【課題を解決するための手段】
【0008】
そこで、本発明者らは、前述の観点から、少なくともTiとAlの複合窒化物または複合炭窒化物(以下、「(Ti,Al)(C,N)」あるいは「(Ti
1−xAl
x)(C
yN
1−y)」で示すことがある)を含む硬質被覆層を化学蒸着で蒸着形成した被覆工具の耐チッピング性、耐摩耗性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。
【0009】
即ち、従来の少なくとも1層の(Ti
1−xAl
x)(C
yN
1−y)層を含み、かつ所定の平均層厚を有する硬質被覆層は、(Ti
1−xAl
x)(C
yN
1−y)層が工具基体に垂直方向に柱状をなして形成されている場合、高い耐摩耗性を有する。その反面、(Ti
1−xAl
x)(C
yN
1−y)層の異方性が高くなるほど(Ti
1−xAl
x)(C
yN
1−y)層の靭性が低下し、その結果、耐チッピング性、耐欠損性が低下し、長期の使用に亘って十分な耐摩耗性を発揮することができず、また、工具寿命も満足できるものであるとはいえなかった。
そこで、本発明者らは、硬質被覆層を構成する(Ti
1−xAl
x)(C
yN
1−y)層について鋭意研究したところ、(Ti
1−xAl
x)(C
yN
1−y)層のNaCl型の面心立方構造を有する結晶粒粒内にTiとAlの周期的な組成変化を形成させるという全く新規な着想により、NaCl型の面心立方構造を有する結晶粒内に歪みを生じさせ、硬さと靭性の双方を高めることに成功し、その結果、硬質被覆層の耐チッピング性、耐欠損性を向上させることができるという新規な知見を見出した。
【0010】
具体的には、硬質被覆層が、化学蒸着法により成膜されたTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti
1−xAl
x)(C
yN
1−y)で表した場合、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、該層について、電子線後方散乱回折装置を用いて該層の縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上の割合を示し、また、前記複合窒化物または複合炭窒化物層について、該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の平均粒子幅Wが0.1〜2.0μm、平均アスペクト比Aが2〜10である柱状組織を有し、さらに、複合窒化物または複合炭窒化物層中の前記NaCl型の面心立方構造を有する個々の結晶粒内に、組成式:(Ti
1−xAl
x)(C
yN
1−y)におけるTiとAlの周期的な組成変化が存在し、周期的に変化するxの極大値の平均と極小値の平均の差Δxが0.03〜0.25であることにより、NaCl型の面心立方構造を有する結晶粒内に歪みを生じさせ、従来の硬質被覆層に比して、(Ti
1−xAl
x)(C
yN
1−y)層の硬さと靭性が高まり、その結果、耐チッピング性、耐欠損性が向上し、長期に亘ってすぐれた耐摩耗性を発揮することを見出した。
【0011】
そして、前述のような構成の(Ti
1−xAl
x)(C
yN
1−y)層は、例えば、工具基体表面において反応ガス組成を周期的に変化させる以下の化学蒸着法によって成膜することができる。
用いる化学蒸着反応装置へは、NH
3とN
2とH
2からなるガス群Aと、TiCl
4、Al(CH
3)
3、AlCl
3、N
2、H
2からなるガス群Bがおのおの別々のガス供給管から反応装置内へ供給され、ガス群Aとガス群Bの反応装置内への供給は、例えば、一定の周期の時間間隔で、その周期よりも短い時間だけガスが流れるように供給し、ガス群Aとガス群Bのガス供給にはガス供給時間よりも短い時間の位相差が生じるようにして、工具基体表面における反応ガス組成を、(イ)ガス群A、(ロ)ガス群Aとガス群Bの混合ガス、(ハ)ガス群Bと時間的に変化させることができる。ちなみに、本発明においては、厳密なガス置換を意図した長時間の排気工程を導入する必要は無い。従って、ガス供給方法としては、例えば、ガス供給口を回転させたり、工具基体を回転させたり、工具基体を往復運動させたりして、工具基体表面における反応ガス組成を、(イ)ガス群Aを主とする混合ガス、(ロ)ガス群Aとガス群Bの混合ガス、(ハ)ガス群Bを主とする混合ガス、と時間的に変化させることでも実現する事が可能である。
工具基体表面に、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、例えば、ガス群AとしてNH
3:3.5〜4.0%、N
2:0〜5%、H
2:55〜60%、ガス群BとしてAlCl
3:0.6〜0.9%、TiCl
4:0.2〜0.3%、Al(CH
3)
3:0〜0.5%、N
2:0.0〜12.0%、H
2:残、反応雰囲気圧力:4.5〜5.0kPa、反応雰囲気温度:700〜900℃、供給周期1〜5秒、1周期当たりのガス供給時間0.15〜0.25秒、ガス供給Aとガス供給Bの位相差0.10〜0.20秒として、所定時間、熱CVD法を行うことにより、所定の目標層厚の(Ti
