粒子の含有量としては、膜形成材料の全量に対して、0質量%〜60質量%の範囲が好ましく、1質量%〜40質量%がより好ましく、1質量%〜20質量%の範囲が特に好ましい。
【0282】
(溶剤)
前記膜形成材料は、該材料の粘度を調節して配線の生産性を向上させる観点や、低抵抗で均一な配線を得る観点から、溶剤を含有することが好ましい。
【0283】
溶剤としては、膜形成材料中の各成分を溶解または分散することができるものであり、金属塩の還元反応に関与しない有機溶媒が挙げられる。具体的には、エーテル類、エステル類、脂肪族炭化水素類および芳香族炭化水素類からなる群より選ばれる1種または相溶性のある2種以上の混合物が挙げられる。
【0284】
エーテル類、脂肪族炭化水素類および芳香族炭化水素類としては、上述した[B]溶剤として例示した化合物等が挙げられる。
【0285】
エステル類としては、例えば、ギ酸メチル、ギ酸エチル、ギ酸ブチル、γ−ブチロラクトン、その他、[B]溶剤として例示した化合物が挙げられる。
【0286】
これら有機溶剤のうち、特に粘度の調整の容易さの観点から、エーテル類が好ましく、特にヘキシルメチルエーテル、ジエチレングリコールジメチルエーテル等が好ましい。
【0287】
膜形成材料に含有される溶剤の含有量は、膜形成材料の全量に対して0質量%〜95質量%の範囲であることが好ましく、1質量%〜70質量%の範囲であることがより好ましく、10質量%〜50質量%の範囲であることが特に好ましい。
【0288】
膜形成材料は、上述の各成分を混合することで製造することができる。該混合方法としては、特に限定するものではないが、例えば、攪拌羽による攪拌、スターラーおよび攪拌子による攪拌、沸盪器による攪拌、超音波(ホモジナイザー)による攪拌が挙げられる。攪拌条件としては、例えば、攪拌羽による攪拌の場合、攪拌羽の回転速度が、通常1rpm〜4000rpmの範囲、好ましくは100rpm〜2000rpmの範囲である。
【実施例】
【0289】
以下、実施例に基づき本発明を詳述するが、本発明は、この実施例に限定的して解釈されるものではない。
【0290】
[GPC分析]
重合体(A)および重合体(PA)の重量平均分子量(Mw)および分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC、東ソー(株)製、商品名:HLC−8220)法を用いて、テトラヒドロフラン(THF)溶媒の条件下、ポリスチレン換算で測定した。
・測定方法:ゲルパーミエーションクロマトグラフィー(GPC)法
・標準物質:ポリスチレン換算
・装置 :東ソー(株)製、商品名:HLC−8220
・カラム :東ソー(株)製ガードカラムH
XL−H、TSK gel G7000H
XL、TSK gel GMH
XL 2本、TSK gel G2000H
XLを順次連結したもの
・溶媒 :テトラヒドロフラン
・サンプル濃度:0.7質量%
・注入量 :70μL
・流速 :1mL/min
【0291】
[
1H−NMRの測定]
1H−NMRは、核磁気共鳴装置(Bruker製 AVANCEIII AV400N)で25℃、CDCL
3で測定した。
【0292】
本実施例では、上述した本発明の実施形態の[A]酸解離性基を有する化合物の例である重合体(以下、[A]重合体という。)を合成した。
【0293】
<[A]重合体の合成>
[合成例1]
冷却管および撹拌機を備えたフラスコに、ジメチル2,2’−アゾビス(2−メチルプロピオネート)8質量部、2,4−ジフェニル−4−メチル−1−ペンテン2質量部、および、ジエチレングリコールジメチルエーテル200質量部を仕込んだ。引き続きメタクリル酸2−ヒドロキシエチル42質量部、メタクリル酸ベンジル58質量部を仕込み、窒素雰囲気下、緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である重合体(A−1)を含有する溶液を得た(固形分濃度=34.6質量%、Mw=26000、Mw/Mn=2.2)。尚、固形分濃度は共重合体溶液の全質量に占める共重合体質量の割合を意味する。
