特許第6297135号(P6297135)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 学校法人 関西大学の特許一覧

特許6297135銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法
<>
  • 特許6297135-銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法 図000011
  • 特許6297135-銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法 図000012
  • 特許6297135-銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法 図000013
  • 特許6297135-銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法 図000014
  • 特許6297135-銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法 図000015
  • 特許6297135-銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法 図000016
  • 特許6297135-銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法 図000017
  • 特許6297135-銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法 図000018
  • 特許6297135-銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法 図000019
  • 特許6297135-銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法 図000020
  • 特許6297135-銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法 図000021
  • 特許6297135-銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法 図000022
  • 特許6297135-銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法 図000023
  • 特許6297135-銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法 図000024
  • 特許6297135-銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法 図000025
  • 特許6297135-銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法 図000026
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6297135
(24)【登録日】2018年3月2日
(45)【発行日】2018年3月20日
(54)【発明の名称】銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法
(51)【国際特許分類】
   B22F 1/00 20060101AFI20180312BHJP
   B22F 1/02 20060101ALI20180312BHJP
   B22F 9/24 20060101ALI20180312BHJP
   H01B 1/00 20060101ALI20180312BHJP
   H01B 5/00 20060101ALI20180312BHJP
   H01B 1/22 20060101ALI20180312BHJP
   H01B 13/00 20060101ALI20180312BHJP
   B82Y 30/00 20110101ALI20180312BHJP
   B82Y 40/00 20110101ALI20180312BHJP
【FI】
   B22F1/00 LZNM
   B22F1/02 B
   B22F9/24 B
   H01B1/00 M
   H01B5/00 M
   H01B1/22 A
   H01B13/00 501Z
   B82Y30/00
   B82Y40/00
【請求項の数】12
【全頁数】27
(21)【出願番号】特願2016-505139(P2016-505139)
(86)(22)【出願日】2015年2月12日
(86)【国際出願番号】JP2015053833
(87)【国際公開番号】WO2015129466
(87)【国際公開日】20150903
【審査請求日】2017年1月24日
(31)【優先権主張番号】特願2014-37204(P2014-37204)
(32)【優先日】2014年2月27日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】399030060
【氏名又は名称】学校法人 関西大学
(74)【代理人】
【識別番号】110000796
【氏名又は名称】特許業務法人三枝国際特許事務所
(72)【発明者】
【氏名】川▲崎▼ 英也
(72)【発明者】
【氏名】荒川 隆一
(72)【発明者】
【氏名】穂北 祐樹
【審査官】 米田 健志
(56)【参考文献】
【文献】 国際公開第2013/035366(WO,A1)
【文献】 国際公開第2012/147945(WO,A1)
【文献】 特開2013-007076(JP,A)
【文献】 国際公開第2009/090748(WO,A1)
【文献】 国際公開第2009/090767(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B22F 1/02
(57)【特許請求の範囲】
【請求項1】
銅の単結晶からなる中心部と、その周囲の保護層とから形成された銅ナノ粒子であって、
(1)前記銅ナノ粒子の平均粒子径が10nm以下であり、
(2)前記保護層が、炭素数3〜6の1級アルコール、炭素数3〜6の2級アルコール及びそれらの誘導体から選択される少なくとも1種を含み、
(3)前記保護層の沸点又は熱分解温度が150℃以下であり、
前記炭素数3〜6の1級アルコール、炭素数3〜6の2級アルコール及びそれらの誘導体から選択される少なくとも1種は、下記式(1)又は(2)で示される基を有する、
ことを特徴とする銅ナノ粒子。
【化1】
(式(1)及び(2)中、*は結合手を示す。)
【請求項2】
粒度分布に基づく標準偏差が銅ナノ粒子の平均粒子径の20%以下である、請求項1に記載の銅ナノ粒子。
【請求項3】
前記保護層の、前記銅ナノ粒子中の質量比は、前記銅ナノ粒子の質量を100質量%として10〜30質量%である、請求項1又は2に記載の銅ナノ粒子。
【請求項5】
請求項1〜3のいずれかに記載の銅ナノ粒子の保存方法であって、
(1)前記銅ナノ粒子が分散した溶液中の銅ナノ粒子を沈殿させる工程1、及び
(2)前記銅ナノ粒子が沈殿した溶液に炭素数4〜14のアルカン溶媒を添加する工程2を有することを特徴とする銅ナノ粒子の保存方法。
【請求項6】
保存温度が10℃以上である、請求項5に記載の保存方法。
【請求項7】
請求項1〜3のいずれかに記載の銅ナノ粒子が分散媒中に分散されている銅ナノ粒子分散液。
【請求項8】
請求項1〜3のいずれかに記載の銅ナノ粒子、及び、銅微粒子が分散媒中に分散されている銅ナノ粒子分散液。
【請求項9】
前記銅微粒子の平均粒子径は、1〜200μmである、請求項8に記載の銅ナノ粒子分散液。
【請求項10】
前記銅ナノ粒子の質量(Ma)と、前記銅微粒子の質量(Mb)との合計(Ma+Mb)に対する前記銅ナノ粒子の質量(Ma)の割合が、2質量%以上である、請求項8又は9に記載の銅ナノ粒子分散液。
【請求項11】
請求項7〜10のいずれかに記載の銅ナノ粒子分散液を含有する、銅ナノインク。
【請求項12】
請求項1〜3のいずれかに記載の銅ナノ粒子を、非還元性雰囲気中で、常圧又は減圧下で、150℃以下の温度で焼結させる、銅ナノ粒子の焼結方法。
【請求項13】
銅の単結晶からなる中心部と、その周囲の保護層とから形成される銅ナノ粒子の製造方法であって、
(I)酢酸銅と、炭素数3〜6の1級アルコール、炭素数3〜6の2級アルコール及びそれらの誘導体から選択される少なくとも1種とが、炭素数2〜4のジオールに溶解した溶液を調製する工程I、及び
(II)前記溶液を、大気圧下で100℃以下でヒドラジン還元する工程IIを有し、
前記銅ナノ粒子の平均粒子径が10nm以下であり、且つ、前記保護層の沸点又は熱分解温度が150℃以下である、
