(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0016】
本発明の一実施形態を、図面を参照して説明する。
図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態における内燃機関は、火花点火式の4ストロークエンジンであり、複数の気筒1(
図1には、そのうち一つを図示している)を具備している。各気筒1の吸気ポート近傍には、燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。
【0017】
吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。
【0018】
排気を排出するための排気通路4は、気筒1内で燃料を燃焼させた結果発生した排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。
【0019】
排気通路4における触媒41の上流及び下流には、排気通路を流通する排気ガスの空燃比を検出するための空燃比センサ43、44を設置する。空燃比センサ43、44はそれぞれ、排気ガスの空燃比に対して非線形な出力特性を有するO
2センサであってもよく、排気ガスの空燃比に比例した出力特性を有するリニアA/Fセンサであってもよい。本実施形態では、触媒41の上流側及び下流側の各空燃比センサ43、44について、排気ガス中の酸素濃度に応じた電圧信号を出力するO
2センサを想定している。O
2センサ43、44の出力特性は、理論空燃比近傍の一定範囲(ウィンドウ)では空燃比に対する出力の変化率が大きく急峻な傾きを示し、それよりも空燃比が大きいリーン領域では低位飽和値に漸近し、空燃比が小さいリッチ領域では高位飽和値に漸近する、いわゆるZ特性曲線を描く。
【0020】
外部EGR装置2は、いわゆる高圧ループEGRを実現するものであり、排気通路4における触媒41の上流側と吸気通路3におけるスロットルバルブ32の下流側とを連通するEGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。EGR通路21の入口は、排気通路4における排気マニホルド42またはその下流の所定箇所に接続している。EGR通路21の出口は、吸気通路3におけるスロットルバルブ32の下流の所定箇所、具体的にはサージタンク33に接続している。
【0021】
図2に示すように、本実施形態における内燃機関では、クランクスプロケット71、吸気側スプロケット72及び排気側スプロケット73にタイミングチェーン74を巻き掛け、このタイミングチェーン74により、クランクシャフトからもたらされる回転駆動力を吸気側スプロケット72を介して吸気カムシャフトに、排気側スプロケット73を介して排気カムシャフトに、それぞれ伝達している。
【0022】
その上で、吸気側スプロケット72と吸気カムシャフトとの間に、VVT機構6を介設している。本実施形態におけるVVT機構6は、クランクシャフトに対する吸気カムシャフトの回転位相を変化させることにより吸気バルブの開閉タイミングを変化させるものである。
【0023】
VVT機構6のハウジング61は、吸気側スプロケット72に固着しており、吸気側スプロケット72とハウジング61とは一体となってクランクシャフトに同期して回転する。これに対し、吸気カムシャフトの一端部に固着したロータ62は、ハウジング61内に収納され、吸気側スプロケット72及びハウジング61に対して相対的に回動することが可能である。ハウジング61の内部には、作動液が流出入する複数の流体室が形成され、各流体室は、ロータ62の外周部に成形されたベーン621によって進角室612と遅角室611とに区画されている。
【0024】
VVT機構6の液圧(油圧)回路には、オイルパン81内に蓄えられた作動液が液圧ポンプ82より供給される。液圧ポンプ82は、内燃機関からの動力で駆動される。液圧ポンプ82とVVT機構6との間には、切換制御弁であるOCV(Oil Control Valve)9を設けている。作動液の流量及び方向をこのOCV9を介して操作することで、オイルパン81から汲み上げた作動液を進角室612または遅角室611に選択的に供給することができる。さすれば、ハウジング61がロータ62に対して相対回動し、吸気バルブの開閉タイミングを進角または遅角させることができる。
【0025】
OCV9は、いわゆる電磁式の四方向スプール弁である。