【0294】
次いで、得られた重合体(A−1)を含む溶液10質量部に、ジエチレングリコールジメチルエーテル13質量部、3,3,4,4,5,5,6,6,7,7,8,8,8−トリデカフルオロ−1−ビニルオキシオクタン4.8質量部を加え、十分に攪拌した後、トリフルオロ酢酸0.27質量部を加え、窒素雰囲気下、80℃で9時間反応させた。続いて反応溶液を室温まで冷却し、ピリジン0.3質量部を加え反応をクエンチした。得られた反応溶液を大過剰のメタノールに滴下することにより再沈殿精製を行い、続いて10質量部のジエチレングリコールジメチルエーテルに溶解させた後、大過剰のヘキサンに滴下することにより再沈殿精製を行い、乾燥後、白色固形状の共重合体として[A]重合体(P−1)が6.8質量部得られた。得られた[A]重合体(P−1)について
1H−NMRを用いて分析を行い、アセタール化が進行していることを確認した(化学シフト:4.80ppm、アセタール基C−H)。
【0295】
[合成例2]
冷却管および撹拌機を備えたフラスコに、ジメチル2,2’−アゾビス(2−メチルプロピオネート)8質量部、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)2質量部、およびプロピレングリコールモノメチルエーテル200質量部を仕込んだ。引き続きメタクリル酸2−ヒドロキシエチル75質量部、メタクリル酸ベンジル25質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である重合体(A−2)を含有する溶液を得た。得られた溶液を大過剰のヘキサンに滴下し、乾燥後、白色固体状の重合体(A−2)を得た(Mw=28000、Mw/Mn=2.3)。
【0296】
次いで重合体(A−2)5質量部をテトラヒドロフラン42gに溶解させ、3,3,4,4,5,5,6,6,7,7,8,8,8−トリデカフルオロ−1−ビニルオキシオクタン12.4質量部を加え、十分に攪拌した後にトリフルオロ酢酸0.66質量部を加え、窒素雰囲気下、80℃で9時間反応させた。続いて反応溶液を室温まで冷却し、ピリジン0.7質量部を加え反応をクエンチした。得られた反応溶液を過剰量のメタノールに滴下することにより再沈殿精製を行い、続いて再度15質量部のジエチレングリコールジメチルエーテルに溶解させた後、ヘキサンに滴下することにより再沈殿精製を行い、白色固形状の共重合体として[A]重合体(P−2)が11.0質量部得られた。得られた[A]重合体(P−2)について
1H−NMRを用いて分析を行い、アセタール化が進行していることを確認した(化学シフト:4.80ppm、アセタール基C−H)。
【0297】
[合成例3]
冷却管および撹拌機を備えたフラスコに、ジメチル2,2’−アゾビス(2−メチルプロピオネート)8質量部、2,4−ジフェニル−4−メチル−1−ペンテン2質量部、およびプロピレングリコールモノメチルエーテル200質量部を仕込んだ。引き続きメタクリル酸30質量部、メタクリル酸ベンジル70質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である重合体(A−3)を含有する溶液を得た。得られた溶液を大過剰のヘキサンに滴下し、乾燥後、白色固体状の重合体(A−3)を得た(Mw=24000、Mw/Mn=2.2)。
【0298】
次いで、重合体(A−3)5質量部をジエチレングリコールジメチルエーテル34質量部に溶かし、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10−ヘプタデカフルオロ−1−ビニルオキシデカン9.4質量部を加え、十分に攪拌した後にパラトルエンスルホン酸ピリジニウム0.09質量部を加え、窒素雰囲気下、80℃で5時間反応させた。続いて反応溶液を室温まで冷却し、ピリジン0.04質量部を加え反応をクエンチした。得られた反応溶液を過剰量のメタノールに滴下することにより再沈殿精製を行い、続いて再度15質量部のジエチレングリコールジメチルエーテルに溶解させた後、ヘキサンに滴下することにより再沈殿精製を行い、白色固形状の共重合体として[A]重合体(P−3)が10.9質量部得られた。得られた[A]重合体(P−3)について
