特許第6302693号(P6302693)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日東電工株式会社の特許一覧

特許6302693中空封止用樹脂シート及び中空パッケージの製造方法
<>
  • 特許6302693-中空封止用樹脂シート及び中空パッケージの製造方法 図000007
  • 特許6302693-中空封止用樹脂シート及び中空パッケージの製造方法 図000008
  • 特許6302693-中空封止用樹脂シート及び中空パッケージの製造方法 図000009
  • 特許6302693-中空封止用樹脂シート及び中空パッケージの製造方法 図000010
  • 特許6302693-中空封止用樹脂シート及び中空パッケージの製造方法 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6302693
(24)【登録日】2018年3月9日
(45)【発行日】2018年3月28日
(54)【発明の名称】中空封止用樹脂シート及び中空パッケージの製造方法
(51)【国際特許分類】
   H01L 23/29 20060101AFI20180319BHJP
   H01L 23/31 20060101ALI20180319BHJP
   H01L 23/08 20060101ALI20180319BHJP
【FI】
   H01L23/30 R
   H01L23/08 A
【請求項の数】5
【全頁数】16
(21)【出願番号】特願2014-22306(P2014-22306)
(22)【出願日】2014年2月7日
(65)【公開番号】特開2014-209567(P2014-209567A)
(43)【公開日】2014年11月6日
【審査請求日】2016年12月15日
(31)【優先権主張番号】特願2013-69939(P2013-69939)
(32)【優先日】2013年3月28日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000003964
【氏名又は名称】日東電工株式会社
(74)【代理人】
【識別番号】110000729
【氏名又は名称】特許業務法人 ユニアス国際特許事務所
(72)【発明者】
【氏名】豊田 英志
(72)【発明者】
【氏名】清水 祐作
(72)【発明者】
【氏名】石坂 剛
(72)【発明者】
【氏名】石井 淳
【審査官】 豊島 洋介
(56)【参考文献】
【文献】 特開2011−12125(JP,A)
【文献】 特開2009−21559(JP,A)
【文献】 特開2003−298389(JP,A)
【文献】 特開2000−191890(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L21/54
23/00 −23/04
23/06 −23/10
23/16 −23/31
H03H 3/007− 3/10
9/00 − 9/76
(57)【特許請求の範囲】
【請求項1】
無機充填剤を70体積%以上90体積%以下の含有量で含み、
レーザー回折散乱法により測定した前記無機充填剤の粒度分布において、1μm以上10μm以下の粒径範囲に頻度分布のピークが少なくとも1つ存在し、かつ10μmを超えて100μm以下の粒径範囲に頻度分布のピークが少なくとも1つ存在し、
前記無機充填剤のBET比表面積が2m/g以上5m/g以下である中空封止用樹脂シート。
【請求項2】
硬化前の80℃における動的粘度が5000Pa・s以上30000Pa・s以下である請求項1に記載の中空封止用樹脂シート。
【請求項3】
前記無機充填剤がシリカ粒子、アルミナ粒子又はこれらの混合物である請求項1又は2に記載の中空封止用樹脂シート。
【請求項4】
前記無機充填剤が球状である請求項1〜3のいずれか1項に記載の中空封止用樹脂シート。
【請求項5】
被着体上に配置された1又は複数の電子デバイスを覆うように請求項1〜4のいずれかに記載の中空封止用樹脂シートを前記電子デバイス上に前記被着体と前記電子デバイスとの間の中空部を維持しながら積層する積層工程、及び
前記中空封止用樹脂シートを硬化させて封止体を形成する封止体形成工程
を含む中空パッケージの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、中空封止用樹脂シート及び中空パッケージの製造方法に関する。
【背景技術】
【0002】
電子デバイスパッケージの作製には、代表的に、バンプ等を介して基板などに固定された1又は複数の電子デバイスを封止樹脂にて封止し、必要に応じて封止体を電子デバイス単位のパッケージとなるようにダイシングするという手順が採用されている。このような封止樹脂として、シート状の封止樹脂が用いられることがある。
【0003】