図2に示すように、OCV9は、液圧ポンプ82の吐出口と接続する供給ポート91、ハウジング61の進角室612と接続するAポート92、ハウジング61の遅角室611と接続するBポート93、並びにオイルパン81と接続するドレインポート94、95を有している。OCV9のスプールは、進退動作により内部粒体経路を切り換えて、Aポート92及びBポート93をそれぞれ供給ポート91、ドレインポート94、95の何れかに連通させる。また、スプール96が中立位置をとるときには内部流体経路が断絶し、Aポート92及びBポート93を供給ポート91にもドレインポート94、95にも連通させない。
図2では、スプール96が中立位置にある状態を示している。
【0026】
スプール96はソレノイド97によって駆動する。即ち、制御信号mとしてソレノイド97に入力するパルス電流(または、電圧)のデューティ比に応じて、スプール96の進退の距離が変化する。
【0027】
制御信号mのデューティ比が比較的大きい場合には、液圧ポンプ82から吐出される作動液圧がAポート92を通じて進角室612に供給される一方、既に遅角室611に貯留していた作動液がBポート93を通じてオイルパン81に向けて流下することとなり、進角室612の容積が拡大、遅角室611の容積が縮小するようにベーン621及びロータ62が回動する。結果、吸気カムシャフトの回転位相、換言すれば吸気カムシャフトのクランクシャフトに対する変位角が進角して、吸気バルブタイミングが進角化する。
【0028】
逆に、制御信号mのデューティ比が比較的小さい場合には、液圧ポンプ82から吐出される作動液圧がBポート93を通じて遅角室611に供給される一方、既に進角室612に貯留していた作動液がAポート92を通じてオイルパン81に向けて流下することとなり、遅角室611の容積が拡大、進角室612の容積が縮小するようにベーン621及びロータ62が回動する。結果、吸気カムシャフトのクランクシャフトに対する変位角が遅角して、吸気バルブタイミングが遅角化する。
【0029】
総じて言えば、制御信号mのデューティ比が中立より大きいほど吸気バルブのバルブタイミングが速く進角し、デューティ比が中立より小さいほど吸気バルブのバルブタイミングが速く遅角する。
【0030】
本実施形態の内燃機関の制御装置たるECU0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。
【0031】
入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、クランクシャフトの回転角度及びエンジン回転数を検出するエンジン回転センサから出力されるクランク角信号b、アクセルペダルの踏込量をアクセル開度(運転者が要求する機関出力、いわば要求負荷)として検出するセンサから出力されるアクセル開度信号c、吸気通路3(特に、サージタンク33)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号d、内燃機関の温度を示唆する冷却水温を検出する水温センサから出力される冷却水温信号e、触媒41の上流側における排気ガスの空燃比を検出する空燃比センサ43から出力される空燃比信号f、触媒41の下流側における排気ガスの空燃比を検出する空燃比センサ44から出力される空燃比信号g、吸気カムシャフトの複数のカム角にてカム角センサから出力される吸気タイミング信号たるカム角信号h等が入力される。
【0032】
出力インタフェースからは、点火プラグ12のイグナイタ13に対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k、EGRバルブ23に対して開度操作信号l、OCV9に対して制御信号m等を出力する。
【0033】
ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに気筒1に充填される吸気(新気)量を推算する。そして、それらエンジン回転数及び吸気量等に基づき、要求される燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、要求EGR率(または、EGR量)、点火タイミング、吸気バルブタイミングといった各種運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、l、mを出力インタフェースを介して印加する。
【0034】