1H−NMRを用いて分析を行い、アセタール化が進行していることを確認した
(化学シフト:5.74ppm、アセタール基C−H)。
【0299】
[合成例4]
冷却管および撹拌機を備えたフラスコに、ジメチル2,2’−アゾビス(2−メチルプロピオネート)8質量部、2,4−ジフェニル−4−メチル−1−ペンテン2質量部、およびプロピレングリコールモノメチルエーテル200質量部を仕込んだ。引き続き2−メタクリロイロキシエチルコハク酸60質量部、メタクリル酸ベンジル40質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である重合体(A−4)を含有する溶液を得た。得られた溶液を大過剰のヘキサンに滴下し、乾燥後、白色固体状の重合体(A−4)を得た(Mw=23400、Mw/Mn=2.2)。
【0300】
次いで、重合体(A−4)5質量部をテトラヒドロフラン20質量部に溶かし、3,3,4,4,5,5,6,6,6−ノナフルオロ−1−ビニルオキシヘキサン3.5gを加え、十分に攪拌した後にパラトルエンスルホン酸ピリジニウム0.06質量部を加え、窒素雰囲気下、60℃で5時間反応させた。続いて反応溶液を室温まで冷却し、ピリジン0.03質量部を加え反応をクエンチした。得られた反応溶液を過剰量のメタノールに滴下することにより再沈殿精製を行い、続いて再度15質量部のテトラヒドロフランに溶解させた後、ヘキサンに滴下することにより再沈殿精製を行い、白色固形状の共重合体として[A]重合体(P−4)が6.0質量部得られた。得られた[A]重合体(P−4)について
1H−NMRを用いて分析を行い、アセタール化が進行していることを確認した(化学シフト:5.74ppm、アセタール基C−H)。
【0301】
[合成例5]
冷却管および撹拌機を備えたフラスコに、ジメチル2,2’−アゾビス(2−メチルプロピオネート)8質量部、2,4−ジフェニル−4−メチル−1−ペンテン2質量部、およびジエチレングリコールジメチルエーテル200質量部を仕込んだ。引き続きヒドロキシフェニルメタクリレート50質量部、メタクリル酸ベンジル50質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である重合体(A−5)を含有する溶液を得た(固形分濃度=34.5質量%、Mw=22000、Mw/Mn=2.1)。
【0302】
次いで、得られた重合体(A−5)を含む溶液10質量部に、ジエチレングリコールジメチルエーテル10.3質量部、ペルフルオロシクロヘキシルメチルビニルエーテル3.6質量部を加え、十分に攪拌した後にトリフルオロ酢酸0.17質量部を加え、窒素雰囲気下、80℃で9時間反応させた。続いて反応溶液を室温まで冷却し、ピリジン0.17質量部を加え反応をクエンチした。得られた反応溶液を過剰量のメタノールに滴下することにより再沈殿精製を行い、続いて再度15質量部のジエチレングリコールジメチルエーテルに溶解させた後、ヘキサンに滴下することにより再沈殿精製を行い、白色固形状の共重合体として[A]重合体(P−5)が5.3質量部得られた。得られた[A]重合体(P−5)について
1H−NMRを用いて分析を行い、アセタール化が進行していることを確認した(化学シフト:5.50ppm、アセタール基C−H)。
【0303】
[合成例6]