近年、半導体パッケージと並んで、SAW(Surface Acoustic Wave)フィルタや、CMOS(Complementary Metal Oxide Semiconductor)センサ、加速度センサ等のMEMSと称される微小電子デバイスの開発が進められている。これらの電子デバイスを封止したパッケージは、それぞれ一般的に表面弾性波の伝播や光学系の維持、電子デバイスの可動部材の可動性を確保するための中空構造を有している。この中空構造は、基板と素子との間の空隙として設けられることが多い。封止の際には、可動部材の作動信頼性や素子の接続信頼性を確保するよう中空構造を維持しつつ封止する必要がある。例えば、特許文献1には、ゲル状の硬化性樹脂シートを用いて機能素子を中空モールドする技術が記載されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2006−19714号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記中空構造を与えるバンプはそのサイズが小さいほどコストが高くなるという事情や、上記可動部材の複雑化や複合化のための中空構造の拡大という要求に鑑み、今後はバンプ径を増加させて空隙を拡大するという方策が採られることが予想される。上記特許文献1に記載の技術では、素子と基板との間の中空構造として幅が数十μm程度の空隙までであれば所望の中空構造を維持しながら電子デバイスを封止することができる。しかしなら、中空構造として幅が100μm近い空隙を確保しながら封止するとなると、中空構造への樹脂流入が発生する等して対応が困難となり、パッケージ作製の歩留まりが低下する場合がある。
【0006】
本発明の目的は、中空構造の空隙の幅が100μm程度であっても高い歩留まりで中空パッケージを作製可能な中空封止用樹脂シート及び中空パッケージの製造方法を提供することにある。
【課題を解決するための手段】
【0007】
本発明者らは、鋭意検討した結果、下記構成を採用することにより上記課題を解決できることを見出し、本発明を完成させた。
【0008】
すなわち、本発明の中空封止用樹脂シートは、無機充填剤を70体積%以上90体積%以下の含有量で含み、
レーザー回折散乱法により測定した前記無機充填剤の粒度分布において、1μm以上10μm以下の粒径範囲に頻度分布のピークが少なくとも1つ存在し、かつ10μmを超えて100μm以下の粒径範囲に頻度分布のピークが少なくとも1つ存在し、
前記無機充剤のBET比表面積が2m/g以上5m/g以下である。
【0009】
当該中空封止用樹脂シートは、所定の粒度分布及びBET比表面積を有する無機充填剤を高含有量で含んでいるので、無機充填剤の凝集を抑制しながらも、中空構造付近の樹脂に対して流動を規制する作用(ダイラタンシー様作用)が付与され、中空構造への樹脂進入を効率良く防止することができる。その結果、空隙の幅が100μm程度であっても中空構造を維持しつつ高い歩留まりで中空パッケージを作製することができる。なお、無機充填剤の含有量、粒度分布及びBET比表面積の測定方法は実施例の記載による。
【0010】
当該中空封止用樹脂シートでは、硬化前の80℃における動的粘度が5000Pa・s以上30000Pa・s以下であることが好ましい。これにより、中空構造の確保と中空構造以外の部分(基板表面やチップ)での凹凸追従性とをより良好に両立させることができる。なお、動的粘度の測定方法は実施例の記載による。
【0011】
当該中空封止用樹脂シートでは、前記無機充填剤がシリカ粒子、アルミナ粒子又はこれらの混合物であることが好ましい。これにより、硬化後の線膨張係数を低下させて信頼性の高いパッケージを得ることができる。
【0012】
当該中空封止用樹脂シートでは、前記無機充填剤が球状であることが好ましい。これにより、無機充填剤をより高含有量で配合して、無機充填剤を高充填の状態とすることができ、樹脂流動規制作用をより効率的に発揮することができる。
【0013】
本発明には、被着体上に配置された1又は複数の電子デバイスを覆うように当該中空封止用樹脂シートを前記電子デバイス上に前記被着体と前記電子デバイスとの間の中空部を維持しながら積層する積層工程、及び
前記中空封止用樹脂シートを硬化させて封止体を形成する封止体形成工程
を含む中空パッケージの製造方法も含まれる。
【図面の簡単な説明】
【0014】
図1】本発明の一実施形態に係る樹脂シートを模式的に示す断面図である。
図2A】本発明の一実施形態に係る中空パッケージの製造方法の一工程を模式的に示す図である。
図2B】本発明の一実施形態に係る中空パッケージの製造方法の一工程を模式的に示す図である。
図2C】本発明の一実施形態に係る中空パッケージの製造方法の一工程を模式的に示す図である。
図3】本発明の実施例3の中空封止用樹脂シート中の無機充填剤の粒度分布測定により得られる頻度分布曲線である。
【発明を実施するための形態】
【0015】
以下に実施形態を掲げ、本発明を詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
【0016】
《第1実施形態》
[中空封止用樹脂シート]
【0017】
図1は、本発明の一実施形態に係る中空封止用樹脂シート(以下、単に「樹脂シート」ともいう。)11を模式的に示す断面図である。樹脂シート11は、代表的に、ポリエチレンテレフタレート(PET)フィルムなどの支持体11a上に積層された状態で提供される。なお、支持体11aには樹脂シート11の剥離を容易に行うために離型処理が施されていてもよい。