銅ナノ粒子の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、低温焼結可能な銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、及び銅ナノインクに関し、分散安定性が高い単分散の、ナノサイズの銅ナノ粒子を保存する方法に関し、上記銅ナノ粒子の焼結方法に関する。
【背景技術】
【0002】
直径2nm〜100nm程度までサイズの金属ナノ微粒子は、光特性、磁気特性、熱特性、及び電気特性等において、バルク金属とは異なった性質を示すことから、各種の技術分野への応用が期待されている。例えば、粒子サイズが小さくなると表面積が増加して融点の低下が起こるという特性を利用し、金属ナノ微粒子を含む微細配線印刷用インクを用いて、基板上に金属微細配線からなる電子回路を作製する研究が進められている。
【0003】
このような微細配線印刷用インクは、有機物で表面を保護した金属ナノ微粒子を含む分散液をインク材料とし、微細配線印刷技術を用いて基板の上に回路パターンを印刷し、低温加熱することにより、金属ナノ微粒子表面から有機物が除去されて金属ナノ微粒子間で金属接合を生じる。特に、直径10nm以下の金属ナノ微粒子を用いると、融点の低下が顕著である。これにより、熱伝導性及び電気伝導性が高い金属微細配線を形成することができる。
【0004】
微細配線印刷用インク材料として、主に銀ナノ粒子が用いられている(特許文献1参照)。しかしながら、特許文献1に記載の銀ナノ粒子を用いると、微細配線中の銀が酸化することでイオン化し、基板の絶縁物上を移動して短絡を誘導する、いわゆるマイグレーション現象を生じ易い。また、金を用いることも検討されており、金はマイグレーション現象を生じ難い点で望ましいが、高価であるという問題がある。そのため、微細配線印刷用インク材料に用いる金属としては、銀よりもマイグレーション現象を生じ難く、比較的低コストである銅が注目されている。
【0005】
従来から金属配線として用いられるバルク銅は、酸化され易く導電率が低下すること、焼成温度が高いこと等の欠点を有する。これに対して、銅ナノ粒子はバルク銅よりも焼結温度が低く、熱に弱い紙やプラスチック等の基板上にも金属微細配線を形成できる材料として期待されている。
【0006】
しかしながら、銅ナノ粒子は、金、銀等の他の金属ナノ微粒子と比較して凝集し易く、数十nm〜数百nmの凝集粒子径を有するため、インク材料として特に有用な平均粒子径が10nm以下の単分散の銅ナノ粒子の合成は困難である。例えば、非特許文献1ではエチレングリコール溶媒中で銅成分を2時間環流することにより、粒径が50nm付近の結晶性の銅ナノ粒子が得られることが記載されている。また、非特許文献2では銅化合物とニッケル化合物と塩基とをエチレングリコールに溶解した溶液を、ヒーターを用いて沸点まで急速加熱することにより、粒径が数百nmの銅−ニッケル複合粒子が得られることが記載されている。特に、銅化合物及びニッケル化合物の水和水が含まれる状態では、約165℃の沸点付近で粒径が数百nmの銅ナノ粒子が得られることが記載されている。
【0007】
熱に弱い紙やプラスチック等の基板上にも金属微細配線を形成できるナノインク材料として、融点降下が著しい平均粒子径10nm以下の銅ナノ粒子が望まれるが、このような温度域で低温焼結可能な銅ナノ粒子は実現していない。これは、平均粒子径10nm以下の銅ナノ粒子は、反応性が高いために不安定であり、銅ナノ粒子の酸化や凝集が容易に起こるためである。銅ナノ粒子を得た直後であっても銅ナノ粒子を安定に保存することは困難である。そのため、平均粒子径10nmの極微小サイズの銅ナノ粒子は、銅表面と強く結合する高分子などを保護剤に用いて製造される。しかしながら、当該保護剤は、低温加熱時に完全に除去できず、金属微細配線の電気伝導性の低下につながるという問題がある。
【0008】
平均粒子径が微小な銅ナノ粒子を製造する方法として、有機酸金属塩とアミン化合物を含む溶液に還元剤を作用させることにより金属ナノ粒子を得ることを特徴とする金属ナノ 粒子の製造方法(特許文献2参照)が開示されている。また、有機酸銅塩と炭素数8〜16のモノアミンとからなる溶液に還元剤を作用させて銅ナノ粒子を製造する方法(特許文献3参照)が開示されている。特許文献2では約5nmの銅ナノ粒子の製造方法が開示されており、特許文献3では、平均粒子径が10nm以下であって、粒子径分布の揃った銅ナノ粒子の製造方法が開示されている。
【0009】
しかしながら、特許文献2及び3で示されている炭素数8以上のアミンは、低温加熱時の分解除去が困難であり、例えば、150℃以下で銅ナノ粒子表面の有機アミン保護層を除くことができない。実際に、特許文献2及び3では、炭素数8以上の有機アミン保護層からなる銅ナノ粒子を製造しており、これらの銅ナノ粒子が150℃以下で低温焼結が起こること、及び銅ナノ粒子のアミン保護層が除去できることは開示されていない。このため、150℃以下の低温焼結でも、銅ナノ粒子表面からアミン保護層が除去できる短鎖アミンからなる保護層が望まれるが、このような短鎖アミンでは、保護力が弱いために、銅ナノ粒子の粗大化、凝集、酸化が生じ易く、平均粒子径が6nm以下の安定な銅ナノ粒子を得ることができないという問題がある。
【0010】
また、平均粒子径が10nm以下の銅ナノ粒子は表面積が大きく容易に酸化するが、特許文献2及び3では、電子顕微鏡による平均粒子径が10nm以下の銅ナノ粒子が開示されているのみであり、また、特許文献2及び3には得られた銅ナノ粒子が酸化していないことを示すデータは提示されていない。
【0011】
また、保護剤により被覆されている銅ナノ粒子又は銅酸化物ナノ粒子を溶剤に分散してなるナノ粒子分散体を10℃以下で保存することを特徴とするナノ粒子分散体の保存方法が記載されている(特許文献4参照)。特許文献4の[0015]には、保護剤の被覆量が銅ナノ粒子又は銅酸化物ナノ粒子100質量部に対して、30質量部以上150質量部以下であることが記載されている。しかし、簡便性や輸送面の利便性の観点から、室温(10℃以上)で保存・輸送でき、銅ナノ粒子を長期保存できる方法が望まれている。
【0012】
以上の観点から、低温焼結可能な導電性銅インク材料に用いる銅ナノ粒子として、(1)融点降下が著しい平均粒子径10nm以下の分散性の高い銅ナノ粒子であること、(2)銅ナノ粒子の保護層が150℃以下での低温焼結時に除去できること、(3)銅ナノ粒子の酸化が抑制されていること、が望まれる。加えて、工業化に向けた製造スケールアップ及び低コストの点で、(4)銅ナノ粒子を室温で長期間安定に保存でき、輸送できることが望まれている。しかしながら、このような要件を満たす銅ナノ粒子、銅ナノ粒子分散液、銅ナノインク及び銅ナノ粒子の保存方法は未だ得られていない。
【先行技術文献】
【特許文献】
【0013】
【特許文献1】特開2009−227736号公報
【特許文献2】特開2007−321216号公報
【特許文献3】特開2007−84879号公報
【特許文献4】特開2007−197756号公報
【非特許文献】
【0014】
【非特許文献1】J Phys Chem C, Vol.115 No.6 Page.2656-2664 (2011.02.17)
【非特許文献2】Chem Mater, Vol.22 No.7 Page.2175-2177 (2010.04.13)
【発明の概要】
【発明が解決しようとする課題】
【0015】
本発明は、銅の酸化が抑制されており、平均粒子径が10nmであるため融点降下が著しく、且つ分散性が高く、低温焼結可能であり、且つ保護層を150℃以下での低温焼結時に除去することができ、導電性銅ナノインク材料に好適に用いることができる銅ナノ粒子、当該銅ナノ粒子が分散されている銅ナノ粒子分散液、及び当該銅ナノ粒子分散液を含有する銅ナノインクを提供することを目的とする。
【0016】
本発明は、また、銅ナノ粒子を室温で長期間安定に保存でき、輸送できる銅ナノ粒子の保存方法を提供することを目的とする。
【0017】
本発明は、更に、上記銅ナノ粒子の焼結方法を提供することを目的とする。
【課題を解決するための手段】
【0018】
本発明者等は、鋭意研究を重ねた結果、銅の単結晶からなる中心部と、その周囲の保護層とから形成された銅ナノ粒子において、銅ナノ粒子の平均粒子径を特定の範囲とし、上記保護層が、炭素数3〜6の1級アルコール、炭素数3〜6の2級アルコール及びそれらの誘導体から選択される少なくとも1種を含む銅ナノ粒子とすることにより、上記目的を達成できることを見出し、本発明を完成するに至った。
【0019】
即ち、本発明は、下記の銅ナノ粒子、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法、及び、銅ナノ粒子の焼結方法に関する。
1.銅の単結晶からなる中心部と、その周囲の保護層とから形成された銅ナノ粒子であって、
(1)前記銅ナノ粒子の平均粒子径が10nm以下であり、
(2)前記保護層が、炭素数3〜6の1級アルコール、炭素数3〜6の2級アルコール及びそれらの誘導体から選択される少なくとも1種を含み、
(3)前記保護層の沸点又は熱分解温度が150℃以下である、
ことを特徴とする銅ナノ粒子。
2.粒度分布に基づく標準偏差が銅ナノ粒子の平均粒子径の20%以下である、上記項1に記載の銅ナノ粒子。