冷却管および撹拌機を備えたフラスコに、ジメチル2,2’−アゾビス(2−メチルプロピオネート)8質量部、2,4−ジフェニル−4−メチル−1−ペンテン2質量部、およびジエチレングリコールジメチルエーテル200質量部を仕込んだ。引き続きp−イソプロペニルフェノール40質量部、シクロヘキシルマレイミド50質量部およびメタクリル酸ベンジル10質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である重合体(A−6)を含有する溶液を得た(固形分濃度=34.9質量%、Mw=24000、Mw/Mn=2.1)。
【0304】
次いで、得られた重合体(A−6)を含む溶液10質量部に、ジエチレングリコールジメチルエーテル7.5質量部、ペルフルオロフェニルビニルエーテル2.4gを加え、十分に攪拌した後にトリフルオロ酢酸0.2質量部を加え、窒素雰囲気下、80℃で9時間反応させた。続いて反応溶液を室温まで冷却し、ピリジン0.2質量部を加え反応をクエンチした。得られた反応溶液を過剰量のメタノールに滴下することにより再沈殿精製を行い、続いて再度20質量部のジエチレングリコールジメチルエーテルに溶解させた後、ヘキサンに滴下することにより再沈殿精製を行い、薄黄白色固形状の共重合体として[A]重合体(P−6)が4.7質量部得られた。得られた[A]重合体(P−6)について
1H−NMRを用いて分析を行い、アセタール化が進行していることを確認した(化学シフト:5.50ppm、アセタール基C−H)。
【0305】
[合成例7]
冷却管および撹拌機を備えたフラスコに、ジメチル2,2’−アゾビス(2−メチルプロピオネート)8質量部、2,4−ジフェニル−4−メチル−1−ペンテン2質量部、およびプロピレングリコールモノメチルエーテル200質量部を仕込んだ。引き続きグリセリンモノメタクリレート45質量部、メタクリル酸ベンジル55質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である重合体(A−7)を含有する溶液を得た。得られた溶液を大過剰のヘキサンに滴下し、乾燥後、白色固体状の重合体(A−7)を得た(Mw=21400、Mw/Mn=2.3)。
【0306】
次いで、重合体(A−7)5質量部をテトラヒドロフラン38質量部に溶かし、3,3,4,4,5,5,6,6,7,7,8,8,8−トリデカフルオロ−1−ビニルオキシオクタン11質量部を加え、十分に攪拌した後にトリフルオロ酢酸0.32質量部を加え、窒素雰囲気下、60℃で9時間反応させた。続いて反応溶液を室温まで冷却し、ピリジン0.3質量部を加え反応をクエンチした。得られた反応溶液を過剰量のメタノールに滴下することにより再沈殿精製を行い、続いて再度20質量部のテトラヒドロフランに溶解させた後、ヘキサンに滴下することにより再沈殿精製を行い、白色固形状の共重合体として[A]重合体(P−7)が9.8質量部得られた。得られた[A]重合体(P−7)について
1H−NMRを用いて分析を行い、アセタール化が進行していることを確認した(化学シフト:4.81ppm、アセタール基C−H)。
【0307】
[合成例8]
冷却管および撹拌機を備えたフラスコに、前記で得られた重合体(A−2)5gを加え、テトラヒドロフラン31質量部で溶かし、3,3,4,4,5,5,6,6,7,7,8,8,8−トリデカフルオロ−1−ビニルオキシオクタン6.7質量部および1−ビニルオキシブタン0.7質量部を加え、十分に攪拌した後にトリフルオロ酢酸0.66質量部を加え、窒素雰囲気下、60℃で9時間反応させた。続いて反応溶液を室温まで冷却し、ピリジン0.7質量部を加え反応をクエンチした。得られた反応溶液を過剰量のメタノールに滴下することにより再沈殿精製を行い、続いて再度25質量部のテトラヒドロフランに溶解させた後、ヘキサンに滴下することにより再沈殿精製を行い、白色固形状の共重合体として[A]重合体(P−8)が8.4質量部得られた。得られた[A]重合体(P−8)について
1H−NMRを用いて分析を行い、アセタール化が進行していることを確認した(化学シフト:4.80ppm、アセタール基C−H)。
【0308】
[合成例9]