【0018】
樹脂シート11はエポキシ樹脂、及びフェノール樹脂を含むことが好ましい。これにより、良好な熱硬化性が得られる。
【0019】
エポキシ樹脂としては、特に限定されるものではない。例えば、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、変性ビスフェノールA型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、変性ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂などの各種のエポキシ樹脂を用いることができる。これらエポキシ樹脂は単独で用いてもよいし2種以上併用してもよい。
【0020】
エポキシ樹脂の硬化後の靭性及びエポキシ樹脂の反応性を確保する観点からは、エポキシ当量150〜250、軟化点もしくは融点が50〜130℃の常温で固形のものが好ましく、なかでも、信頼性の観点から、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂がより好ましい。
【0021】
フェノール樹脂は、エポキシ樹脂との間で硬化反応を生起するものであれば特に限定されるものではない。例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、クレゾールノボラック樹脂、レゾール樹脂などが用いられる。これらフェノール樹脂は単独で用いてもよいし、2種以上併用してもよい。
【0022】
フェノール樹脂としては、エポキシ樹脂との反応性の観点から、水酸基当量が70〜250、軟化点が50〜110℃のものを用いることが好ましく、なかでも硬化反応性が高いという観点から、フェノールノボラック樹脂を好適に用いることができる。また、信頼性の観点から、フェノールアラルキル樹脂やビフェニルアラルキル樹脂のような低吸湿性のものも好適に用いることができる。
【0023】
エポキシ樹脂とフェノール樹脂の配合割合は、硬化反応性という観点から、エポキシ樹脂中のエポキシ基1当量に対して、フェノール樹脂中の水酸基の合計が0.7〜1.5当量となるように配合することが好ましく、より好ましくは0.9〜1.2当量である。
【0024】
樹脂シート11中のエポキシ樹脂及びフェノール樹脂の合計含有量の下限は、2.0重量%以上が好ましく、3.0重量%以上がより好ましい。2.0重量%以上であると、電子デバイス、基板などに対する接着力が良好に得られる。一方、上記合計含有量の上限は、20重量%以下が好ましく、10重量%以下がより好ましい。20重量%以下であると、樹脂シートの吸湿性を低減させることができる。
【0025】
樹脂シート11は、熱可塑性樹脂を含むことが好ましい。これにより、得られる中空封止用樹脂シートの耐熱性、可撓性、強度を向上させることができる。
【0026】
熱可塑性樹脂としては、天然ゴム、ブチルゴム、イソプレンゴム、クロロプレンゴム、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、6−ナイロンや6,6−ナイロンなどのポリアミド樹脂、フェノキシ樹脂、アクリル樹脂、PETやPBTなどの飽和ポリエステル樹脂、ポリアミドイミド樹脂、フッ素樹脂、スチレン−イソブチレン−スチレンブロック共重合体などが挙げられる。これらの熱可塑性樹脂は単独で、又は2種以上を併用して用いることができる。なかでも、樹脂シートにおける低応力性、低吸水性という観点から、スチレン−イソブチレン−スチレンブロック共重合体が好ましい。
【0027】
樹脂シート11中の熱可塑性樹脂の含有量は、1.0重量%以上が好ましく、1.5重量%以上がより好ましい。上記含有量が1.0重量%以上であると、樹脂シートの柔軟性、可撓性が得られる。樹脂シート11中の熱可塑性樹脂の含有量は、3.5重量%以下が好ましく、3.0重量%以下がより好ましい。3.5重量%以下であると、電子デバイスや基板に対する樹脂シートの接着性が良好である。
【0028】
樹脂シート11は、無機質充填剤を70体積%以上90体積%以下の含有量で含む。上記含有量の下限は74体積%以上が好ましく、78体積%以上がより好ましい。また、上記含有量の上限は、85体積%以下が好ましく、83体積%以下がより好ましい。無機充填剤の含有量を上記範囲とすることにより、中空構造付近における樹脂へのダイラタンシー様作用を好適に付与して中空構造を維持することができるとともに、硬化後の線膨張係数を低下させてパッケージの反りを防止し、高信頼性の中空パッケージを得ることができる。無機充填剤の含有量が上記下限未満であると、充分なダイラタンシー様作用を得られなかったり、パッケージの反りが生じたりする場合があり、上記上限を超えると樹脂シートの流動性や柔軟性が低下して基板やチップへの接着性が低下する場合がある。なお、無機充填剤が複数種の粒子の混合物である場合は、その混合物の含有量が上記範囲を満たす。
【0029】
無機質充填剤の含有量は、「重量%」を単位としても説明できる。代表的にシリカの含有量について、「重量%」を単位として説明する。シリカは通常、比重2.2g/cmであるので、シリカの含有量(重量%)の好適範囲は以下のとおりである。すなわち、樹脂シート11中のシリカの含有量は、81重量%以上が好ましく、84重量%以上がより好ましい。樹脂シート11中のシリカの含有量は、94重量%以下が好ましく、91重量%以下がより好ましい。