3.前記保護層の、前記銅ナノ粒子中の質量比は、前記銅ナノ粒子の質量を100質量%として10〜30質量%である、上記項1又は2に記載の銅ナノ粒子。
4.前記炭素数3〜6の1級アルコール、炭素数3〜6の2級アルコール及びそれらの誘導体から選択される少なくとも1種は、下記式(1)又は(2)で示される基を有する、上記項1〜3のいずれかに記載の銅ナノ粒子。
【0020】
【化1】
【0021】
(式(1)及び(2)中、*は結合手を示す。)
5.上記項1〜4のいずれかに記載の銅ナノ粒子の保存方法であって、
(1)前記銅ナノ粒子が分散した溶液中の銅ナノ粒子を沈殿させる工程1、及び
(2)前記銅ナノ粒子が沈殿した溶液に炭素数4〜14のアルカン溶媒を添加する工程2を有することを特徴とする銅ナノ粒子の保存方法。
6.保存温度が10℃以上である、上記項5に記載の保存方法。
7.上記項1〜4のいずれかに記載の銅ナノ粒子が分散媒中に分散されている銅ナノ粒子分散液。
8.上記項1〜4のいずれかに記載の銅ナノ粒子、及び、銅微粒子が分散媒中に分散されている銅ナノ粒子分散液。
9.前記銅微粒子の平均粒子径は、1〜200μmである、上記項8に記載の銅ナノ粒子分散液。
10.前記銅ナノ粒子の質量(Ma)と、前記銅微粒子の質量(Mb)との合計(Ma+Mb)に対する前記銅ナノ粒子の質量(Ma)の割合が、2質量%以上である、上記項8又は9に記載の銅ナノ粒子分散液。
11.上記項7〜10のいずれかに記載の銅ナノ粒子分散液を含有する、銅ナノインク。
12.上記項1〜4のいずれかに記載の銅ナノ粒子を、非還元性雰囲気中で、常圧又は減圧下で、150℃以下の温度で焼結させる、銅ナノ粒子の焼結方法。
13.銅の単結晶からなる中心部と、その周囲の保護層とから形成される銅ナノ粒子の製造方法であって、
(I)酢酸銅と、炭素数3〜6の1級アルコール、炭素数3〜6の2級アルコール及びそれらの誘導体から選択される少なくとも1種とが、炭素数2〜4のジオールに溶解した溶液を調製する工程I、及び
(II)前記溶液を、大気圧下で100℃以下でヒドラジン還元する工程IIを有し、
前記銅ナノ粒子の平均粒子径が10nm以下であり、且つ、前記保護層の沸点又は熱分解温度が150℃以下である、
銅ナノ粒子の製造方法。
【発明の効果】
【0022】
本発明の銅ナノ粒子は、平均粒子径が10nm以下であるので、融点の低下が顕著であり、焼結温度が低く、熱に弱い紙やプラスチック等の基板上にも金属微細配線を形成することができる。 また、本発明の銅ナノ粒子は、銅の単結晶からなる中心部が、炭素数3〜6の1級アルコール、炭素数3〜6の2級アルコール及びそれらの誘導体から選択される少なくとも1種を含む保護層に被覆されている。このため、銅ナノ粒子の凝集が抑制されており、且つ、銅の酸化が抑制されている。更に、保護層が炭素数3〜6の1級アルコール、炭素数3〜6の2級アルコール及びそれらの誘導体から選択される少なくとも1種を含むので、当該保護層が低温で分解又は蒸発するため、銅ナノ粒子を150℃以下の低温で焼結させる際に、保護層も除去することができる。このため、本発明の銅ナノ粒子は、インク材料として好適に用いることができる。
【0023】
また、本発明の銅ナノ粒子は、保護層を形成する炭素数3〜6の1級アルコール、炭素数3〜6の2級アルコール及びそれらの誘導体から選択される少なくとも1種が揮発性を示すので、減圧下での低温焼結においては、これまで実現できなかった約80℃の温度で銅ナノ粒子が焼結し、銅薄膜を形成するので、更に低温で金属微細配線を形成することも可能である。このため、本発明の銅ナノ粒子が分散されている銅ナノ粒子分散液、及び当該銅ナノ粒子分散液を含有する銅ナノインクは、金属微細配線を形成するのに好適に用いることができる。
【0024】
また、本発明の銅ナノ粒子の保存方法は、工程1により銅ナノ粒子を溶液の底部に沈殿させることにより銅ナノ粒子を溶液の液面から遠ざけることができ、且つ、工程2において溶液に炭素数4〜14のアルカン溶媒を添加することにより当該アルカン溶媒の比重が小さいために浮上し、溶液の液面を被覆するので、銅ナノ粒子が酸素と接触することを抑制することができる。また、上記保存方法によれば、10℃以上の室温でも安定なアルカン溶媒を用いることにより、銅ナノ粒子を室温で安定的に保存することができる。
【図面の簡単な説明】
【0025】
図1】実施例1で得られた銅ナノ粒子が分散した溶液(左)、及び沈殿分離後(右)の写真である。
図2】実施例1で得られた銅ナノ粒子の紫外可視吸光スペクトルを示す図である。
図3】実施例1で得られた銅ナノ粒子のTEM観察像を示す図である。
図4】実施例1で得られた銅ナノ粒子の高分解能TEM観察像(左)と電子線回折像(右)を示す図である。
図5】実施例1で得られた銅ナノ粒子のX線回折(XRD)測定結果を示す図である。
図6】実施例1で得られた銅ナノ微粒子の赤外分光(FT−IR)測定結果を示す図である(上)。比較のために、1−アミノ−2−プロパノールのFT−IR測定結果も示す(下)。
図7】実施例1で得られた銅ナノ粒子の熱分析(TG−DTA)を示す図である。
図8】実施例1で得られた銅ナノ粒子が分散したペーストの、窒素雰囲気下での150℃の低温焼結後のX線回折(XRD)測定結果を示す図である。
図9】実施例1で得られた銅ナノ粒子が分散したペーストの、減圧下80℃の低温焼成後のX線回折(XRD)測定結果(上)及び赤外分光(FT−IR)測定結果(下)を示す図である。
図10】実施例1で得られた銅ナノ粒子にオクタン処理を行い、一ヶ月後に測定したX線回折(XRD)の測定結果を示す図である(図10上)。比較のために、銅の微粒子にオクタン処理を行わなかった場合のXRD測定結果も示す(図10下)。
図11】実施例2で得られた銅ナノ粒子の紫外可視吸光スペクトルを示す図である。
図12】実施例2で得られた銅ナノ粒子の高分解能TEM観察像を示す図である。
図13】実施例2で得られた銅ナノ粒子のX線回折(XRD)測定結果を示す図である。
図14】実施例2で得られた銅ナノ粒子の赤外分光(FT−IR)測定結果を示す図である(下)。比較のために、2−ヒドロキシ酪酸のFT−IR測定結果も示す(上)。
図15】実施例3〜8及び比較例6で調製された銅薄膜の電気抵抗値の測定結果を示す図である。
図16】実施例9〜12で調製された銅薄膜の電気抵抗値の測定結果を示す図である。
【発明を実施するための形態】
【0026】
以下、本発明について詳細に説明する。
【0027】
本発明の銅ナノ粒子は、銅の単結晶からなる中心部と、その周囲の保護層とから形成された銅ナノ粒子であって、(1)上記銅ナノ粒子の平均粒子径が10nm以下であり、(2)上記保護層が、炭素数3〜6の1級アルコール、炭素数3〜6の2級アルコール及びそれらの誘導体から選択される少なくとも1種(以下、「炭素数3〜6の1級及び/又は2級アルコール等」とも示す。)を含み、(3)上記保護層の沸点又は熱分解温度が150℃以下であることを特徴とする。上記特徴を有する本発明の銅ナノ粒子は、銅ナノ粒子の平均粒子径が10nm以下であるので、融点の低下が顕著であり、焼結温度が低く、熱に弱い紙やプラスチック等の基板上にも金属微細配線を形成することができる。 また、本発明の銅ナノ粒子は、銅の単結晶からなる中心部が、炭素数3〜6の1級及び/又は2級アルコール等を含む保護層に被覆されている。このため、銅ナノ粒子の凝集が抑制されており、且つ、銅の酸化が抑制されている。更に、保護層が炭素数3〜6の1級及び/又は2級アルコール等を含み、保護層の沸点又は熱分解温度が150℃以下であるので、当該保護層が低温で分解又は蒸発するため、銅ナノ粒子を150℃以下の低温で焼結させる際に、保護層も除去することができる。このため、本発明の銅ナノ粒子は、インク材料として好適に用いることができる。また、本発明の銅ナノ粒子は、保護層を形成する炭素数3〜6の1級及び/又は2級アルコール等が揮発性を示すので、減圧下での低温焼結においては、これまで実現できなかった約80℃の温度で銅ナノ粒子が焼結し、銅薄膜を形成するので、更に低温で金属微細配線を形成することも可能である。このため、当該銅ナノ粒子が分散されている銅ナノ粒子分散液、及び当該銅ナノ粒子分散液を含有する銅ナノインクは、金属微細配線を形成するのに好適に用いることができる。
【0028】
また、本発明の銅ナノ粒子の保存方法は、(1)前記銅ナノ粒子が分散した溶液中の銅ナノ粒子を沈殿させる工程1、及び(2)b前記銅ナノ粒子が沈殿した溶液に炭素数4〜14のアルカン溶媒を添加する工程2を有することを特徴とする。上記特徴を有する本発明の銅ナノ粒子の保存方法は、上記工程1により銅ナノ粒子を溶液の底部に沈殿させることにより銅ナノ粒子を溶液の液面から遠ざけることができ、且つ、工程2において溶液に炭素数4〜14のアルカン溶媒を添加することにより当該アルカン溶媒の比重が小さいために浮上し、溶液の液面を被覆するので、銅ナノ粒子が酸素と接触することを抑制することができる。また、上記保存方法によれば、10℃以上の室温でも安定なアルカン溶媒を用いることにより、銅ナノ粒子を室温で安定的に保存することができる。
【0029】
1.銅ナノ粒子
本発明の銅ナノ粒子は、銅の単結晶からなる中心部と、その周囲の保護層とから形成される。
【0030】