冷却管および撹拌機を備えたフラスコに、ポリビニルフェノール(マルカリンカーS−4P 丸善石油化学(株))5質量部を加え、テトラヒドロフラン50質量部で溶かし、3,3,4,4,5,5,6,6,7,7,8,8,8−トリデカフルオロ−1−ビニルオキシオクタン16質量部を加え、十分に攪拌した後にトリフルオロ酢酸0.50質量部を加え、窒素雰囲気下、60℃で9時間反応させた。続いて反応溶液を室温まで冷却し、ピリジン0.5質量部を加え反応をクエンチした。得られた反応溶液を過剰量のメタノールに滴下することにより再沈殿精製を行い、続いて再度30質量部のテトラヒドロフランに溶解させた後、ヘキサンに滴下することにより再沈殿精製を行い、白色固形状の共重合体として[A]重合体(P−9)が得られた。得られた[A]重合体(P−9)について
1H−NMRを用いて分析を行い、アセタール化が進行していることを確認した(化学シフト:5.48ppm、アセタール基C−H)。
【0309】
[合成例10]
冷却管および撹拌機を備えたフラスコに、下記式で示されるフェノールノボラック樹脂P−200(荒川化学工業(株)製)5質量部を加え、テトラヒドロフラン60質量部で溶かし、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10−ヘプタデカフルオロ−1−ビニルオキシデカン20質量部を加え、十分に攪拌した後にトリフルオロ酢酸0.50質量部を加え、窒素雰囲気下、60℃で9時間反応させた。続いて反応溶液を室温まで冷却し、ピリジン0.5質量部を加え反応をクエンチした。得られた反応溶液を過剰量のメタノールに滴下することにより再沈殿精製を行い、続いて再度30質量部のテトラヒドロフランに溶解させた後、ヘキサンに滴下することにより再沈殿精製を行い、白色固形状の共重合体として[A]重合体(P−10)が12.1質量部得られた。得られた[A]重合体(P−10)について
1H−NMRを用いて分析を行い、アセタール化が進行していることを確認した(化学シフト:5.49ppm、アセタール基C−H)。
【0310】
【化14】
【0311】
[合成例11]
冷却管および撹拌機を備えたフラスコに、メタクリル酸2−ヒドロキシエチル25質量部、3,3,4,4,5,5,6,6,7,7,8,8,8−トリデカフルオロ−1−ビニルオキシ−オクタン101質量部、トリフルオロ酢酸(TFA)2.0質量部およびテトラヒドロフラン(THF)200質量部を仕込み、窒素雰囲気下、60℃で9時間保持して反応させた。冷却後、反応液にピリジン2.1質量部を加えクエンチした。得られた反応液を水洗、分液し、ロータリーエバポレーターで溶剤を除去し、減圧蒸留により未反応成分を除去することによりアセタール化生成物(M−1)を得た。
【0312】
【化15】
【0313】
冷却管および撹拌機を備えたフラスコに、ジメチル2,2’−アゾビス(2−メチルプロピオネート)8質量部、2,4−ジフェニル−4−メチル−1−ペンテン2質量部、および、ジエチレングリコールジメチルエーテル200質量部を仕込んだ。引き続き前記で得られたアセタール化生成物(M−1)70質量部、メタクリル酸ベンジル30質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である[A]重合体(P−11)を含有する溶液を得た(Mw=23100、Mw/Mn=2.3、
1H−NMR 化学シフト:4.80ppm、アセタール基C−H)。得られた溶液について、固形分濃度は34.8質量%であった。
【0314】
[合成例12]
冷却管および撹拌機を備えたフラスコに、2−メタクリロイロキシエチルコハク酸25g、3,3,4,4,5,5,6,6,7,7,8,8,8−トリデカフルオロ−1−ビニルオキシ−オクタン53質量部、パラトルエンスルホン酸ピリジニウム(PPTSA)1.1質量部およびテトラヒドロフラン(THF)200質量部を仕込み、窒素雰囲気下、60℃で9時間保持して反応させた。冷却後、反応液にピリジン0.5質量部を加えクエンチした。得られた反応液を水洗、分液し、ロータリーエバポレーターで溶剤を除去し、減圧蒸留により未反応成分を除去することによりアセタール化生成物(M−2)を得た。