また、ECU0は、内燃機関の始動(冷間始動であることもあれば、アイドリングストップからの復帰であることもある)時において、電動機(スタータモータまたはモータジェネレータ。図示せず)に制御信号oを入力し、電動機によりクランクシャフトを回転させるクランキングを行う。クランキングは、内燃機関が初爆から連爆へと至り、エンジン回転数即ちクランクシャフトの回転速度が冷却水温等に応じて定まる判定値を超えたときに(完爆したものと見なして)終了する。
【0035】
ECU0は、気筒1に充填される混合気の空燃比、ひいては気筒1から排出され触媒41へと導かれる排気ガスの空燃比をフィードバック制御する。ECU0は、まず、気筒1に充填される新気の量に見合った基本噴射量TPを決定する。次いで、この基本噴射量TPを、触媒41の上流側の空燃比に応じて定まるフィードバック補正係数FAFで補正し、さらには内燃機関の状況に応じて定まる各種補正係数Kやインジェクタ36の無効噴射時間TAUVをも加味して、最終的な燃料噴射時間(インジェクタ11に対する通電時間)Tを算定する。燃料噴射時間Tは、
T=TP×FAF×K+TAUV
となる。そして、燃料噴射時間Tだけインジェクタ11に信号jを入力、インジェクタ11を開弁して燃料を噴射させる。
【0036】
触媒41の上流側の空燃比信号fを参照したフィードバック制御は、例えば、内燃機関の冷却水温が所定温度以上であり、燃料カット中でなく、パワー増量中でなく、内燃機関の始動から所定時間が経過し、フロントO
2センサ43が活性中、吸気圧が正常である、等の諸条件が全て成立している場合に行う。
【0037】
図3に示すように、ECU0は、触媒41の上流側のガスの空燃比を検出するセンサであるフロントO
2センサ43の出力電圧fを、触媒41の上流側におけるガスの目標空燃比に相当する目標値(目標電圧値。一点鎖線で表す)と比較して、その上流側目標値よりも高ければリッチ、その上流側目標値よりも低ければリーンと判定する。通常、目標値は理論空燃比またはその近傍に対応した値である。
【0038】
そして、ECU0は、触媒41の上流側のガスの空燃比の判定結果に基づき、フィードバック補正係数FAFを増減調整する。具体的には、空燃比がリッチであると判定している間、フィードバック補正係数FAFを単位時間(または、制御サイクル、演算サイクル)あたりリーン積分値KIMだけ逓減させる一方、空燃比がリーンであると判定している間は、フィードバック補正係数FAFを単位時間あたりリッチ積分値KIPだけ逓増させる。
【0039】
フィードバック補正量FAFが減少すると、インジェクタ11による燃料噴射量が絞られて、混合気の空燃比がリーンへと向かう。逆に、フィードバック補正量FAFが増加すると、インジェクタ11による燃料噴射量が上積みされて、混合気の空燃比がリッチへと向かう。
【0040】
但し、フロントO
2センサ43の出力電圧fが目標電圧値を跨ぐように変動したときには、即時に触媒41の上流側のガスの空燃比の判定結果を反転させるのではなく、遅延時間TDL、TDRの経過を待ってから判定結果を反転させる。即ち、フロントO
2センサ43の出力電圧fがリッチからリーンに切り替わった(目標電圧値を下回った)ときには、リーン判定遅延時間TDLの経過の後、空燃比がリッチからリーンに反転したと判断する。並びに、フロントO
2センサ43の出力電圧fがリーンからリッチに切り替わった(目標電圧値を上回った)ときには、リッチ判定遅延時間TDRの経過の後、空燃比がリーンからリッチに反転したと判断する。
【0041】
リーン判定遅延時間TDL及びリッチ判定遅延時間TDRを設けているのは、O
2センサ43の出力信号にノイズが混入した場合に、空燃比のリーン/リッチの判定結果が短期間に複数回反転して燃料噴射量が振動するように増減するチャタリングを起こすことを予防する意図である。
【0042】
遅延時間TDL、TDRは、制御中心補正量FACFに応じて増減する。
図4に、補正量FACFと遅延時間TDL、TDRとの関係を例示する。補正量FACFが大きくなるほど、リーン判定遅延時間TDL(破線で表す)は短縮され、リッチ判定遅延時間TDR(実線で表す)は延長される。さすれば、フィードバック補正係数FAFが増加から減少に転じる時期が遅れ、減少から増加に転じる時期が早まる。結果、燃料噴射量が平均的に増すこととなり、空燃比フィードバック制御の制御中心がリッチ側に変位する。
【0043】
翻って、補正量FACFが小さくなるほど、リーン判定遅延時間TDLは延長され、リッチ判定遅延時間TDRは短縮される。さすれば、フィードバック補正係数FAFが増加から減少に転じる時期が早まり、減少から増加に転じる時期が遅れる。結果、燃料噴射量が平均的に減ることとなり、空燃比フィードバック制御の制御中心がリーン側に変位する。