本発明の銅ナノ粒子の中心部を形成する銅は、単結晶である。なお、本発明における単結晶とは、結晶のどの部分をとっても同じ結晶方位をもっており、それを構成している原子が空間的に規則正しい配列になっているものをいう。すなわち、本発明の銅ナノ粒子の中心部を形成する銅の単結晶は、粒子全体が一つの結晶であり、色々な方向に成長した結晶が混ざり合っておらず、銅粒子が凝集等していないことを意味する。これは銅ナノ粒子のXRD解析のピーク測定と高分解能電子顕微鏡による原子配列の直接観察により確認することができる。
【0031】
本発明の銅ナノ粒子は、上記銅の単結晶からなる中心部の周囲には、保護層が形成されている。上記保護層は、炭素数3〜6の1級アルコール、炭素数3〜6の2級アルコール及びそれらの誘導体から選択される少なくとも1種を含む。
【0032】
上記炭素数3〜6の2級アルコール及びその誘導体としては、炭素数3〜6の2級アルコール、及び、当該炭素数3〜6の2級アルコールにアミノ基、カルボキシル基、水酸基等が付加された化合物が挙げられ、具体的には、1−アミノ−2−プロパノール、2− ヒドロキシ酪酸、3− ヒドロキシ酪酸、1,2−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、2,3−ブタンジオールが挙げられる。これらの2級アルコール等は、単独であってもよいし、混合して用いられてもよい。
【0033】
2級アルコールのヒドロキシ基は,溶媒及び銅表面ともに親和性が高く、分散性向上に寄与する。2級アルコールのヒドロキシ基は還元能を有するために、銅の酸化を抑制し、かつ低温焼結の際に生成する酸化物が、ケトン化合物であるため、揮発分解し易い。
【0034】
上記炭素数3〜6の2級アルコール及びその誘導体は、モノアルコールであることが好ましい。モノアルコールを用いることにより、保護層の沸点又は熱分解温度を150℃以下に調整し易くなる。
【0035】
上記炭素数3〜6の2級アルコール及びその誘導体は、下記式(1)で示される基を有することが好ましい。なお、下記式(1)〜(5)中、*は、結合手を示す。
【0036】
【化2】
【0037】
上記式(1)で示される基は、当該基が酸化されてケトンとなり、下記式(3)で示される基を生成する。
【0038】
【化3】
【0039】
上記式(1)及び(3)で示される基は、高い配位力を示し、銅の単結晶からなる中心部の表面の銅原子と5員環を形成して、下記式(4)及び(5)で示されるメタラサイクル構造を有する基となり、安定化する。このため、銅ナノ粒子の凝集がより抑制される。
【0040】
【化4】
【0041】
【化5】
【0042】
上記炭素数3〜6の1級アルコール及びその誘導体としては、炭素数3〜6の1級アルコール、及び、当該炭素数3〜6の1級アルコールにアミノ基、カルボキシル基、水酸基等が付加された化合物が挙げられ、具体的には、2−アミノ−2エチル−1,3−プロパンジオール、2−アミノ−1−ブタノールが挙げられる。これらの1級アルコール等は、単独であってもよいし、混合して用いられてもよい。
【0043】
上記炭素数3〜6の1級アルコール及びその誘導体は、モノアルコールであることが好ましい。モノアルコールを用いることにより、保護層の沸点又は熱分解温度を150℃以下に調整し易くなる。
【0044】
上記炭素数3〜6の1級アルコール及びその誘導体は、下記式(2)で示される基を有することが好ましい。
【0045】
【化6】
【0046】
上記式(2)で示される基も、銅の単結晶からなる中心部の表面の銅原子と5員環を形成して、メタラサイクル構造を有する基となり、安定化する。このため、銅ナノ粒子の凝集がより抑制されることとなる。
【0047】
上記炭素数3〜6の1級及び/又は2級アルコール等の中でも、1−アミノ−2−プロパノールが好ましい。1−アミノ−2−プロパノールは、低温焼結可能な銅ナノ粒子のための保護剤として好ましい、以下の条件を備えている。当該条件とは、銅ナノ粒子の分散性を高めることができること、銅ナノ粒子の酸化を抑制できること、製造時に、焼成の過程で銅の酸化を抑制しながら、150℃以下の低温で分解又は気化(蒸発)することである。このため、上記保護層の沸点又は熱分解温度は150℃以下である。ここで、保護層の熱分解温度とは、保護層を構成する物質が熱により銅の単結晶からなる中心部から脱離する温度であり、上記脱離には、保護層を構成する物質が熱により蒸散する形態を含む。上記1−アミノ−2−プロパノールを用いて銅ナノ粒子の製造を行うと、構造中のアミノ基による銅イオンへの配位で錯体を形成して、ヒドロキシル基がエチレングリコール等の炭素数2〜4のジオールに対しての溶解性を高めることにより、高い銅イオン濃度(例えば、銅イオン換算で1000mM)であるにもかかわらず、平均粒子径が6nm以下の単分散の銅ナノ粒子の合成が可能である。更に、ヒドロキシル基を有しているために耐酸化性が向上し、かつ揮発性があるために150℃以下の低温加熱で分解、気化により除去できるとともに、低温加熱における銅の酸化を抑制することができる。例えば、1−アミノ−2−プロパノールの揮発性を利用することで、従来実現できなかった80℃(減圧下)で1−アミノ−2−プロパノールからなる保護層を除去することが可能となり、且つ、銅ナノ粒子の低温焼結が可能となる。なお、保護層が、銅ナノ粒子合成の一般的なアミンとして使用されるオクチルアミン等からなる構成とした場合、製造時に、生成した銅ナノ粒子が凝集してしまい、バルク銅が生成して、銅ナノ粒子が得られない。
【0048】
銅ナノ粒子の保護層の沸点又は熱分解温度は、銅ナノ粒子の乾燥粉末を用いて、窒素雰囲気下でTG−DTAによる熱分析を行うことにより測定することができる。
【0049】
保護層は、上記炭素数3〜6の1級アルコール、炭素数3〜6の2級アルコール及びそれらの誘導体から選択される少なくとも1種以外の他の成分を含有していてもよいが、上記保護層は、銅ナノ粒子の低温焼結を容易にすることができる点で、炭素数3〜6の1級アルコール、炭素数3〜6の2級アルコール及びそれらの誘導体から選択される少なくとも1種のみからなることが好ましい。
【0050】
銅ナノ粒子中の保護層の質量比は、銅ナノ粒子の質量を100質量%として10〜30質量%が好ましい。保護層の質量比が高過ぎると、銅ナノ粒子を焼結させる際に、150℃以下の低温で加熱しても保護層が十分に除去できないおそれがある。保護層の質量比が低過ぎると、銅の単結晶を十分に保護できないおそれがある。
【0051】
本発明の銅ナノ粒子は、平均粒子径が10nm以下である。銅ナノ粒子の平均粒子径が10nmを超えると、銅ナノ粒子を低温で焼結できない。上記平均粒子径は3〜8nmが好ましく、3〜6nmがより好ましい。銅ナノ粒子の平均粒子径が3nmよりも小さいと、銅ナノ粒子が凝集してしまうおそれがある。
【0052】
なお、本明細書における平均粒子径は、TEM観察像中の任意の100個の粒子の粒子径の算術平均値である。
【0053】
本発明の銅ナノ粒子は、粒度分布に基づく標準偏差が銅ナノ粒子の平均粒子径の20%以下であることが好ましい。すなわち、銅ナノ粒子の粒度分布に基づく標準偏差を銅ナノ粒子の平均粒子径で除して、百分率で示した値が20%以下であることが好ましい。銅ナノ粒子の粒度分布に基づく標準偏差を上述の範囲とすることで、銅ナノ粒子の平均粒子径が均一化されて、低温で焼結するのに適した銅ナノ粒子とすることができる。
【0054】
(銅ナノ粒子の製造方法)
本発明の銅ナノ粒子を製造する製造方法としては特に限定されず、従来公知の方法により製造することができる。
【0055】
本発明の銅ナノ粒子の製造方法としては、例えば、
銅の単結晶からなる中心部と、その周囲の保護層とから形成される銅ナノ粒子の製造方法であって、
(I)酢酸銅と、炭素数3〜6の1級アルコール、炭素数3〜6の2級アルコール及びそれらの誘導体から選択される少なくとも1種とが、炭素数2〜4のジオールに溶解した溶液を調製する工程I、及び
(II)上記溶液を、大気圧下で100℃以下でヒドラジン還元する工程IIを有し、
上記銅ナノ粒子の平均粒子径が10nm以下であり、且つ、上記保護層の沸点又は熱分解温度が150℃以下である、銅ナノ粒子の製造方法が挙げられる。以下、例示的に上記製造方法について説明する。
【0056】
上記工程Iは、酢酸銅と、炭素数3〜6の1級アルコール、炭素数3〜6の2級アルコール及びそれらの誘導体から選択される少なくとも1種とが、炭素数2〜4のジオールに溶解した溶液を調製する工程である。
【0057】
上記工程Iに用いられる銅化合物は、酢酸銅[Cu(acac)]である。導電材料としての利用を考えた場合は、工程Iに用いられる銅化合物には、炭素数2〜4のジオールに溶解して、ハロゲンを含まない銅イオンが望ましい。工程Iに用いられる銅化合物として酢酸銅を用いると、銅イオンが還元され易く、平均粒子径が10nm以下、特に、3〜6nmの分散性の高い銅ナノ粒子が得られ易い。これに対し、工程Iに用いられる銅化合物として、例えば、ギ酸銅[Cu(HCOO)]を用いた場合、ギ酸が強酸イオンであることから凝集が促進され、粗大銅粒子の凝集体が生成してしまうこととなる。
【0058】