【0315】
【化16】
【0316】
冷却管および撹拌機を備えたフラスコに、ジメチル2,2’−アゾビス(2−メチルプロピオネート)8質量部、2,4−ジフェニル−4−メチル−1−ペンテン2質量部、および、ジエチレングリコールジメチルエーテル200質量部を仕込んだ。次いで、前記で得られたアセタール化生成物(M−2)75質量部、メタクリル酸ベンジル25質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である[A]重合体(P−12)を含有する溶液を得た(Mw=24100、Mw/Mn=2.3、
1H−NMR 化学シフト:4.80ppm、アセタール基C−H)。得られた溶液の固形分濃度について、34.5質量%であった。
【0317】
[合成例13]
冷却管および撹拌機を備えたフラスコに、ヒドロキシフェニルメタクリレート25質量部、3,3,4,4,5,5,6,6,7,7,8,8,8−トリデカフルオロ−1−ビニルオキシ−オクタン82質量部、トリフルオロ酢酸(TFA)1.6質量部およびテトラヒドロフラン(THF)200質量部を仕込み、窒素雰囲気下、60℃で9時間保持して反応させた。冷却後、反応液にピリジン1.7質量部を加えクエンチした。得られた反応液を水洗、分液し、ロータリーエバポレーターで溶剤を除去し、減圧蒸留により未反応成分を除去することによりアセタール化生成物(M−3)を得た。
【0318】
【化17】
【0319】
冷却管および撹拌機を備えたフラスコに、ジメチル2,2’−アゾビス(2−メチルプロピオネート)8質量部、2,4−ジフェニル−4−メチル−1−ペンテン2質量部、および、ジエチレングリコールジメチルエーテル200質量部を仕込んだ。次いで、前記で得られたアセタール化生成物(M−3)75質量部、メタクリル酸ベンジル25質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である[A]重合体(P−13)を含有する溶液を得た(Mw=21800、Mw/Mn=2.2、
1H−NMR 化学シフト:5.50ppm、アセタール基C−H)。得られた溶液について、固形分濃度は35.1質量%であった。
【0320】
[合成例14]
冷却管および撹拌機を備えたフラスコに、メタクリル酸2−(2−ビニロキシエトキシ)エチル(VEEM、日本触媒社製)25質量部、3,3,4,4,5,5,6,6,7,7,8,8,8−トリデカフルオロオクタノール45質量部、パラトルエンスルホン酸ピリジニウム(PPTSA)1.6gおよびテトラヒドロフラン(THF)200質量部を仕込み、窒素雰囲気下、室温で8時間保持して反応させた。反応終了後、反応液にピリジン0.7質量部を加えクエンチした。得られた反応液を水洗、分液し、ロータリーエバポレーターで溶剤を除去し、減圧蒸留により未反応成分を除去することによりアセタール化生成物(M−4)を得た。
【0321】
【化18】
【0322】
冷却管および撹拌機を備えたフラスコに、ジメチル2,2’−アゾビス(2−メチルプロピオネート)8質量部、2,4−ジフェニル−4−メチル−1−ペンテン2質量部、および、ジエチレングリコールジメチルエーテル200質量部を仕込んだ。次いで、前記で得られたアセタール化生成物(M−4)75質量部、メタクリル酸ベンジル25質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である[A]重合体(P−14)を含有する溶液を得た(Mw=22700、Mw/Mn=2.1、化学シフト:4.80ppm、アセタール基C−H)。得られた溶液について、固形分濃度は34.5質量%であった。
【0323】
<感放射線性組成物の調製>