【0030】
アルミナは通常、比重3.9g/cmであるので、アルミナの含有量(重量%)の好適範囲は以下のとおりである。すなわち、樹脂シート11中のアルミナの含有量は、88重量%以上が好ましく、90重量%以上がより好ましい。樹脂シート11中のアルミナの含有量は、97重量%以下が好ましく、95重量%以下がより好ましい。
【0031】
樹脂シート11では、レーザー回折散乱法により測定した前記無機充填剤の粒度分布において、1μm以上10μm以下の粒径範囲に頻度分布のピークが少なくとも1つ存在し、かつ10μmを超えて100μm以下の粒径範囲に頻度分布のピークが少なくとも1つ存在する。各粒径範囲における頻度分布のピークは独立して少なくとも1つ存在すればよく、2以上の複数のピークが存在していてもよいが、組成の簡素化の点から各粒径範囲において頻度分布のピークは1つ存在すればよい。無機充填剤のレーザー回折散乱法による粒度分布が上記特定の関係にあることにより、中空構造付近における無機充填剤の高充填状態が得られ、これにより樹脂へダイラタンシー様作用を付与して封止時の中空構造への樹脂進入を好適に抑制することができる。なお、無機充填剤が複数種の粒子の混合物である場合は、その混合物の粒度分布が上記関係を満たす。
【0032】
無機充填剤のBET比表面積は2m/g以上5m/g以下であれば特に限定されないものの、その下限は2.0m/g以上が好ましく、2.5m/g以上がより好ましい。また、BET比表面積の上限は5.0m/g以下が好ましく、4.5m/g以下がより好ましい。無機充填剤のBET比表面積を上記範囲とすることにより、無機充填剤の凝集を抑制しながら高充填状態を達成することができ、より効率的にダイラタンシー様作用を付与することができる。無機充填剤のBET比表面積が上記下限未満であると、粒子が粗大化して粒子同士の相互作用が小さくなり、充分なダイラタンシー様作用が得られない場合がある。一方、BET比表面積が上記上限を超えると、粒子の凝集が強くなって樹脂シートの凹凸追従性が低下する場合がある。
【0033】
無機充填剤の形状は特に限定されず、球状(楕円体状を含む。)、多面体状、多角柱状、不定形状等の任意の形状であってもよいが、中空構造付近での高充填状態の達成や適度な流動性の観点から、球状が好ましい。
【0034】
無機質充填剤は、特に限定されるものではなく、従来公知の各種充填剤を用いることができ、例えば、石英ガラス、タルク、シリカ(溶融シリカや結晶性シリカなど)、アルミナ、窒化アルミニウム、窒化珪素、窒化ホウ素の粉末が挙げられる。これらは単独で用いてもよいし、2種以上併用してもよい。なかでも、線膨張係数を良好に低減できるという理由から、シリカ、アルミナが好ましく、シリカがより好ましい。
【0035】
シリカとしては、シリカ粉末が好ましく、溶融シリカ粉末がより好ましい。溶融シリカ粉末としては、球状溶融シリカ粉末、破砕溶融シリカ粉末が挙げられるが、流動性という観点から、球状溶融シリカ粉末が好ましい。
【0036】
無機充填剤の平均粒径は50μm以下の範囲のものを用いることが好ましく、0.1〜30μmの範囲のものを用いることがより好ましく、0.5〜20μmの範囲のものを用いることが特に好ましい。なお、平均粒径は、実施例における粒度分布測定の手順に従いD50として求められる。
【0037】
樹脂シート11は、硬化促進剤を含むことが好ましい。
【0038】
硬化促進剤としては、エポキシ樹脂とフェノール樹脂の硬化を進行させるものであれば特に限定されず、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレートなどの有機リン系化合物;2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾールなどのイミダゾール系化合物;などが挙げられる。なかでも、混練時の温度上昇によっても硬化反応が急激に進まず、樹脂シート11を良好に作製できるという理由から、2−フェニル−4,5−ジヒドロキシメチルイミダゾールが好ましい。
【0039】
硬化促進剤の含有量は、エポキシ樹脂及びフェノール樹脂の合計100重量部に対して0.1〜5重量部が好ましい。
【0040】
樹脂シート11は、難燃剤成分を含むことが好ましい。これにより、部品ショートや発熱などにより発火した際の、燃焼拡大を低減できる。難燃剤組成分としては、例えば水酸化アルミニウム、水酸化マグネシウム、水酸化鉄、水酸化カルシウム、水酸化スズ、複合化金属水酸化物などの各種金属水酸化物;ホスファゼン系難燃剤などを用いることができる。なかでも、難燃性、未硬化での柔軟性、硬化後の強度に優れるという理由から、ホスファゼン系難燃剤が好ましく、式(1)又は式(2)で表される化合物が好ましい。
【0041】
【化1】
(式中、R及びRは、同一若しくは異なって、アルコキシ基、フェノキシ基、アミノ基、水酸基、アリル基又はこれらの基からなる群より選択される少なくとも1種の基を有する1価の有機基を表す。xは3〜25の整数を表す。)