上記工程Iにおいて、溶液中の酢酸銅の含有量は特に限定されないが、銅イオン換算で5〜1000mM程度が好ましく、100〜400mM程度がより好ましく、200〜300mM程度が更に好ましい。溶液中の酢酸銅の含有量が少な過ぎると、銅ナノ粒子が得られ難いおそれがある。また、溶液中の酢酸銅の含有量が多過ぎると、生成した銅ナノ粒子が凝集してバルク銅が析出するおそれがある。
【0059】
上記工程Iには、炭素数3〜6の1級及び/又は2級アルコール並びにそれらの誘導体から選択される少なくとも1種が用いられる。上記炭素数3〜6の1級及び/又は2級アルコール等を用いることにより、銅の単結晶からなる中心部の周囲に、当該炭素数3〜6の1級及び/又は2級アルコール等からなる保護層を形成することができる。このような保護層は、上述のように、150℃以下の低温で分解又は気化(蒸発)することが可能である。
【0060】
炭素数3〜6の1級及び/又は2級アルコール等としては、上述の銅ナノ粒子の保護層を形成するものと同一のものを用いることができる。
【0061】
上記工程Iにおいて溶液中の、炭素数3〜6の1級及び/又は2級アルコール等の濃度は、上述の溶液中の銅イオンの濃度の3〜20倍が好ましく、3〜10倍がより好ましい。溶液中の炭素数3〜6の1級及び/又は2級アルコール等の濃度が低過ぎると、保護層が十分に形成できないおそれがあり、また、得られる銅ナノ粒子の平均粒子径が大きくなるおそれがある。溶液中の炭素数3〜6の1級及び/又は2級アルコール等の濃度が高過ぎると、2級アルコール等が過剰に存在するので、銅ナノ粒子を分離精製することが困難となるおそれがある。
【0062】
上記工程Iでは、溶液を調製する際の溶媒として、炭素数2〜4のジオールが用いられる。上記溶媒として炭素数2〜4のジオールを用いると、酢酸銅及び炭素数3〜6の1級及び/又は2級アルコール等を溶解できるとともに、得られる銅ナノ粒子の凝集及び酸化を抑制することができる。上記炭素数2〜4のジオールとしては、例えば、エチレングリコール、プロピレングリコールが挙げられ、これらの中でも、得られる銅ナノ粒子の分散性に優れる点で、エチレングリコールが好ましい。
【0063】
溶媒として用いられる炭素数2〜4のジオールは、上記保護層を形成する1級及び/又は2級アルコール等として用いられるものと同一のものを用いてもよい。溶媒として、保護層を形成する1級及び/又は2級アルコール等と同一の炭素数2〜4のジオールを用いることにより、溶媒の一部が銅ナノ粒子の保護層を形成するので、溶媒の他に保護層を形成するための1級及び/又は2級アルコール等を別途添加する工程が必要でないので、容易に銅ナノ粒子を製造することができる。上記保護層を形成する1級及び/又は2級アルコール等と同一の炭素数2〜4のジオールとしては、例えば、1,2−プロパンジオールが挙げられる。
【0064】
工程Iに用いられる溶媒として、炭素数2〜4のジオールを単独で用いてもよいが、他の極性溶媒(例えば、ジメチルホルムアミド、N−メチルピロリドン、エチレングリコールモノメチルエーテル等)を混合して用いてもよい。2種以上の溶媒を混合する場合には、溶媒中の炭素数2〜4のジオールの含有量は60重量%以上が好ましく、90重量%以上がより好ましい。
【0065】
上記溶液には、酢酸銅、炭素数3〜6の1級及び/又は2級アルコール等、及び炭素数2〜4のジオールの他に、他の添加剤が含まれていてもよい。当該他の添加剤としては、例えば、アンモニアのエタノール溶液が挙げられる。当該エタノール溶液中のアンモニアの含有量は、エタノール溶液を100vol%として、1〜5vol%が好ましい。
【0066】
以上説明した工程Iにより、酢酸銅と炭素数3〜6の1級及び/又は2級アルコール等とが炭素数2〜4のジオールに溶解した溶液が調製される。
【0067】
上記工程IIは、工程Iにより調製された溶液を、大気圧下で100℃以下でヒドラジン還元する工程である。ヒドラジン還元に用いられる還元剤としてはヒドラジン化合物が挙げられ、中でも、ヒドラジン、硫酸ヒドラジン、フェニルヒドラジンが好適に用いられる。一方、平均粒子径が6nm以下の金属ナノ粒子の合成に用いられる還元剤として、水素化ホウ素ナトリウムが知られているが、上記工程IIにおいて、還元剤として水素化ホウ素ナトリウムを用いると、生成した銅ナノ粒子が凝集してバルク銅が析出してしまう。
【0068】
上記工程IIにおける溶液中のヒドラジン化合物の濃度は、溶液中の銅イオン濃度の5〜30倍が好ましく、15〜30倍がより好ましい。溶液中のヒドラジン化合物の濃度が低過ぎると、銅ナノ粒子への還元能が不十分となり、銅ナノ粒子の平均粒子径が大きくなるおそれがある。また、溶液中のヒドラジン化合物の濃度が高過ぎると、ヒドラジン化合物が過剰となり、銅ナノ粒子を分離精製することが困難となるおそれがある。
【0069】
上記工程IIにおいて、ヒドラジン還元は、大気圧下で行われる。上記工程Iにおいて、酢酸銅と炭素数3〜6の1級及び/又は2級アルコール等とが炭素数2〜4のジオールに溶解した溶液を調製し、得られた溶液を、工程IIによりヒドラジン還元することにより、工程IIを大気圧下で行うことが可能となる。このため、上記製造方法によれば、製造工程において加圧が不要であるので、銅ナノ粒子を容易に製造することができる。
【0070】
上記工程IIにおいて、ヒドラジン還元は、100℃以下で行われる。すなわち、工程Iにおいて調製された溶液を100℃以下の温度に調整して工程IIを行えばよい。上記ヒドラジン還元の温度は、100℃以下が好ましく、50℃以下がより好ましい。ヒドラジン還元の温度が高過ぎると、副生成物が生成するおそれがある。また、上記工程IIにおいて、ヒドラジン還元は、5℃以上が好ましく、20℃以上がより好ましい。ヒドラジン還元の温度が低過ぎると、銅ナノ粒子が十分に製造できないおそれがある。
【0071】
以上説明した工程IIにより、工程Iで調製された溶液が、大気圧下でヒドラジン還元される。
【0072】
以上説明した銅ナノ粒子の製造方法により、銅の単結晶からなる中心部と、その周囲の保護層とから形成される銅ナノ粒子を製造することができる。当該製造方法によれば、平均粒子径が小さく、10nm以下、特に、3〜6nm程度の銅ナノ粒子を得ることができる。また、保護層が、炭素数3〜6の1級及び/又は2級アルコール等を含むので揮発性を有しており、保護層の沸点又は熱分解温度を150℃以下とすることができるので、保護層を150℃以下の加熱で除去することができ、銅ナノ粒子を150℃以下の低温で焼結することが可能となる。また、上記製造方法において、銅ナノ粒子は上記溶液中に均一に分散した状態で得られる。このため、得られた銅ナノ粒子が溶液中に分散した状態で、当該溶液を所望の目的に使用することができる。
【0073】
上記製造方法では、銅ナノ粒子は、溶液に分散した形態で得られる。上記製造方法は、工程IIの後に、更に、溶液中の銅ナノ粒子を沈殿させる工程を有していてもよい。上記工程を有する製造方法とすることにより、沈殿した銅ナノ粒子を採取して用いることができる。溶液中の銅ナノ粒子を沈殿させる方法としては特に限定されず、遠心分離により沈殿させる方法等、従来公知の方法が挙げられる。溶液中の銅ナノ粒子を沈殿させる方法としては、また、上記溶液に沈殿溶媒を添加することにより銅ナノ粒子を沈殿させる方法が挙げられる。上記沈殿溶媒としては、銅ナノ粒子を沈殿させることができれば特に限定されないが、例えば、ジメチルアセトアミド(DMA)、N−メチルピロリドン(NMP)等が挙げられる。これらの沈殿溶媒を用いることにより、銅ナノ粒子を溶液中で沈殿させ、且つ、溶液中の不純物であるヒドラジン、及び炭素数3〜6の1級及び/又は2級アルコール等を溶解させることができるので、銅ナノ粒子と、ヒドラジン並びに炭素数3〜6の1級及び/又は2級アルコール等とを分離させ易くなる。
【0074】
上記溶液中の銅ナノ粒子を沈殿させる工程としては、上述の溶液に沈殿溶媒を添加することにより銅ナノ粒子を沈殿させる方法の後に、遠心分離により沈殿させる方法を行ってもよい。上記方法により溶液中の銅ナノ粒子を沈殿させることにより、より効率よく銅ナノ粒子を沈殿させることができ、銅ナノ粒子を分離し易くなる。
【0075】
上記製造方法は、更に、上記沈殿した銅ナノ粒子を揮発性溶媒により洗浄する工程を有していてもよい。上記工程を有する製造方法とすることにより、銅ナノ粒子の表面からヒドラジン、及び保護層以外の過剰の炭素数3〜6の1級及び/又は2級アルコール等を除去することができ、高純度の銅ナノ粒子を得ることができる。なお、上記揮発性溶媒としてはアセトンを用いることも可能であるが、銅ナノ粒子の酸化を抑制することができる観点から、ジメチルアセトアミド、又はN−メチルピロリドンが好ましい。
【0076】
2.銅ナノ粒子の保存方法
本発明の銅ナノ粒子の保存方法は、(1)銅ナノ粒子が分散した溶液中の銅ナノ粒子を沈殿させる工程1、及び(2)銅ナノ粒子が沈殿した溶液に炭素数4〜14のアルカン溶媒を添加する工程2を有する。上記保存方法により、本発明の銅ナノ粒子を室温で長期間安定に保存でき、輸送することができる。
【0077】
工程1は、銅ナノ粒子が分散した溶液中の銅ナノ粒子を沈殿させる工程である。上記工程1により銅ナノ粒子を溶液の底部に沈殿させることにより、銅ナノ粒子を溶液の液面から遠ざけることができるので、銅ナノ粒子の酸素との接触を抑制することができる。