実施例および比較例で用いた各成分の詳細を以下に示す。
【0324】
<[C]酸発生剤>
C−1:N−ヒドロキシナフタルイミド−トリフルオロメタンスルホン酸エステル
C−2:4,7−ジ−n−ブトキシ−1−ナフチルテトラヒドロチオフェニウム トリフルオロメタンスルホネート
C−3:CGI725 (BASF社製)
【0325】
<[D]増感剤>
D−1:2−イソプロピルチオキサントン
【0326】
<[E]クエンチャー>
E−1:2−フェニルベンゾイミダゾール
E−2:4−(ジメチルアミノ)ピリジン
【0327】
<[F]重合性化合物>
F−1:ジペンタエリスリトールヘキサアクリレート
F−2:1,9−ノナンジオールジアクリレート
【0328】
<[G]感放射線性重合開始剤>
G−1:2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オン(イルガキュア(登録商標)907、BASF社製)
G−2:2−ジメチルアミノ−2−(4−メチルベンジル)−1−(4−モルフォリン−4−イル−フェニル)−ブタン−1−オン(イルガキュア(登録商標)379、BASF社製)
G−3:エタノン−1−〔9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル〕−1−(O−アセチルオキシム)(イルガキュア(登録商標)OXE02、BASF社製)
【0329】
[実施例1〜14および比較例1〜2]
表1に示す種類、含有量の各成分を混合し、界面活性剤としてポリフローNo75(共栄社化学(株)製)0.1質量部を加え、固形分濃度が20質量%となるように、それぞれ[B]溶剤として、ジエチレングリコールジメチルエーテルを加えた後、孔径0.5μmのミリポアフィルタでろ過することにより、各感放射線性組成物を調製した。尚、表1中の「−」は該当する成分を使用しなかったことを表す。
【0330】
尚、実施例11〜14では、合成例11〜14で得られた[A]重合体を含む溶液を固形分100質量部に相当する量を用いた。
【0331】
【表1】
【0332】
<膜評価>
実施例1〜14および比較例1〜2で調製した各感放射線性組成物を用いて膜形成を行い、以下の評価を実施した。結果を表2に示す。
【0333】
[接触角]
無アルカリガラス基板上に、実施例1〜14または比較例1〜2で調製した感放射線性組成物をそれぞれスピンナーで塗布した後、90℃のホットプレート上で2分間プレベークすることにより0.5μm厚の塗膜を形成した。次いで、得られた塗膜に石英マスク(コンタクト)を介して高圧水銀ランプを用い(露光機:大日本科研社製MA−1400)、露光量を250mJ/cm
2として放射線照射を行った。その後、ホットプレートを用い110℃で5分ベークすることにより、露光部(凹部)が親液部となり、露光部分以外(凸部)が撥液部となった、親液部と撥液部とによりパターニングされた膜(以下、「親撥パターニング膜」と称することがある。)を形成した。形成された親撥パターニング膜において、接触角計(協和界面科学社製CA−X)を用い、親液部に相当する露光部の塗膜表面、撥液部に相当する未露光部分の塗膜表面それぞれにおける、水、デカンおよびテトラデカンの接触角を測定し、親撥性能を確認した。尚、表2中、露光部表面における水の接触角を「親液部 水」と示し、未露光部表面における水の接触角を「撥液部 水」と示す。デカンやテトラデカンの接触角についても同様に示す。
【0334】
[凹パターニング性確認]
前記[接触角]と同様の方法で得られた膜に関して、露光部(凹部)と未露光部(凸部)の膜厚を接触式膜厚計(キーエンス製:アルファステップIQ)で測定した。そして、未露光部の膜厚と露光部の膜厚との差を算出し、下記式からの膜厚減少率(%)を算出することにより凹形状形成性を確認した。
【0335】
【0336】
[親撥パターン上でのインク塗布アシスト性能評価]