【0044】
ECU0は、空燃比フィードバック制御中、上記の制御中心補正量FACFをも算出する。この補正量FACFは、触媒41の下流側の空燃比に応じて定まる。触媒41の下流側の空燃比信号gを参照したフィードバック制御は、例えば、冷却水温が所定温度以上であり、空燃比フィードバック制御の開始から所定時間が経過し、フロントO
2センサ43及び/またはリアO
2センサ44が活性してから所定時間が経過し、過渡期の燃料補正量が所定値を下回り、アイドル状態で車速が0若しくは0に近い所定値以下であるかまたは非アイドル状態で所定の運転領域にある、等の諸条件が全て成立している場合に行う。
【0045】
図5に示すように、ECU0は、触媒41の下流側のガスの空燃比を検出するセンサであるリアO
2センサ44の出力電圧gを、触媒41の下流側におけるガスの目標空燃比に相当する目標値(目標電圧値。鎖線で表す)と比較して、その下流側目標値よりも高ければリッチ、その下流目標値よりも低ければリーンと判定する。この下流側目標値は、フロントO
2センサ43の出力信号fと比較される上流側目標値とは一致しないことがある。
【0046】
そして、ECU0は、触媒41の下流側のガスの空燃比の判定結果に基づき、制御中心補正量FACFを増減調整する。具体的には、空燃比がリッチであると判定している間、制御中心補正量FACFを単位時間(または、制御サイクル、演算サイクル)あたりリーン積分値FACFKIMだけ逓減させる一方、空燃比がリーンであると判定している間は、制御中心補正量FACFを単位時間あたりリッチ積分値FACFKIPだけ逓増させる。
【0047】
既に述べた通り、制御中心補正量FACFが減少すると、空燃比制御中心はリーンへと向かう。逆に、制御中心補正量FACFが増加すると、空燃比制御中心はリッチへと向かう。
【0048】
なお、空燃比フィードバック制御において演算する補正量FAF、FACFの変動には一定のガードをかける。即ち、直近の補正量FAFに積分値KIPを加算することで上限ガード値を上回ってしまう場合には補正量FAFを上限ガード値にクリップし、直近の補正量FAFから積分値KIMを減算することで下限ガード値を下回ってしまう場合には補正量FAFを下限ガード値にクリップする。同様に、直近の補正量FACFに積分値FACFKIPを加算することで上限ガード値を上回ってしまう場合には補正量FACFを上限ガード値にクリップし、直近の補正量FACFから積分値FACFKIMを減算することで下限ガード値を下回ってしまう場合には補正量FACFを下限ガード値にクリップする。
【0049】
要求EGR率、即ち気筒1に充填される混合気に占めるEGRガスの割合であるEGR率に対する要求値は、内燃機関の負荷が中程度の中負荷領域において最も高く、そこから負荷が減少するほど低下し、また負荷が増大するほど低下する。アイドル運転またはこれに近い低負荷運転領域や、アクセル開度が全開または全開に近い高負荷(または、全負荷)運転領域では、要求EGR率は0となり、EGRバルブ23の開度も0となる。
【0050】
吸気バルブの開閉タイミングは、内燃機関の始動時、アイドリング時及び低負荷運転領域に、最も遅角したタイミングである最遅角位置をとる。最遅角位置では、各気筒1の吸気バルブが当該気筒1の排気上死点またはその近傍のタイミングにて開き、吸気下死点後所定のクランク角度が経過した(クランクシャフトが当該クランク角度回転した)タイミングにて閉じる。
【0051】
中負荷ないし高負荷の運転領域では、VVT機構6を介して吸気バルブタイミングを最遅角位置から進角させる。尤も、高回転運転領域域では、エンジン回転数が高くなるほど吸気バルブの閉弁タイミングを遅らせることが好ましい。
【0052】
吸気バルブタイミングの進角は、吸気バルブ及び排気バルブがともに開弁するバルブオーバーラップ期間の拡大を意味する。吸気バルブタイミングの進角量が大きいと、吸気行程において気筒1に残留する内部EGRガス量が増加し、気筒1に充填される新気量が減少する。それ故、燃料噴射量の基本量TPは、吸気バルブタイミングの進角量を考慮して決定する必要がある。ECU0のメモリには予め、内燃機関の運転領域[エンジン回転数,サージタンク33内吸気圧]、EGRバルブ23の開度及び吸気バルブタイミングの進角量等と、基本噴射量TPとの関係を規定したマップデータが格納されている。ECU0は、現在の内燃機関の運転領域、EGRバルブ23の開度及び吸気バルブタイミングの進角量等をキーとして当該マップを検索し、設定するべき基本噴射量TPを得る。