【0042】
【化2】
(式中、R及びRは、同一若しくは異なって、アルコキシ基、フェノキシ基、アミノ基、水酸基、アリル基又はこれらの基からなる群より選択される少なくとも1種の基を有する1価の有機基を表す。Rは、アルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される少なくとも1種の基を有する2価の有機基を表す。yは3〜25の整数を表す。zは3〜25の整数を表す。)
【0043】
及びRのアルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、t−ブトキシ基などが挙げられる。なかでも、炭素数4〜10のアルコキシ基が好ましい。
【0044】
及びRのフェノキシ基としては、例えば、式(3)で表される基が挙げられる。
【化3】
(式中、R11は、水素、水酸基、アルキル基、アルコキシ基、グリシジル基又はこれらの基からなる群より選択される少なくとも1種の基を有する1価の有機基を表す。)
【0045】
11のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、へキシル基、へプチル基、2−エチルヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基などが挙げられる。R11のアルコキシ基としては、R及びRのアルコキシ基と同様の基が挙げられる。
【0046】
及びRとしては、難燃性、硬化後の強度が良好に得られるという理由から、フェノキシ基が好ましく、式(3)で表される基がより好ましい。
【0047】
xは3〜25の整数を表すが、難燃性、硬化後の強度が良好に得られるという理由から、3〜10が好ましく、3〜4がより好ましい。
【0048】
式(2)において、R及びRのアルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、t−ブトキシ基などが挙げられる。なかでも、炭素数4〜10のアルコキシ基が好ましい。
【0049】
及びRのフェノキシ基としては、例えば、前記式(3)で表される基が挙げられる。
【0050】
及びRにおけるアルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される少なくとも1種の基を有する1価の有機基としては特に限定されない。
【0051】
及びRとしては、難燃性、硬化後の強度が良好に得られるという理由から、フェノキシ基が好ましく、式(3)で表される基がより好ましい。
【0052】
の2価の有機基が有するアルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、t−ブトキシ基などが挙げられる。なかでも、炭素数4〜10のアルコキシ基が好ましい。
【0053】
の2価の有機基が有するフェノキシ基としては、例えば、前記式(3)で表される基が挙げられる。
【0054】
yは3〜25の整数を表すが、難燃性、硬化後の強度が良好に得られるという理由から、3〜10が好ましい。
【0055】
zは3〜25の整数を表すが、難燃性、硬化後の強度が良好に得られるという理由から、3〜10が好ましい。
【0056】
少量でも難燃効果を発揮するという観点から、ホスファゼン系難燃剤に含まれるリン元素の含有率は、12重量%以上であることが好ましい。
【0057】
樹脂シート11中の難燃剤成分の含有量は、全有機物中の10重量%以上が好ましく、15重量%以上がより好ましい。10重量%以上であると、難燃性が良好に得られる。樹脂シート11中の熱可塑性樹脂の含有量は、全有機物中の30重量%以下が好ましく、25重量%以下がより好ましい。30重量%以下であると、硬化物の物性低下(具体的には、ガラス転移温度や高温樹脂強度などの物性の低下)が少ない傾向がある。
【0058】
樹脂シート11は、シランカップリング剤を含むことが好ましい。シランカップリング剤としては特に限定されず、3−グリシドキシプロピルトリメトキシシランなどが挙げられる。
【0059】
樹脂シート11中のシランカップリング剤の含有量は、0.1〜3重量%が好ましい。0.1重量%以上であると、硬化後の樹脂シートの硬度を高めることができるとともに、吸水率を低減させることができる。一方、上記含有量が3重量%以下であると、アウトガスの発生を抑制することができる。
【0060】
樹脂シート11は、顔料を含むことが好ましい。顔料としては特に限定されず、カーボンブラックなどが挙げられる。
【0061】
樹脂シート11中の顔料の含有量は、0.1〜2重量%が好ましい。0.1重量%以上であると、良好なマーキング性が得られる。2重量%以下であると、硬化後の樹脂シートの強度を確保することができる。
【0062】
なお、樹脂組成物には、上記の各成分以外に必要に応じて、他の添加剤を適宜配合できる。
【0063】
樹脂シート11の硬化前の80℃における動的粘度は5000Pa・s以上30000Pa・s以下であることが好ましく、7000Pa・s以上25000Pa・s以下であることがより好ましく、10000Pa・s以上20000Pa・s以下であることがさらに好ましい。樹脂シート11の動的粘度が上記範囲とすることにより、中空構造の確保と中空構造以外の部分での凹凸追従性との両立を効率良く図ることができる。