図6は、実施例で使用した石英マスクを示す図であり、(a)は平面図であり、(b)は断面図である。
【0337】
石英マスクとして、
図6に示すような石英マスク(L/S=50μm/450μm)を用いた以外は、前記[接触角]と同様の方法で親撥パターニング膜を形成し、得られた凹部付近に、自動極小接触角計(協和界面社製MCA−2)を用い、マイクロキャピラリーにてテトラデカンを60plを滴下し、5秒後に滴下部分を滴下方向から(上から)マイクロスコープにて観察した。
【0338】
図7は、良好なパターニングの例を示す拡大写真である。
【0339】
図8は、不良なパターニングの例を示す拡大写真である。
【0340】
その結果、親撥パターンに沿ってテトラデカンがパターニングできれば○、つまり、
図7に示すように、形成された凹ライン(
図7)がテトラデカンの液滴により乱れていない場合を○と評価し、テトラデカンが親撥パターンの凹部以外の場所に存在する場合には×、つまり、
図8に示すように、凹ライン(
図8)がテトラデカンの液滴により乱れた場合を×として評価した。
【0341】
ここで、テトラデカンを滴下してから5秒後の様子を観察したのは、5秒程度の短時間で、液滴がパターニングできないと、該液滴の乾燥により、所望の位置とは異なる位置に液残りが生じる可能性があり、所望の形状の配線が形成できない恐れがあることによる。
【0342】
短時間でパターニングができないときには、乾燥によるインク残りが生じる場合がある。
【0343】
[親撥パターニング膜形成の露光感度評価]
石英マスクとして、
図6の石英マスク(L/S=50μm/450μm)を用い、露光量を50mJ/cm
2、100mJ/cm
2、150mJ/cm
2、200mJ/cm
2、250mJ/cm
2および300mJ/cm
2に変化させた以外は前記[接触角]と同様の方法で親撥パターニング膜を形成し、前記[凹パターニング性確認]と同様の方法で、膜厚減少率を算出した。
【0344】
膜厚減少率は、露光量が大きくなれば、大きくなるが、膜厚減少率が、10%以上になった際の露光量を感度として感度評価を行った。
【0345】
[親撥パターニング膜形成の解像度評価]
石英マスクとして、石英マスク(L/S=10μm/90μm)を用いた以外は、前記[接触角]と同様の方法で親撥パターニング膜を形成し、自動極小接触角計(協和界面社製MCA−2)を用い、凹部付近にマイクロキャピラリーにてテトラデカンを微小量(<10pl)滴下し、滴下方向から(上から)電子顕微鏡(日立社製:走査電子顕微鏡SU3500)観察したところ、テトラデカンが親撥パターンに沿ってパターニングできれば解像度良好(○)とし、テトラデカンが親撥パターンの凹部以外の場所に存在するなどにより、親撥パターンの凹ラインが乱れた場合を解像度不良(×)として評価した。
【0346】
[外観評価]
[接触角]の評価と同様の方法で得られた膜を用い、透明膜が得られていれば良好(○)、目視で膜荒れ、白化等が起こっていれば不良(×)として外観の評価を行った。
【0347】
[密着性評価]
[接触角]の評価と同様の方法で得られた膜を用い、碁盤目剥離試験を実施し、剥離が発生しなければ良好(○)、部分的に剥離が発生すれば一部不良(×)として評価を行った。
【0348】
【表2】
【0349】
表2の結果から実施例1〜実施例14で調製された感放射線性組成物を用いて形成された親撥パターニング膜は、比較例1〜比較例2で調製された感放射線性組成物を用いて形成された比較例の膜と比べ、良好な親撥性能、パターニング性、外観および密着性を有することがわかった。
【0350】
すなわち、実施例1〜実施例14で調製された感放射線性組成物は、比較例1〜比較例2で調製された感放射線性組成物と比べ、形成される膜に対して、良好な親撥性能、パターニング性、外観および密着性を付与できることがわかった。そして、実施例1〜実施例14で調製された感放射線性組成物は、本発明の凹パターンを有する基材の製造方法に好適使用できることがわかった。