【0078】
上記溶液中の銅ナノ粒子を沈殿させる方法としては特に限定されないが、例えば、上述の銅ナノ粒子の製造方法において説明したように、溶液に沈殿溶媒を添加することにより銅ナノ粒子を沈殿させる方法が挙げられる。沈殿溶媒としては、上記製造方法において説明した沈殿溶媒と同一のものを用いることができる。
【0079】
工程2は、上記銅ナノ粒子が沈殿した溶液に炭素数4〜14のアルカン溶媒を添加する工程である。銅ナノ粒子が沈殿した溶液に炭素数4〜14のアルカン溶媒を添加することにより、当該アルカン溶媒の比重が小さいために浮上して溶液の液面を被覆するので、銅ナノ粒子の酸素との接触を抑制することができる。これにより、上記工程1で銅ナノ粒子を溶液の底部に沈殿させ、溶液の液面から遠ざけることとあいまって、銅ナノ粒子を長期間安定に保存し、輸送することが可能となる。
【0080】
上記炭素数4〜14のアルカン溶媒としては、液体であり、銅ナノ粒子が沈殿した溶液の液面を被覆することができれば特に限定されないが、10℃以上の室温で安定であり、銅ナノ粒子を10℃以上の室温で安定的に保存することができる点で、ヘキサン、ヘプタン、オクタン、ノナン、デカン又はドデカンが好ましく、オクタンがより好ましい。
【0081】
以上説明した保存方法により、銅ナノ粒子を室温で長期間安定に保存でき、輸送することができる。
【0082】
本発明の銅ナノ粒子は、分散媒に分散させることにより、銅ナノ粒子がコロイドとして再分散した銅ナノ粒子分散液(ペースト)とすることができる。このような、銅ナノ粒子分散液も本発明の一つである。
【0083】
上記分散媒としては、例えば、メタノール、エタノール、プロピレングリコール、グリセロール等のアルコール、トルエン、アルカノールアミン、N,N−ジメチルホルミアミド等の極性溶媒が挙げられる。これらの分散媒は、単独で用いてもよいし、2種以上を混合して用いてもよい。例えば、プロピレングリコールとグリセロールとを体積比で1:1の割合で混合して用いてもよい。これらの中でも、アルカノールアミンを用いることが好ましく、高い分散安定性を維持できる点で、銅ナノ粒子の保護層を形成する炭素数3〜6の1級及び/又は2級アルコールと同一の炭素数3〜6のアルカノールアミンを用いることがより好ましい。これらの分散媒は、銅ナノインクを適用する印刷手法、所望の粘度、形成したい銅回路の種類等によって適宜選択することができる。
【0084】
本発明の銅ナノ粒子は、また、銅微粒子と混合して分散媒に分散させることにより、銅ナノ粒子及び銅微粒子がコロイドとして再分散した銅ナノ粒子分散液(ペースト)とすることができる。このような、上記銅ナノ粒子、及び、銅微粒子が分散媒中に分散されている銅ナノ粒子分散液も本発明の一つである。当該銅ナノ粒子分散液に用いられる分散媒としては、上述のものを用いることができる。なお、本明細書において、銅微粒子とは、平均粒子径が1μm以上の銅の粒子であり、銅ナノ粒子とは区別される。平均粒子径が1μm以上の銅微粒子は、価格が安価であり、これを用いることでコストダウンが可能であるが、150℃以下の低温領域では焼結し難く、10−5Ωcmの低電気抵抗値を示す銅薄膜が得られ難い。本発明の銅ナノ粒子を低温焼結助剤として、平均粒子径が1μm以上のマイクロオーダーの銅微粒子に添加することにより、10−5Ωcmの低電気抵抗値を示す銅薄膜を150℃以下の低温焼結で製造することが可能となる。
【0085】
上記銅微粒子の平均粒子径は、1〜200μmが好ましく、1〜100μmがより好ましく、1〜40μmが更に好ましく、1〜5μmが特に好ましい。銅微粒子の平均粒子径が小さ過ぎると、銅微粒子が高価となり、銅微粒子を混合することによるコストの低減が不十分であるおそれがある。銅微粒子の平均粒子径が大きすぎると、当該銅微粒子と銅ナノ粒子とを混合して調製した銅ナノインクを用いて回路を形成した際に、回路の電気抵抗値を十分に低減できないおそれがある。
【0086】
上記銅ナノ粒子分散液において、銅ナノ粒子の質量(Ma)と、銅微粒子の質量(Mb)との合計(Ma+Mb)に対する銅ナノ粒子の質量(Ma)の割合は、10質量%以上が好ましく、30質量%以上がより好ましい。上記銅ナノ粒子の質量(Ma)の割合が少な過ぎると、150℃以下の低温では銅微粒子が焼結し難くなり、銅ナノ粒子と銅微粒子とを混合して調製した銅ナノインクを用いて回路を形成した際に、当該回路に亀裂が生じやすく、回路の電気抵抗値を十分に低減できないおそれがある。また、上記銅ナノ粒子分散液において、銅ナノ粒子の質量(Ma)と、銅微粒子の質量(Mb)との合計(Ma+Mb)に対する銅ナノ粒子の質量(Ma)の割合は、80質量%以下が好ましく、50質量%以下がより好ましい。上記銅ナノ粒子の質量(Ma)の割合が多過ぎると、銅ナノ粒子を混合して用いることによる回路の電気抵抗値の低減効果が飽和して、コストの低減を妨げるおそれがある。
【0087】
上記銅ナノ粒子分散液中の銅ナノ粒子の質量(Ma)と、銅微粒子の質量(Mb)との合計(Ma+Mb)の含有量は、銅ナノ粒子分散液を100質量%として、10〜80質量%が好ましく、30〜50質量%がより好ましい。
【0088】
上記銅ナノ粒子分散液は、銅ナノインクに含有されて用いられる。上記銅ナノ粒子分散液を含有する銅ナノインクも本発明の一つである。
【0089】
また、上述の銅ナノ粒子の保存方法における銅ナノ粒子の保存状態、すなわち、銅ナノ粒子が底部に沈殿した溶液の液面が炭素数4〜14のアルカン溶媒で被覆されている保存状態において、上澄みのアルカン溶媒、及び溶液を捨てて除去し、残った銅ナノ粒子に上記分散媒を添加することにより、銅ナノ粒子を分散媒に容易に分散させることができる。このため、本発明の銅ナノ粒子の保存方法により保存された銅ナノ粒子を容易に銅ナノ粒子分散液、及び銅ナノインクとすることが可能である。
【0090】
上記銅ナノ粒子分散液、及び銅ナノインクにおいては、溶媒やアミンは完全に除去することは必ずしも必要ではなく、用途に合わせて最適な濃度となるように残した上で、分散媒を添加して用いてもよい。また、銅ナノインクには、用途に合わせてテルピネオール、ドデカノール、エチレングリコール、1−メトキシ−2−プロパノール等を適宜添加してもよい。
【0091】
銅ナノインク中の金属銅の含有量は、5wt%以上80wt%未満が好ましく、10wt%以上70wt%未満がより好ましい。金属銅の含有量が少な過ぎると、銅ナノインクを導電ペーストとして好適に用いることができないおそれがある。一方、金属銅の含有量が多過ぎると、銅ナノインクの粘度が高くなり、扱い難くなるおそれがある。
【0092】
なお、本発明の銅ナノ粒子は、金属微細配線を形成するためのインク材料として好適に用いることができるが、当該用途に限られず、触媒材料(触媒又は触媒担体)としても利用することができ、また、ITOに変わる透明導電膜、反射防止コーティング材料としても利用することができる。
【0093】
本発明の銅ナノ粒子は、上述の構成であるので、常圧でも150℃以下の低温で焼結させることができ、減圧下では、更に低い、例えば80℃以下の温度で焼結させることができる。上記焼結は、非還元性雰囲気中で行うとよい。このような、銅ナノ粒子を、非還元性雰囲気中で、常圧又は減圧下で、150℃以下の温度で焼結させる銅ナノ粒子の焼結方法も、本発明の一つである。上記非還元性雰囲気としては特に限定されないが、例えば、窒素、アルゴン等が挙げられる。
【実施例】
【0094】
以下、実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。
【0095】
実施例及び比較例で使用した装置及び試料は下記の通りである。
【0096】
紫外可視吸収(UV−vis)スペクトル測定
JASCOのV−670を用いて、四面型石英セル(光路長1cm)に試料を2ml入れて測定した。試料として、後述の操作2で得られた銅ナノ粒子のエタノール分散液を用いた。
【0097】
透過型電子顕微鏡(TEM)
JEOL JEM−2010Fを用いて測定した。試料として、後述の操作2で得られた銅ナノ粒子のエタノール分散液を用いた。
【0098】
赤外分光(IR)測定
JASCOのFT/IR−4200を用いて測定した。試料として、後述の操作1で得られた銅ナノ粒子の乾燥粉末を用いた。
【0099】
熱分析(TG−DTA)
リガクのThermo plus EVOを用いて測定した。試料として、後述の操作1で得られた銅ナノ粒子の乾燥粉末を用いた。
【0100】
粉末X線回折(XRD)測定
ブルカーD2 PHASERを用いて測定した。試料として、後述の操作4で得られた銅ナノ粒子ペースト(銅含量 30wt%)、及びその銅ナノ粒子ペーストを窒素雰囲気下150℃で1時間熱焼成した銅薄膜、又は、銅ナノ粒子ペースト(30wt%)を減圧下80℃で6時間熱焼成した銅薄膜を用いた。
【0101】
四探針法による電気抵抗測定
三菱化学アナテリックロレスターを用いて測定した。試料として、後述の操作4で得られた銅ナノ粒子ペースト(30wt%)を窒素雰囲気下150℃で1時間熱焼成して得られた銅薄膜を用いた。
【0102】
<実施例1(銅ナノ微粒子及び各種試料の調製)>