1−xAl
x)(C
yN
1−y)層を成膜する。
【0012】
前述のようにガス群Aとガス群Bが工具基体表面に到達する時間に差が生じるように供給し、ガス群Aにおける窒素原料ガスとしてNH
3:3.5〜4.0%、N
2:0〜5%、と設定し、ガス群Bにおける金属塩化物原料あるいは炭素原料であるAlCl
3:0.6〜0.9%、TiCl
4:0.2〜0.3%、Al(CH
3)
3:0〜0.5%と設定する事により、結晶粒内に局所的な組成のムラ、転位や点欠陥の導入による結晶格子の局所的な歪みが形成され、なおかつ結晶粒の工具基体表面側と皮膜表面側での{110}配向の度合いを変化させることが出来る。その結果、耐摩耗性を維持しつつ靭性が飛躍的に向上することを見出した。その結果、特に、耐欠損性、耐チッピング性が向上し、切れ刃に断続的・衝撃的負荷が作用する合金鋼等の高速断続切削加工に用いた場合においても、硬質被覆層が、長期の使用に亘ってすぐれた切削性能を発揮し得ることを見出した。
【0013】
本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
(a)前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti
1−xAl
x)(C
yN
1−y)で表した場合、前記複合窒化物または複合炭窒化物層のAlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、
(b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)また、前記複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の結晶方位を、前記複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上の割合を示し、
(d)前記複合窒化物または複合炭窒化物層について、該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の平均粒子幅Wが0.1〜2.0μm、平均アスペクト比Aが2〜10である柱状組織を有し、
(e)また、前記複合窒化物または複合炭窒化物層中の前記NaCl型の面心立方構造を有する個々の結晶粒内に、組成式:(Ti
1−xAl
x)(C
yN
1−y)におけるTiとAlの周期的な組成変化が存在し、工具基体表面の法線方向に沿った周期が4〜150nmであり、周期的に変化するxの極大値の平均と極小値の平均の差Δxが0.03〜0.25であることを特徴とする表面被覆切削工具。
(2) 前記複合窒化物または複合炭窒化物層中のTiとAlの周期的な組成変化が存在するNaCl型の面心立方構造を有する結晶粒において、TiとAlの周期的な組成変化が該結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位に沿った周期が3〜100nmであり、その方位に直交する面内でのAlのTiとAlの合量に占める含有割合XOの変化は0.01以下であること特徴とする(1)に記載の表面被覆切削工具。
(3) 前記複合窒化物または複合炭窒化物層について、X線回折からNaCl型の面心立方構造を有する結晶粒の格子定数aを求め、前記NaCl型の面心立方構造を有する結晶粒の格子定数aが、立方晶TiNの格子定数a
TiNと立方晶AlNの格子定数a
AlNに対して、0.05a
TiN+0.95a
AlN≦a≦0.4a
TiN+0.6a
AlNの関係を満たすことを特徴とする(1)または(2)に記載の表面被覆切削工具。
(4) 前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の単相からなることを特徴とする(1)乃至(3)のいずれかに記載の表面被覆切削工具。
(5) 前記複合窒化物または複合炭窒化物層について、該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒からなる柱状組織の粒界部に、六方晶構造を有する微粒結晶粒が存在し、該微粒結晶粒の存在する面積割合が30面積%以下であり、該微粒結晶粒の平均粒径Rが0.01〜0.3μmであることを特徴とする(1)乃至(3)のいずれかに記載の表面被覆切削工具。
(6) 前記工具基体と前記TiとAlの複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20μmの合計平均層厚を有する下部層が存在することを特徴とする(1)乃至(5)のいずれかに記載の表面被覆切削工具。
(7) 前記複合窒化物または複合炭窒化物層の上部に、少なくとも1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする(1)乃至(6)のいずれかに記載の表面被覆切削工具。
(8) 前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする(1)乃至(7)のいずれかに記載の表面被覆切削工具。」
に特徴を有するものである。