【0064】
[中空封止用樹脂シートの製造方法]
樹脂シート11の製造方法は特に限定されないが、混練物を調製し、得られた混練物をシート状に加工する方法が好ましい。具体的には、上述の各成分をミキシングロール、加圧式ニーダー、押出機などの公知の混練機で溶融混練することにより混練物を調製し、得られた混練物をシート状に加工する。混練条件として、温度は、上述の各成分の軟化点以上であることが好ましく、例えば30〜150℃、エポキシ樹脂の熱硬化性を考慮すると、好ましくは40〜140℃、さらに好ましくは60〜120℃である。時間は、例えば1〜30分間、好ましくは5〜15分間である。
【0065】
混練は、減圧条件下(減圧雰囲気下)で行うことが好ましい。減圧条件下の圧力の上限は、好ましくは0.1kg/cm以下、より好ましくは0.05kg/cm以下である。減圧条件下の圧力の下限は低いほど好ましいが、生産性や物理的制限から、1×10−4kg/cm以上であってもよい。これにより、混練物への気体の混入を防止でき、得られる混練物における気孔の発生を抑制することができる。
【0066】
溶融混練後の混練物は、冷却することなく高温状態のままで加工することが好ましい。加工方法としては特に制限されず、平板プレス法、Tダイ押出法、ロール圧延法、ロール混練法、インフレーション押出法、共押出法、カレンダー成形法などなどが挙げられる。加工温度としては上述の各成分の軟化点以上が好ましく、エポキシ樹脂の熱硬化性および成形性を考慮すると、例えば40〜150℃、好ましくは50〜140℃、さらに好ましくは70〜120℃である。
【0067】
樹脂シート11の厚さは特に限定されないが、100〜2000μmであることが好ましい。上記範囲内であると、良好に電子デバイスを封止することができる。また、樹脂シートを薄型にすることで、発熱量を低減でき、硬化収縮が起こりにくくなる。この結果、パッケージ反り量を低減でき、より信頼性の高い中空パッケージが得られる。
【0068】
樹脂シート11は、単層構造であってもよいし、2以上の樹脂シートを積層した多層構造であってもよいが、層間剥離のおそれがなく、シート厚の均一性が高く、低吸湿化し易いという理由から、単層構造が好ましい。
【0069】
樹脂シート11は、SAW(Surface Acoustic Wave)フィルタ;圧力センサ、振動センサなどのMEMS(Micro Electro Mechanical Systems);LSIなどのIC、トランジスタなどの半導体;コンデンサ;抵抗;CMOSセンサなどの電子デバイスの封止に使用される。なかでも、中空封止が必要な電子デバイス(具体的には、SAWフィルタ、MEMS)の封止に好適に使用でき、SAWフィルタの封止に特に好適に使用できる。
【0070】
[中空パッケージの製造方法]
図2A〜2Cはそれぞれ、本発明の一実施形態に係る中空パッケージの製造方法の一工程を模式的に示す図である。中空封止方法としては特に限定されず、従来公知の方法で封止できる。例えば、被着体上の電子デバイスを覆うように未硬化の樹脂シート11を基板上に中空構造を維持しながら積層(載置)し、次いで樹脂シート11を硬化させて封止する方法などが挙げられる。被着体としては特に限定されず、例えば、プリント配線基板、セラミック基板、シリコン基板、金属基板等が挙げられる。本実施形態では、プリント配線基板12上に搭載されたSAWチップ13を樹脂シート11により中空封止して中空パッケージを作製する。
【0071】
(SAWチップ搭載基板準備工程)
SAWチップ搭載基板準備工程では、複数のSAWチップ13が搭載されたプリント配線基板12を準備する(図2A参照)。SAWチップ13は、所定の櫛形電極が形成された圧電結晶を公知の方法でダイシングして個片化することにより形成できる。SAWチップ13のプリント配線基板12への搭載には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。SAWチップ13とプリント配線基板12とはバンプなどの突起電極13aを介して電気的に接続されている。また、SAWチップ13とプリント配線基板12との間は、SAWフィルタ表面での表面弾性波の伝播を阻害しないように中空部分14を維持するようになっている。SAWチップ13とプリント配線基板12との間の距離は適宜設定でき、一般的には10〜100μm程度である。
【0072】
(封止工程)
封止工程では、SAWチップ13を覆うようにプリント配線基板12へ樹脂シート11を積層し、SAWチップ13を樹脂シート11で樹脂封止する(図2B参照)。樹脂シート11は、SAWチップ13及びそれに付随する要素を外部環境から保護するための封止樹脂として機能する。
【0073】
樹脂シート11をプリント配線基板12上に積層する方法は特に限定されず、熱プレスやラミネータなど公知の方法により行うことができる。熱プレス条件としては、温度が、例えば、40〜100℃、好ましくは50〜90℃であり、圧力が、例えば、0.1〜10MPa、好ましくは0.5〜8MPaであり、時間が、例えば0.3〜10分間、好ましくは0.5〜5分間である。また、樹脂シート11のSAWチップ13及びプリント配線基板12への密着性および追従性の向上を考慮すると、減圧条件下(例えば0.1〜5kPa)においてプレスすることが好ましい。