酢酸銅(II)(2.73g)をエチレングリコール(30mL)に溶解させ、0.3Mの酢酸銅溶液を調製した。また、1−アミノ−2−プロパノール(11.6mL)をエチレングリコール(30mL)に溶解させ、3Mの1−アミノ−2−プロパノールの溶液を調製した。上記酢酸銅溶液に、上記1−アミノ−2−プロパノールの溶液を加えると、錯形成に伴い溶液は濃い青色に変化した。以下、これを「原料溶液」とする。
【0103】
原料溶液を1500rpmで撹拌しながら大気圧下(空気雰囲気下)で25℃において、銅モル換算で約15倍量のヒドラジン(7.29mL)を添加した。ヒドラジンの添加直後に、原料溶液から大量の気泡が発生して、瞬時に赤みのある黒色へと変化した。次いで、空気雰囲気下で1日放置した。
【0104】
上述の反応では、原料溶液を1500rpmの速い撹拌スピードで撹拌したため、均一な還元反応の進行による単分散なサイズの銅ナノ粒子が生成し易く、生成した粒子の凝集の抑制が容易であった。上記反応の結果、溶液に分散した銅ナノ粒子(銅イオン換算:300mM)が得られた(図1左)。
【0105】
銅ナノ粒子が分散した溶液からの銅ナノ粒子の分離・精製、及び回収した銅ナノ粒子の保存は、下記の操作により行った。
【0106】
(操作1)
実施例1で得られた、銅ナノ粒子が分散した溶液と、ジメチルアセトアミド(DMA)との体積比が1:2となるように、銅ナノ粒子が分散した溶液にDMAを添加した。銅ナノ粒子の凝集により溶液が懸濁した。懸濁した溶液に、6000rpm、10分間の条件で遠心分離を行い、銅ナノ粒子の沈殿物が沈殿した溶液を得た(図1右)。溶液を除去して銅ナノ粒子の沈殿物を採取し、酢酸エチルで2回洗浄することにより、銅ナノ粒子を分離して、銅ナノ粒子を得た。
【0107】
(操作2)
操作1で得られた銅ナノ粒子にエタノールを加えて銅ナノ粒子を分散させ、銅ナノ粒子分散液(ペースト)を得た。
【0108】
(操作3)
操作1で得られた銅ナノ粒子の沈殿物が沈殿した溶液(図1右)にオクタンを加えて室温で保存した。これにより、一ヶ月以上銅の酸化を抑制して、室温で長期保存可能であった。
【0109】
(操作4)
操作3で保存した銅ナノ粒子から、オクタンを除去した後、1−アミノ−2−プロパノールを加えて、銅ナノ粒子を超音波により再分散させ、銅ナノ粒子の分散液(ペースト)を得た。1−アミノ−2−プロパノールを添加する量を変えることにより、銅ナノ粒子のペースト中の銅の含有量は、5%〜80%程度まで調整可能であった。1−アミノ−2−プロパノールはオクタンよりも比重が大きいため、オクタンを除去せず1−アミノ−2−プロパノールを加えることでも同様に、調製することは可能であった。
【0110】
実施例1で得られた銅ナノ粒子の特性評価
実施例1の操作1で得られた銅ナノ粒子の紫外可視吸光スペクトルを図2に示す。銅ナノ粒子では、通常プラズモン吸収が550〜600nmの領域で観測されるが、約3nm程度の銅ナノ粒子では、プラズモン吸収が見られない。実施例1で得られた銅ナノ粒子は、銅ナノ粒子に起因するプラズモン吸収は見られないことから、3nm以下の銅ナノ粒子が得られていることが分かった。
【0111】
銅ナノ粒子のTEM観察像を図3に示す。銅ナノ粒子をエタノールに再分散させた試料は高い分散安定性を示した。図3のTEM観察像によれば、シングルナノサイズの単分散の銅ナノ微粒子が得られていることが分かる。この銅ナノ微粒子の粒子径分布は。平均粒子径が3.5±1.0 nmである。図4の高分解能TEM観察像(図4右)によれば銅の格子縞が見られ、電子線回折像から銅の111結晶面からの回折環が確認された。
【0112】
銅ナノ微粒子のXRDスペクトルを図5に示す。銅(111)面に由来するピークが確認され、酸化銅に由来するピークが確認されていないことから、耐酸化性を有する銅ナノ粒子が得られていることが分かった。XRDスペクトルから粒子サイズは約3nmと見積もられ、TEM観察から評価されたサイズと一致している。これにより、得られた銅ナノ粒子は銅の単結晶であることが分かった。
【0113】
銅ナノ粒子の高い分散安定性と耐酸化性の理由を調べるために、銅ナノ粒子の表面状態を赤外分光測定により調べた。赤外分光測定の結果を図6上に示す。比較のために、1−アミノ−2−プロパノールのみを測定した赤外分光測定結果も図6下に示す。図6の結果から、3500〜3000cm−1の領域に水酸基の吸収、3000〜2800cm−1の領域にメチル基、エチル基の吸収が見られ、銅ナノ粒子と1−アミノ−2−プロパノールの赤外吸収スペクトルが一致していることから、実施例1により製造された銅ナノ粒子は、1−アミノ−2−プロパノール分子が表面保護層として存在していることが分かった。実施例1で得られた銅ナノ粒子は、1−アミノ−2−プロパノール分子が銅ナノ粒子表面に吸着することにより高い分散安定性と高い耐酸化性を示すと考えられる。
【0114】
銅ナノ粒子の熱分析結果(TG−DTA)を図7に示す。約80℃付近から重量減少がみられ、100℃から150℃の間で1−アミノ−2−プロパノール分子が脱離、蒸発することに伴う急激な重量減少が見られる。これにより、銅ナノ粒子の表面の保護層を形成する1−アミノ−2−プロパノール分子が、150℃以下の低温で除去できることが分かった。
【0115】
銅ナノ粒子は、粒子サイズが小さくバルク銅と比べて融点が低下していると考えられる。操作4で得られた銅ナノ粒子ペースト(約30wt%銅含量)をポリエチレンテレフタラート(PET)上で窒素雰囲気下にて、約150℃で1時間低温加熱したところ、銅ナノ粒子が焼結して粒成長し、金属光沢のある銅薄膜が生成した。当該銅薄膜の電気抵抗値は約10−4Ωcm程度であった。図8に、窒素雰囲気下での約150℃の低温加熱後に得られた銅薄膜のXRDスペクトルを示す。低温焼結前の銅ナノ粒子に比べて(図5)、焼結による粒成長により回折ピーク強度が増大し、シャープになった。また、低温焼結後の銅薄膜が酸化していないことは、XRDスペクトルにおいて酸化銅のピークが観察されないことから確認された。
【0116】
銅ナノ粒子ペーストは、約80℃においても低温焼結が起こることが分かった。銅ナノ粒子ペースト(銅の含有量約30wt%)をPET基板上で減圧下にて、約80℃で低温加熱したところ、金属光沢のある銅薄膜が生成した。図9上に、減圧下にて約80℃で6時間低温加熱後に得られた銅薄膜のXRDスペクトルを示す。当該XRDスペクトルにより、低温焼結によるサイズ成長と酸化銅のピークが観察されないことが確認された。80℃での低温焼結後の銅ナノ粒子の赤外分光測定結果より(図9下)、低温焼結前に観測された銅ナノ微粒子の表面に吸着している1−アミノ−2−プロパノール分子の吸収(図6上)が、減圧下で消失していることが確認された。1−アミノ−2−プロパノール分子の沸点は160℃であるが、その揮発性により蒸発消失したため、沸点以下の80℃にもかかわらず銅ナノ粒子の焼結が起こったものと考えられる。
【0117】
操作3により、得られた銅ナノ粒子を空気雰囲気下、室温で一ヶ月保存したところ、銅の酸化が抑制されていることが、XRDスペクトルから確認された(図10上)。これに対し、オクタンによる保存を行わなかった銅の微粒子(平均粒子径4nm)を、空気雰囲気下にて乾燥状態で保存したところ、3日後には酸化が観察された(図10下)。
【0118】
<実施例2(銅ナノ微粒子及び各種試料の調製)>
酢酸銅(II)(0.136g)と2−ヒドロキシ酪酸(0.390g)と4vol%アンモニアを含むエタノール溶液(5 mL)をエチレングリコール(44mL)に溶解させ、0.015Mの酢酸銅溶液を調製した。上記酢酸銅溶液は、錯形成に伴い溶液は濃い青色に変化した。以下、これを「原料溶液」とする。
【0119】
原料溶液を1500rpmで撹拌しながら大気圧下(空気雰囲気下)で25℃において、銅モル換算で約30倍量のヒドラジン(0.74mL)を添加した。ヒドラジンの添加直後に、原料溶液から大量の気泡が発生して、瞬時に赤みのある黒色へと変化した。次いで、空気雰囲気下で1日放置した。
【0120】
上述の反応では、原料溶液を1500rpmの速い撹拌スピードで撹拌したため、均一な還元反応の進行による単分散なサイズの銅ナノ粒子が生成し易く、生成した粒子の凝集の抑制が容易であった。上記反応の結果、溶液に分散した銅ナノ粒子が得られた。 銅ナノ粒子が分散した溶液からの銅ナノ粒子の分離・精製、及び回収した銅ナノ粒子の保存は、下記の操作により行った。
【0121】
(操作1)
実施例2で得られた、銅ナノ粒子が分散した溶液と、ジメチルスルホキシド (DMSO)との体積比が1:3となるように、銅ナノ粒子が分散した溶液にDMSOを添加した。銅ナノ粒子の凝集により溶液が懸濁した。懸濁した溶液に、6000rpm、10分間の条件で遠心分離を行い、銅ナノ粒子の沈殿物が沈殿した溶液を得た。
【0122】
(操作2)
操作1で得られた銅ナノ粒子にエチレングリコールを加えて銅ナノ粒子を分散させ、銅ナノ粒子分散液(ペースト)を得た。
【0123】
(操作3)
操作1で得られた銅ナノ粒子にエタノールを加えて銅ナノ粒子を分散させ、銅ナノ粒子分散液(ペースト)を得た。
【0124】
実施例2で得られた銅ナノ粒子の特性評価