【0014】
本発明について、以下に詳細に説明する。
【0015】
硬質被覆層を構成する複合窒化物または複合炭窒化物層の平均層厚:
本発明の硬質被覆層は、化学蒸着された組成式:(Ti
1−xAl
x)(C
yN
1−y)で表されるTiとAlの複合窒化物または複合炭窒化物層を少なくとも含む。この複合窒化物または複合炭窒化物層は、硬さが高く、すぐれた耐摩耗性を有するが、特に平均層厚が1〜20μmのとき、その効果が際立って発揮される。その理由は、平均層厚が1μm未満では、層厚が薄いため長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmを越えると、TiとAlの複合窒化物または複合炭窒化物層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。したがって、その平均層厚を1〜20μmと定めた。
なお、前記複合窒化物または複合炭窒化物層は、立方晶と六方晶の混相であっても構わないが、NaCl型の面心立方構造を有する結晶粒の占める面積割合が70面積%を下回ると硬さが低下してくることから、NaCl型の面心立方構造を有する結晶粒の占める面積割合が70面積%以上であることが好ましく、さらに、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の単相からなることにより、特に優れた耐摩耗性を発揮する。
【0016】
硬質被覆層を構成する複合窒化物または複合炭窒化物層の組成:
本発明の硬質被覆層を構成する複合窒化物または複合炭窒化物層は、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足するように制御する。
その理由は、Alの平均含有割合Xavgが0.60未満であると、TiとAlの複合窒化物または複合炭窒化物層は硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、Alの平均含有割合Xavgが0.95を超えると、相対的にTiの含有割合が減少するため、脆化を招き、耐チッピング性が低下する。したがって、Alの平均含有割合Xavgは、0.60≦Xavg≦0.95と定めた。
また、複合窒化物または複合炭窒化物層に含まれるC成分の平均含有割合Yavgは、0≦Yavg≦0.005の範囲の微量であるとき、複合窒化物または複合炭窒化物層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として複合窒化物または複合炭窒化物層の耐欠損性および耐チッピング性が向上する。一方、C成分の平均含有割合Yavgが0≦Yavg≦0.005の範囲を逸脱すると、複合窒化物または複合炭窒化物層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下するため好ましくない。したがって、Cの平均含有割合Yavgは、0≦Yavg≦0.005と定めた。
【0017】
TiとAlの複合窒化物または複合炭窒化物層((Ti
1−xAl
x)(C
yN
1−y)層)内のNaCl型の面心立方構造を有する個々の結晶粒の結晶面である{110}面についての傾斜角度数分布:
本発明の前記(Ti
1−xAl
x)(C
yN
1−y)層について、電子線後方散乱回折装置を用いてNaCl型の面心立方構造を有する個々の結晶粒の結晶方位を、その縦断面方向から解析した場合、工具基体表面の法線(断面研磨面における工具基体表面と垂直な方向)に対する前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、その傾斜角のうち、法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の35%以上の割合となる傾斜角度数分布形態を示す場合に、前記TiとAlの複合窒化物または複合炭窒化物層からなる硬質被覆層は、NaCl型の面心立方構造を維持したままで高硬度を有し、しかも、前述したような傾斜角度数分布形態によって硬質被覆層と基体との密着性が飛躍的に向上する。
したがって、このような被覆工具は、例えば、合金鋼の高速断続切削等に用いた場合であっても、チッピング、欠損、剥離等の発生が抑えられ、しかも、すぐれた耐摩耗性を発揮する。
【0018】
複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造を有する結晶粒の平均粒子幅W、平均アスペクト比A:
複合窒化物または複合炭窒化物層中のNaCl型の面心立方構造を有する結晶粒について、工具基体表面と平行な方向の粒子幅をw、また、工具基体表面に垂直な方向の粒子長さをlとし、前記wとlとの比l/wを各結晶粒のアスペクト比aとし、さらに、個々の結晶粒について求めたアスペクト比aの平均値を平均アスペクト比A、個々の結晶粒について求めた粒子幅wの平均値を平均粒子幅Wとした場合、本発明では、平均粒子幅Wが0.1〜2.0μm、平均アスペクト比Aが2〜10を満足するように制御する。