【0053】
VVT機構6が具現している吸気バルブタイミングの進角量は、クランク角センサが出力するクランク角信号b及びカム角センサが出力するカム角信号hを参照して知得する。
図6に示すように、クランク角センサは、クランクシャフトに固定されクランクシャフトと一体となって回転するロータ75の回転角度をセンシングするものである。そのロータ75には、クランクシャフトの回転方向に沿った所定角度毎に、歯または突起76が形成されている。典型的には、クランクシャフトが10°CA回転する毎に、歯または突起76が配置される。
【0054】
クランク角センサは、ロータ75の外周に臨み、個々の歯または突起76が当該センサの近傍を通過することを検知して、その都度クランク角信号bとしてパルス信号を発信する。ECU0は、このパルスをクランク角信号bとして受信する。クランク角信号bは、現在のクランクシャフトの回転角度であるクランク角度、そして各気筒1のピストンの現在位置を表す。
【0055】
但し、クランク角センサは、クランクシャフトが一回転する間に三十六回のパルスを出力するわけではない。クランクシャフトのロータ75の歯または突起76は、その一部が欠けている。
図6に示す例では、十七番目、十八番目及び二十番目、二十一番目の欠歯部分761、並びに、三十五番目、三十六番目の欠歯部分762という、大きく分けて二つの欠歯部分761、762が存在する。欠歯部分761、762はそれぞれ、クランクシャフトの特定の回転位相角に対応する。即ち、連続する欠歯部分761は180°CA及び540°CAに対応しており、単独の欠歯部分762は0°及び360°CAに対応している。
【0056】
そして、
図8に示しているように、上記の欠歯部分761、762に起因して、クランク角信号bのパルス列もまた一部が欠損する。この欠損を基にして、クランクシャフトの絶対的な角度を知ることが可能である。欠損した三十六番目のパルスの次の一番目のパルスのタイミングを0°CA(または、360°CA)とおくと、欠損した十八番目のパルスに続く十九番目のパルスのタイミングが180°CA(または、540°CA)ということになる。上記の0°CAのパルスのタイミングは、特定の気筒(図示例では、第二気筒)1の圧縮上死点に略等しい。
【0057】
図7に示すように、カム角センサもまた、吸気カムシャフトに固定されカムシャフトと一体となって回転するロータ77の回転角度をセンシングするものである。そのロータ77には、少なくとも吸気カムシャフトの一回転を気筒数で割った角度毎に、歯または突起78が形成されている。三気筒エンジンの場合、吸気カムシャフトが120°回転する毎に、歯または突起78が配置される。
【0058】
カムシャフトの回転速度は、クランクシャフトの回転速度の二分の一である。故に、上記の歯または突起78は、クランク角度に換算すれば240°CA毎に配置されていることになる。
【0059】
加えて、本実施形態においては、ロータ77に、追加的なカム角信号hを発生させるための歯または突起79が、240°CA毎の歯または突起78の間に一つ設けられる。
【0060】
カム角センサは、ロータ77の外周に臨み、個々の歯または突起78、79が当該センサの近傍を通過することを検知して、その都度カム角信号hとしてパルス信号を発信する。ECU0は、このパルスをカム角信号hとして受信する。
【0061】
歯または突起78に起因して発生する基本カム角信号hは、何れかの気筒1が所定の行程に至ったことを表す。
図8に示しているように、この基本カム角信号hは、各気筒1における圧縮上死点から所定クランク角度(30°CAないし80°CAの範囲内の値)だけ進角側に偏倚したタイミングに位置しており、VVT機構6を介して操作される吸気バルブタイミングをも示唆する。
【0062】
また、歯または突起79に起因して発生する追加カム角信号hは、各気筒1の行程を判別するための補助となる。
図7及び
図8に示している例では、第一気筒1の圧縮上死点の近傍を表す基本カム角信号hのパルスから60°CA進角したタイミングに、追加カム角信号hのパルスが存在している。クランク角信号bのパルス列から明らかとなる60°CAの間隔を隔ててこれら二つのカム角信号hのパルスを連続して受信したとき、後者のパルスの直後が第一気筒1の圧縮上死点であることが分かる。
【0063】
カム角信号hの出力タイミングは、吸気バルブタイミングと同期している。即ち、カム角信号hのパルスと、各気筒1における吸気バルブの開閉タイミングとの位相差は一定不変である。従って、カム角信号hが出力されるときのクランク角度の値が、VVT機構6により具現された吸気バルブタイミングを表すこととなる。