実施例2の操作2で得られた銅ナノ粒子の紫外可視吸光スペクトルを図11に示す。約4nm以上の銅ナノ粒子では、通常プラズモン吸収が550〜600nmの領域で観測される。他方、約4nm以上の銅ナノ粒子で表面が酸化されると、プラズモン吸収が観測されなくなることから、プラズモン吸収は、銅ナノ粒子の酸化の指標に利用される。実施例2で得られた銅ナノ粒子は、銅ナノ粒子に起因するプラズモン吸収は見られたことから、銅ナノ粒子が得られていることが分かった。
【0125】
実施例2の操作3で得られた銅ナノ粒子のTEM観察像を図12に示す。銅ナノ粒子をエタノールに再分散させた試料は高い分散安定性を示した。図12のTEM観察像によれば、シングルナノサイズ(約3〜6nm)の単分散の銅ナノ微粒子が得られていることが分かる。この銅ナノ微粒子の粒子径分布は、平均粒子径が4.3±0.8 nmであった。
【0126】
銅ナノ微粒子のXRDスペクトルを図13に示す。銅(111)面に由来するピークが確認され、酸化銅に由来するピークが確認されていないことから、耐酸化性を有する銅ナノ粒子が得られていることが分かった。XRDスペクトルから粒子サイズは約4nmと見積もられ、TEM観察から評価されたサイズと一致している。これにより、得られた銅ナノ粒子は銅の単結晶であることが分かった。
【0127】
銅ナノ粒子の高い分散安定性と耐酸化性の理由を調べるために、銅ナノ粒子の表面状態を赤外分光測定により調べた。赤外分光測定の結果を図14下に示す。比較のために、2−ヒドロキシ酪酸のみを測定した赤外分光測定結果も図14上に示す。図14の結果から、3500〜3000cm−1の領域に水酸基の吸収、3000〜2800cm−1の領域にメチル基、エチル基の吸収が見られ、銅ナノ粒子と2−ヒドロキシ酪酸の赤外吸収スペクトルが一致している。これにより、実施例2により製造された銅ナノ粒子は、2−ヒドロキシ酪酸分子が表面保護層として存在していることが分かった。特に、2級アルコール部分の水酸基が関連する3500〜3000cm−1の吸収がブロード化していることから、実施例2で得られた銅ナノ粒子は、2−ヒドロキシ酪酸分子が銅ナノ粒子表面に吸着することにより高い分散安定性と高い耐酸化性を示すと考えられる。
【0128】
<比較例1(銅原料の相違)>
銅原料として、酢酸銅の代わりにギ酸銅を用いた以外は実施例1と同様にして、銅ナノ粒子を調製した。 実施例1で合成した試料では赤褐色の分散性の高い銅ナノ粒子分散液が得られたが、酢酸銅の代わりにギ酸銅を用いて合成された比較例1の銅ナノ粒子は、凝集して平均粒子径が10nmを超え、懸濁して溶液の色が茶褐色であった。比較例1では、溶液中の銅ナノ粒子の分散性は低かった。
【0129】
<比較例2(反応溶媒の相違)>
溶媒をエタノールに代えた以外は実施例1と同様にして、銅ナノ粒子を調製した。比較例2では、ヒドラジン還元剤を添加した直後に、銅ナノ粒子が凝集して平均粒子径が10nmを超え、懸濁した。比較例2では、いずれも溶液中の銅ナノ粒子の分散性は低かった。
【0130】
<比較例3及び4(保護剤の相違)>
1−アミノ−2−プロパノールに代えて、モノエタノールアミン(比較例3)、又はオクチルアミン(比較例4)を用いた以外は実施例1と同様にして、銅ナノ粒子を調製した。比較例3及び4では、いずれも銅ナノ粒子が凝集して平均粒子径が10nmを超え、懸濁した。比較例3及び4では、溶液中の銅ナノ粒子の分散性は低かった。
【0131】
<比較例5(還元剤の相違)>
還元剤を水素化ホウ素ナトリウムに代えた以外は実施例1と同様にして、銅ナノ粒子を調製した。比較例5では、還元直後に銅ナノ粒子が凝集して平均粒子径が10nmを超え、懸濁した。比較例5では、溶液中の銅ナノ粒子の分散性は低かった。
【0132】
<実施例3〜12(銅ナノ微粒子及び銅微粒子含有銅ナノ粒子分散液の調製)>
(銅ナノ粒子の調製)
実施例1と同様にして、原料溶液にヒドラジンを添加し、空気雰囲気下で24時間放置して、銅ナノ粒子が分散した分散液を調製した。また、体積比で分散液の2倍量のN,N−ジメチルアセトアミド(以下DMAとも示す)を別途用意した。DMAの量は、25mlであった。ヒドラジン添加から24時間後、用意したDMAに対して銅ナノ粒子分散液12.5mlを液滴が見える程度にゆっくりと滴下して混合溶液を調製した。DMAにより、過剰なヒドラジン、イソプロパノールアミン、及びエチレングリコールが除去できた。当該混合溶液を、数分間大気中に放置して、空気にさらした。上述の操作により、混合溶液が懸濁し始めて、遠心分離での粒子の回収が可能な状態となった。
【0133】
懸濁した混合溶液に、6000rpm、2分間の条件で遠心分離を行い、銅ナノ粒子の沈殿物が沈殿した溶液を得た。溶液から透明な上澄みを除去し、銅ナノ粒子の沈殿物を採取して、7mlのDMAを添加した。次いで、ボルテックスミキサーを用いて銅ナノ粒子の沈殿物をDMA中に分散させて、再洗浄を行った。
【0134】
銅ナノ粒子の沈殿物がDMA中に分散したことを確認した後、直ぐに6000rpm、3分間の条件で遠心分離を行った。上述の操作により、ほぼ透明な上澄みと銅ナノ粒子の沈殿物とに分離した。上澄みを除去し、残った沈殿物に対してトルエンを10ml添加して、ボルテックスミキサーを用いて再分散させて洗浄を行った。銅ナノ粒子の沈殿物がトルエン中に分散したことを確認後、6000rpm、1分間の条件で遠心分離を行って銅ナノ粒子の沈殿物を分離した。透明な上澄みを除去し、残った沈殿物に対してヘキサンを10ml添加して、ボルテックスミキサーを用いて再分散させて洗浄を行った。銅ナノ粒子の沈殿物がヘキサン中に分散したことを確認後、6000rpm、5分間の条件で遠心分離を行い、透明な上澄みを除去して銅ナノ粒子の沈殿物を分離し、洗浄を完了した。得られた銅ナノ粒子の平均粒子径は、3nmであった。
【0135】
<実施例3〜8(銅ナノ微粒子及び銅微粒子含有銅ナノ粒子分散液の調製)>
上記の操作により精製分離して得られた平均粒子径3nmの銅ナノ粒子と、平均粒子径1μmの銅微粒子とを、表1に記載の混合比で混合した混合粒子を調製した。なお、表1における混合比(X)(質量%)は、銅ナノ粒子の質量(Ma)と、銅微粒子の質量(Mb)との合計(Ma+Mb)に対する銅ナノ粒子の質量(Ma)の割合を質量%で示した値であり、下記計算式により算出した。
(X)(質量%)=[(Ma)/(Ma+Mb)]×100
得られた混合粒子に、プロピレングリコールとグリセロールとを1:1(体積比)の割合で混合して得られた溶媒を、銅の含有量が40質量%となるようにして添加した。溶媒添加後、溶媒の上層に浮上してきた、混合粒子中に残留していたヘキサンを除去した。更に、ボルテックスミキサーを用いて、混合粒子と溶媒とを混合して、混合粒子に残留していたヘキサンを分離除去した。次いで、減圧乾燥を3分間行い、分散液中のヘキサンを全て除去した。以上の操作により、銅ナノ粒子及び銅微粒子が分散媒中に分散されている銅ナノ粒子分散液を調製し、これを銅ナノインクとした。
【0136】
上述のようにして得られた銅ナノインクを用いて、バーコーターによりポリイミド基板上に製膜し、塗膜を形成した。この塗膜を、窒素の流量1mL/minの条件下で85℃で1時間30分間乾燥させ、窒素の流量1mL/minの条件下で150℃で15分間熱焼成を行い、混合粒子を焼結させて、銅の薄膜を形成した。
【0137】
<比較例6>
平均粒子径1μmの銅微粒子のみを用い、銅ナノ粒子を混合しなかった以外は実施例3〜8と同様にして、銅ナノインクを調製し、当該銅ナノインクを用いて銅の薄膜を形成した。
【0138】
実施例3〜8及び比較例6で調製された銅薄膜について、三菱化学アナテリックロレスターを用いて四探針法による電気抵抗測定を行った。結果を表1及び図15に示す。
【0139】
【表1】
【0140】
<実施例9〜12(銅ナノ微粒子及び銅微粒子含有銅ナノ粒子分散液の調製)>
混合粒子中の、平均粒子径3nmの銅ナノ粒子の質量(Ma)と、銅微粒子の質量(Mb)との合計(Ma+Mb)に対する前記銅ナノ粒子の質量(Ma)の割合(混合比(X))を15質量%とした。また、用いる銅微粒子の平均粒子径を表2に示す値とした。それ以外は実施例3〜8と同様にして、銅ナノインクを調製し、当該銅ナノインクを用いて銅の薄膜を形成した。
【0141】
実施例9〜12で調製された銅薄膜について、三菱化学アナテリックロレスターを用いて四探針法による電気抵抗測定を行った。結果を表2及び図16に示す。
【0142】
【表2】
【0143】
表2の結果から、銅微粒子の平均粒子径が5μm以下であると、均一な銅薄膜が形成されて、10−2Ω/□との低い電気抵抗値を示した(実施例9及び10)。一方、銅微粒子の平均粒子径が45μm以上であると、銅薄膜に若干亀裂が生じ、電気抵抗値が10−1Ω/□となり、5μm以下の場合よりも増大した(実施例11及び12)。従って、銅ナノ粒子、及び、銅微粒子が分散媒中に分散されている銅ナノ粒子分散液を含有する銅ナノインクでは、平均粒子径が5μm以下の銅微粒子を用いると、当該銅ナノインクを用いて形成された銅薄膜の電気抵抗値を特に低くできることが分かった。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16