【0074】
(封止体形成工程)
封止体形成工程では、樹脂シート11を熱硬化処理して封止体15を形成する(図2B参照)。熱硬化処理の条件として、加熱温度が好ましくは100℃以上、より好ましくは120℃以上である。一方、加熱温度の上限が、好ましくは200℃以下、より好ましくは180℃以下である。加熱時間が、好ましくは10分以上、より好ましくは30分以上である。一方、加熱時間の上限が、好ましくは180分以下、より好ましくは120分以下である。また、必要に応じて加圧してもよく、好ましくは0.1MPa以上、より好ましくは0.5MPa以上である。一方、上限は好ましくは10MPa以下、より好ましくは5MPa以下である。
【0075】
(ダイシング工程)
続いて、封止体15のダイシングを行ってもよい(図2C参照)。これにより、SAWチップ13単位での中空パッケージ18を得ることができる。
【0076】
(基板実装工程)
必要に応じて、中空パッケージ18に対して再配線及びバンプを形成し、これを別途の基板(図示せず)に実装する基板実装工程を行うことができる。中空パッケージ18の基板への実装には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。
【0077】
《第2実施形態》
第1実施形態では、各配合成分をニーダー等で混練して混練物を調製し、この混練物を押出成形してシート状に形成している。これに対し、本実施形態では、各成分を有機溶剤等に溶解又は分散したワニスを塗工してシート状に形成する。
【0078】
ワニスを用いる具体的な作製手順としては、上記成分及び必要に応じて他の添加剤を常法に準じて適宜混合し、有機溶剤に均一に溶解あるいは分散させ、ワニスを調製する。ついで、上記ワニスをポリエステル等の支持体上に塗布し乾燥させることにより中空封止用樹脂シート11を得ることができる。そして必要により、中空封止用樹脂シートの表面を保護するためにポリエステルフィルム等の剥離シートを貼り合わせてもよい。剥離シートは封止時に剥離する。
【0079】
上記有機溶剤としては、特に限定されるものではなく従来公知の各種有機溶剤、例えばメチルエチルケトン、アセトン、シクロヘキサノン、ジオキサン、ジエチルケトン、トルエン、酢酸エチル等を用いることができる。これらは単独で用いてもよいし、2種以上併せて用いてもよい。また通常、ワニスの固形分濃度が30〜95重量%の範囲となるように有機溶剤を用いることが好ましい。
【0080】
有機溶剤乾燥後のシートの厚みは、特に制限されるものではないが、厚みの均一性と残存溶剤量の観点から、通常、5〜100μmに設定することが好ましく、より好ましくは20〜70μmである。
【実施例】
【0081】
以下に、この発明の好適な実施例を例示的に詳しく説明する。ただし、この実施例に記載されている材料や配合量などは、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
【0082】
実施例で使用した成分について説明する。
エポキシ樹脂:新日鐵化学(株)製のYSLV−80XY(ビスフェノールF型エポキシ樹脂、エポキン当量200g/eq.、軟化点80℃)
フェノール樹脂:明和化成社製のMEH−7851−SS(ビフェニルアラルキル骨格を有するフェノール樹脂、水酸基当量203g/eq.、軟化点67℃)
熱可塑性樹脂:カネカ社製のSIBSTER 072T(スチレン−イソブチレン−スチレンブロック共重合体)
無機充填剤1:電気化学工業社製のFB−9454FC(溶融球状シリカ、平均粒子径20μm)、
無機充填剤2:龍森社製のEMIX300(微紛シリカ、比表面積30m/g)
無機充填剤3:龍森社製のEMIX100(微紛シリカ、比表面積50m/g)
シランカップリング剤:信越化学社製のKBM−403(3−グリシドキシプロピルトリメトキシシラン)
カーボンブラック:三菱化学社製の#20
難燃剤:伏見製薬所製のFP−100(ホスファゼン系難燃剤:式(4)で表される化
合物)
【化4】
(式中、mは3〜4の整数を表す。)
硬化促進剤:四国化成工業社製の2PHZ−PW(2−フェニル−4,5−ジヒドロキシメチルイミダゾール)
【0083】
[実施例1〜4及び比較例1〜2]
表1に記載の配合比に従い、各成分を配合し、ロール混練機により60〜120℃、10分間、減圧条件下(0.01kg/cm)で溶融混練し、混練物を調製した。次いで、得られた混練物を平板プレス法によりシート状に成形して、表1に示す厚さの中空封止用樹脂シートを作製した。
【0084】
[実施例5]
表1に記載の配合比に従い、各成分をメチルエチルケトンとトルエンとの1:1混合溶剤に溶解ないし分散し、固形分40重量%のワニスを作製した。次に、離型処理を施したPETフィルム上に、溶剤乾燥後の塗膜の厚さが50μmになるようにワニスを塗工し、その後、乾燥条件を120℃、3分として塗膜を乾燥させて、厚さ50μmの樹脂シートを得た。得られた樹脂シートを、ラミネータを用いて厚み200μmになるまで積層し、厚さ200μmの中空封止用樹脂シートを作製した。