【0064】
尤も、内燃機関の構成部材(特に、スプロケット71、72、73やタイミングチェーン74、ロータ75、77等)には、個体差が存在している。そのため、カム角信号hの発生タイミングと吸気バルブタイミングとの位相差が内燃機関個体毎にばらつき、カム角信号hの発生タイミングと具体的なクランク角度の値との関係もまた内燃機関個体毎にばらつく。
【0065】
よって、吸気バルブタイミングの進角量を正しく把握するためには、吸気バルブタイミングを最も遅角したタイミングに復帰させた状態でのカム角信号hの発生タイミングを予め学習しておく必要がある。
図9に示すように、ECU0は、アクセルペダルの踏込量が0またはほぼ0であるアイドル運転時に、VVT機構6を介して吸気バルブタイミングを最も遅角したタイミングに操作するとともに、カム角信号hが出力されたときのクランク角度の値を取得し、これをVVT機構6の最遅角位置を表す基準クランク角度αとしてメモリに記憶保持する。
【0066】
そして、以後の制御において、内燃機関の運転領域等に応じて吸気バルブタイミングを最遅角位置から適宜進角させつつ、カム角信号hが出力されるタイミングのクランク角度と上記の基準クランク角度αとの差分を演算して、現在VVT機構6が具現している吸気バルブタイミングの最遅角位置からの進角量を得る。
【0067】
一例を挙げると、現在−75°CA(0°CAから75°CA分進角)のタイミングでカム角信号hのパルスが出力されており、内燃機関のアイドリング中に学習した基準クランク角度αが−35°CA(0°CAから35°CA分進角)であるとき、吸気バルブタイミングは最遅角位置から40°CA進角しているということになる。
【0068】
ところで、ハウジング61とロータ62との間に異物が噛み込む等により、吸気バルブタイミングが最遅角位置から進角したままでVVT機構6が固着してしまうことがある。その状態で、上述の基準クランク角度αの学習が実行されると、以後の制御において吸気バルブタイミングの進角量を過小評価する結果を招く。
【0069】
仮に、カム角信号hのパルスが−75°CAのタイミングで出力されるような進角状態でVVT機構6が固着し、ロータ62の回動操作が不能となったとする。このときに学習される基準クランク角度αは、−75°CAとなる。但し、基準クランク角度αの誤学習による悪影響を緩和するため、基準クランク角度αの学習値にガードをかけることができる。基準クランク角度αのガード値を−55°CA(0°CAから55°CA分進角)に設定した場合、−75°CAはこのガード値を超越することから、基準クランク角度αの学習値がガード値である−55°CAにクリップされる。とは言え、本来あるべき基準クランク角度αの値は−35°CAなのであって、−75°CAや−55°CAという学習値は誤りである。
【0070】
その後の内燃機関の制御でも、カム角信号hが出力されるタイミングのクランク角度と基準クランク角度αとの差分を演算して、吸気バルブタイミングの最遅角位置からの進角量を得ることに変わりはない。従って、現在−75°CAのタイミングでカム角信号hのパルスが出力されているとすると、ECU0は、現在の吸気バルブタイミングの進角量を、基準クランク角度αの学習値にガードをかけていないならば0°CA、ガードをかけているならば20°CAに見積もってしまう。
【0071】
しかしながら、現実の吸気バルブタイミングはその本来の最遅角位置から40°CA進角しているのであるから、上掲の0°CAまたは20°CAという進角量の値は不適正である。そして、この吸気バルブタイミングの進角量の過小評価は、内部EGR量の過小評価につながり、実際に気筒1に充填される新気量に対して過剰な量の基本噴射量TPを設定することと相成る。そして、基本噴射量TPの過大化が、空燃比フィードバック制御(の補正量FAF、FACF)により補正できる範囲を超えると、有害物質の排出量が増大する上、燃焼不良または失火が生じることも懸念される。
【0072】
そこで、本実施形態では、吸気バルブタイミングが最も遅角したタイミングに復帰しなかった状態で基準クランク角度αの誤学習を実行したことを感知した場合、以後の制御において、メモリに記憶保持している基準クランク角度αの学習値を、その絶対値が減少する遅角方向に徐々に変化させて修正するようにしている。
【0073】