この条件を満たすとき、複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造を有する結晶粒は柱状組織となり、すぐれた耐摩耗性を示す。一方、平均アスペクト比Aが2を下回ると、NaCl型の面心立方構造の結晶粒内に本発明の特徴である組成の周期的な分布を形成しにくくなり、10を上回るとクラックの進展を抑制し難くなる。また、平均粒子幅Wが0.1μm未満であると耐摩耗性が低下し、2.0μmを超えると靭性が低下する。したがって、複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造の結晶粒の平均粒子幅Wは、0.1〜2.0μmと定めた。
【0019】
NaCl型の面心立方構造を有する結晶粒内に存在するTiとAlの組成変化:
さらに、NaCl型の面心立方構造を有する結晶を組成式:(Ti
1−xAl
x)(C
yN
1−y)で表した場合、結晶粒内にTiとAlの周期的な組成変化が存在し、その法線方向に沿った周期が4〜150nmであるとき、結晶粒に歪みが生じ、硬さが向上する。しかしながら、TiとAlの組成変化の大きさの指標である前記組成式におけるxの極大値の平均と極小値の平均の差Δxが0.03より小さいと前述した結晶粒の歪みが小さく十分な硬さの向上が見込めない。一方、xの極大値の平均と極小値の平均の差Δxが0.25を超えると結晶粒の歪みが大きくなり過ぎ、格子欠陥が大きくなり、硬さが低下する。そこで、NaCl型の面心立方構造を有する結晶粒内に存在するTiとAlの組成変化は、周期的に変化するxの極大値の平均と極小値の平均の差Δxを0.03〜0.25とした。
さらに、その法線方向に沿った周期が4nm未満の場合は、複数の組成変化層を伝播するクラックを抑制する事が出来ず、靭性が低下する。一方、150nmを超えると結晶粒に歪みが十分に生じず、硬さの向上効果が見込めない。
また、TiとAlの周期的な組成変化は、NaCl型の面心立方構造を有する結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在することが好ましい。しかしながら、その周期が3nm未満であると靭性が低下する。一方、100nmを超えると硬さの向上効果が見込めない。したがって、立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在する周期は、3〜100nmであることが好ましい。また、その方位に直交する面内でのAlのTiとAlの合量に占める含有割合XOの変化は0.01以下となることにより、{110}面と角度をなす{001}面内の転位のすべり運動を誘発して靭性が向上する。
【0020】
複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造を有する結晶粒の格子定数a:
前記複合窒化物または複合炭窒化物層について、X線回折装置を用い、Cu−Kα線を線源としてX線回折試験を実施し、NaCl型の面心立方構造の結晶粒の格子定数aを求めたとき、前記結晶粒の格子定数aが、立方晶TiN(JCPDS00−038−1420)の格子定数a
TiN:4.24173Åと立方晶AlN(JCPDS00−046−1200)の格子定数a
AlN:4.045Åに対して、0.05a
TiN+0.95a
AlN ≦a ≦ 0.4a
TiN + 0.6a
AlNの関係を満たすとき、より高い硬さを示し、かつ高い熱伝導性を示すことで、すぐれた耐摩耗性に加えて、すぐれた耐熱衝撃性を備える。
【0021】
複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒からなる柱状組織の粒界部に存在する微粒結晶粒と該微粒結晶粒の存在する面積割合および平均粒径R:
NaCl型の面心立方構造を有する個々の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒が存在することにより、粒界滑りが抑制され、靭性が向上する。しかしながら、その面積割合が30面積%を超えると相対的にNaCl型の面心立方構造の結晶相の割合が減少するため硬さが低下し好ましくない。また、微粒結晶粒の平均粒径Rが0.01μm未満であると粒界滑りを抑制する効果が十分でなく、一方、0.3μmを超えると柱状組織内の歪みが大きくなり硬さが低下するため好ましくない。
【0022】
下部層および上部層:
また、本発明の複合窒化物または複合炭窒化物層は、それだけでも十分な効果を奏するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20μmの合計平均層厚を有する下部層を設けた場合、および/または、1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層を設けた場合には、これらの層が奏する効果と相俟って、一層すぐれた特性を創出することができる。Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計平均層厚が1μm未満では、上部層の効果が十分に奏されず、一方、25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。