【0085】
(無機充填剤の粒度分布の測定)
実施例及び比較例のそれぞれの中空封止用樹脂シートをるつぼに入れ、大気雰囲気下、700℃で2時間強熱して灰化させた。得られた灰分を純水中に分散させて10分間超音波処理し、レーザー回折散乱式粒度分布測定装置(ベックマンコールター社製、「LS 13 320」;湿式法)を用いて粒度分布(体積基準)を求めた。なお、中空封止用樹脂シートの組成として無機充填剤以外は有機成分であり、上記の強熱処理により実質的に全ての有機成分が焼失することから、得られる灰分を無機充填剤とみなして測定を行った。結果を表1に示す。
【0086】
また、図3に実施例3の中空封止用樹脂シートの無機充填剤の粒度分布測定により得られる頻度分布曲線を示す。図3より、実施例3の無機充填剤では、1μm以上10μm以下の粒径範囲、及び10μmを超えて100μm以下の粒径範囲のそれぞれにおいて頻度分布のピークが1つ存在していたことが分かる。
【0087】
(中空封止用樹脂シートの動的粘度の測定)
熱硬化前の中空封止用樹脂シートの80℃での動的粘度を測定した。動的粘度は、TAインスツルメント社製粘弾性測定装置ARESを用いて、パラレルプレート法により測定した値とした。より詳細には、ギャップ100μm、回転プレート直径20mm、回転速度10s−1の条件にて、50℃から200℃の範囲で粘度を測定し、その際に得られる80℃での粘度を動的粘度とした。結果を表1に示す。
【0088】
(無機充填剤のBET比表面積の測定)
BET比表面積は、BET吸着法(多点法)により測定した。具体的には、Quantachrome製4連式比表面積・細孔分布測定装置「NOVA−4200e型」を用い、上記「無機充填剤の粒度分布の測定」の項に従って得られる灰分を110℃6時間以上真空脱気した後に、窒素ガス中、77.35Kの温度下で測定した。
【0089】
(パッケージ中空部への樹脂進入性及び無機充填剤の凝集の評価)
アルミニウム櫛形電極が形成された以下の仕様のSAWチップを下記ボンディング条件にてガラス基板に実装したSAWチップ実装基板を作製した。SAWチップとガラス基板との間のギャップ幅は、実施例1〜3、5及び比較例1〜2では30μm、実施例4では90μmであった。
【0090】
<SAWチップ>
チップサイズ:1.2mm□(厚さ150μm)
バンプ材質(実施例1〜3、5及び比較例1〜2):Au(高さ30μm)
バンプ材質(実施例4):半田(鉛フリータイプ)(高さ90μm)
バンプ数:6バンプ
チップ数:100個(10個×10個)
【0091】
<ボンディング条件>
装置:パナソニック電工(株)製
ボンディング条件:200℃、3N、1sec、超音波出力2W
【0092】
得られたSAWチップ実装基板上に、以下に示す加熱加圧条件下、各中空封止シートを真空プレスにより貼付けた。
【0093】
<貼り付け条件>
温度:60℃
加圧力:4MPa
真空度:1.6kPa
プレス時間:1分
【0094】
大気圧に開放した後、熱風乾燥機中、150℃、1時間の条件で中空封止用樹脂シートを熱硬化させ、封止体を得た。ガラス基板側から電子顕微鏡(KEYENCE社製、商品名「デジタルマイクロスコープ」、200倍)により、SAWチップとガラス基板との間の中空部への樹脂の進入量を測定した。樹脂進入量は、中空封止シートによる封止前にガラス基板側から電子顕微鏡でSAWチップの端部の位置を確認及び記憶しておき、封止後に再度ガラス基板側から電子顕微鏡で観察し、封止前後での観察像を比較して、封止前に確認しておいたSAWチップの端部から中空部へ進入した樹脂の最大到達距離を測定し、これを樹脂進入量とした。樹脂進入量が20μm以下であった場合を「○」、20μmを超えていた場合を「×」として評価した。
【0095】
また、無機充填剤の凝集に関しては、中空封止シートに凝集物が目視で確認されず、50倍の顕微鏡観察にて封止時の良好な凹凸追従性が得られた場合を「○」、中空封止用樹脂シートに凝集物が目視で確認され、50倍の顕微鏡観察にて封止時の良好な凹凸追従性が得られなかった場合を「×」として評価した。なお、凹凸追従性の評価は、作製した封止シートをカッターにて切断し、切断面をビューラー製自動研磨装置にて研磨し、研磨後の切断面を顕微鏡にて観察して、中空封止用樹脂シートと基板ないしチップとの間での空隙の有無を良否の判断の基準とした。樹脂進入性及び凝集の各評価の結果を表1に示す。
【0096】
【表1】
【0097】
表1から分かるように、実施例1〜5のSAWチップパッケージでは、中空封止シートの樹脂成分の中空部への進入が抑制されており、中空部が拡大しても高品質の中空パッケージを作製可能であることが分かる。比較例1では中空部への樹脂進入量が20μmを超えていた。一方、比較例2では、無機充填剤の凝集が生じており、封止時の凹凸追従性が劣っていることから、中空部への樹脂進入の評価を行うことができなかった。
【符号の説明】
【0098】
11 中空封止用樹脂シート
11a 支持体
13 SAWチップ
15 封止体
18 中空パッケージ
図1
図2A
図2B
図2C
図3