図10に、本実施形態のECU0がプログラムに従い実行する処理の手順例を示す。ECU0は、VVT機構6が最遅角位置から進角したまま固着している可能性を検知したときに(ステップS1)、タイマをカウントアップし(ステップS2)、そのタイマが所定値に到達したとき(ステップS3)、即ち所定時間の経過を待ってもVVT機構6の固着が解消されなかったときに、メモリに記憶保持している基準クランク角度αの学習値の修正を開始する(ステップS4ないしS6)。
【0074】
ステップS1にて、VVT機構6が固着している可能性があると判断するための条件は、以下の通りである。
・内燃機関のアイドリング中に学習を実行して得られた基準クランク角度α(の絶対値)が所定値(例えば、−55°CA)以上、または基準クランク角度αの学習値をガード値にクリップした
・カム角信号hが出力されるタイミングのクランク角度と基準クランク角度αとの差分を演算して得られる(いわば、実測の)吸気バルブタイミングの進角量が、内燃機関の運転領域等に応じて要求される(いわば、目標の)吸気バルブタイミングの進角量から所定値(例えば、5°CA分)以上乖離している
・カム角信号hが出力されるタイミングのクランク角度と基準クランク角度αとの差分を演算して得られる吸気バルブタイミングの進角量が不変
・フロントO
2センサ43の出力信号fの電圧が所定値以上、及び/または、リアO
2センサ44の出力信号gの電圧が所定値以上。即ち、空燃比が所定値を超えてリッチ
・空燃比フィードバック補正量FAFがその下限ガード値に張り付き、及び/または、空燃比フィードバック補正量FACFがその下限ガード値に張り付いている
ECU0は、上に列挙した条件のうちの少なくとも一つが成立している場合に、VVT機構6が固着している可能性があると判断する。
【0075】
ECU0は、ステップS3が真となったことを以て、吸気バルブタイミングが最も遅角したタイミングに復帰しなかった状態で基準クランク角度αの誤学習を実行したと見なす。そして、その誤学習した基準クランク角度αの修正を試行する。
【0076】
誤学習した基準クランク角度αの学習値を修正するにあたっては、一回の修正機会毎に、所定クランク角度(例えば、1°CAないし2°CA)分だけ、基準クランク角度α(の絶対値)を減少させる(ステップS4)修正を行う。また、その修正を行った回数をカウントする(ステップS5)。しかして、これらステップS4及びS5を、それ以上基準クランク角度αの学習値の修正が必要ないと判断されるまで反復する(ステップS6)。
【0077】
ステップS6にて、基準クランク角度αのこれ以上の修正が必要でないと判断するための条件は、以下の通りである。
・内燃機関のアイドリング中に学習を実行して得られた基準クランク角度α(の絶対値)が所定値(例えば、−55°CA)未満となった、または基準クランク角度αの学習値がガード値を超えなくなった
・カム角信号hが出力されるタイミングのクランク角度と基準クランク角度αとの差分を演算して得られる(いわば、実測の)吸気バルブタイミングの進角量と、内燃機関の運転領域等に応じて要求される(いわば、目標の)吸気バルブタイミングの進角量との乖離が所定値(例えば、5°CA分)未満となった
・カム角信号hが出力されるタイミングのクランク角度と基準クランク角度αとの差分を演算して得られる吸気バルブタイミングの進角量が変化するようになった
・フロントO
2センサ43の出力信号fの電圧が所定値未満、及び/または、リアO
2センサ44の出力信号gの電圧が所定値未満。即ち、空燃比が所定値を超えてリッチではなくなった
・空燃比フィードバック補正量FAFがその下限ガード値よりも大きくなった、及び/または、空燃比フィードバック補正量FACFがその下限ガード値よりも大きくなった
上に列挙した条件は、ハウジング61とロータ62との間に噛み込んでいた異物が脱離した等によりVVT機構6の固着が解消された、あるいは、空燃比フィードバック制御を通じて混合気の空燃比を目標空燃比に追従させることが可能となったときに成立する。ECU0は、上に列挙した条件のうちの少なくとも一つが成立した場合に、基準クランク角度αの学習値の修正を終了する。
【0078】
ステップS5にてカウントした基準クランク角度αの修正回数は、誤学習した当初の基準クランク角度αと修正後の基準クランク角度αとの間の変化量を示唆する。言うまでもなく、ステップS4における基準クランク角度αの絶対値の一回あたりの修正量(例えば、1°CAないし2°CA)に、ステップS5でカウントした修正回数を乗じれば、誤学習当初の基準クランク角度αからの変化量即ち総修正量を得られる。
【0079】
上記の修正回数または総修正量は、VVT機構6が最遅角位置からどれだけのクランク角度進角した位置で固着したのかを表している。VVT機構6が固着したままで内燃機関の運転が停止すると、再び内燃機関を始動させるときに既に吸気バルブタイミングが進角した状態をとることとなる。そのため、内燃機関の始動がより難しくなる。
【0080】
そこで、本実施形態では、VVT機構6が進角した位置で固着した状態での内燃機関の始動の際に、燃料噴射量を平常よりも増量することにより、内燃機関の始動性を向上させるようにしている。本実施形態のECU0は、内燃機関の停止の際に、ステップS5にてカウントした基準クランク角度αの修正回数または総修正量をメモリに記憶して保持する。そして、内燃機関の再始動において、その記憶保持していた修正回数または総修正量の多寡に応じて燃料噴射量の増量補正量を決定し、燃料噴射量を増量した上で始動のためのクランキングを遂行する。
【0081】
このときの増量補正量は、基準クランク角度αの学習値の修正回数または総修正量が多いほど多くする。
図11に、基準クランク角度αの学習値の修正回数と、燃料噴射量の増量補正量との関係を例示する。ここでの増量補正量は、始動時に噴射する基本噴射量TPに乗じる補正係数である。始動時の基本噴射量TPは、始動後の基本噴射量TPと同様、(修正した基準クランク角度αの学習値を用いて求められる)吸気バルブタイミングの進角量に応じて設定する。ECU0のメモリには予め、基準クランク角度αの修正回数または総修正量と、始動時の燃料噴射量の増量補正量との関係を規定したマップデータが格納されている。ECU0は、内燃機関の停止の際に記憶した基準クランク角度αの修正回数または総修正量をキーとして当該マップを検索し、設定するべき増量補正量を得る。
【0082】
本実施形態では、吸気バルブタイミングを変更可能なVVT機構6が付帯した内燃機関を制御する制御装置(ECU)0であって、吸気バルブタイミングを最も遅角したタイミングに復帰させた状態で、クランクシャフトが所定角度回転する毎に出力されるクランク角信号b、及び吸気バルブの開閉タイミングと同期して出力される吸気バルブタイミング信号(カム角信号)hを参照し、吸気バルブタイミング信号hが出力されたときのクランクシャフトの回転角度を基準クランク角度αとして記憶する学習を行い、以後の制御において、吸気バルブタイミング信号hが出力されるときのクランクシャフトの回転角度と前記基準クランク角度αとの差分を吸気バルブタイミングの進角量として知得するものであり、吸気バルブタイミングが最も遅角したタイミングに復帰しなかった状態で前記学習を実行したことを感知した場合には、以後の制御において、前記基準クランク角度αを、吸気バルブタイミング信号hが出力されるときのクランクシャフトの回転角度と当該基準クランク角度αとの差分が拡大する方向(基準クランク角度αの絶対値が減少する遅角方向)に徐々に変化させる内燃機関の制御装置0を構成した。
【0083】
本実施形態によれば、吸気VVT機構6の最遅角位置を表す基準クランク角度αを誤学習してしまったとしても、これを徐々に修正することができる。基準クランク角度αの学習値が本来あるべき値に近づけば、基本噴射量TPが気筒1に充填される新気量に見合う量に近づき、空燃比フィードバック制御(の補正量FAF)によって燃料噴射量Tを十分に補正できるようになる。さすれば、空燃比の過剰なリッチが解消されて、有害物質の排出量の増大が抑止される。
【0084】
加えて、排気通路4上に設けた空燃比センサ43、44の出力信号f、gを参照して空燃比のフィードバック制御を実施するものであり、吸気バルブタイミングが最も遅角したタイミングに復帰しなかった状態で前記学習を実行したことを感知した場合における前記基準クランク角度αの徐変を、前記フィードバック制御による燃料噴射量の補正量FAF、FACFが適正範囲内(上限ガード値から下限ガード値までの間)に収まった、前記空燃比センサ43、44の出力信号f、gが適正範囲内(所定値未満)に収まった、または、VVT機構6の固着が解消したことを条件として停止するようにしているため、基準クランク角度αを必要最小限度で速やかに修正することができる。
【0085】
さらに、内燃機関を停止する際の前記基準クランク角度αの、前記学習を実行した当初の基準クランク角度αからの変化量(修正回数または総修正量)を記憶しておき、停止した内燃機関を始動する際、前記変化量の多寡に応じて燃料噴射量を補正するようにしたため、吸気VVT機構6が最遅角位置から進角した位置で固着してしまったとしても、内燃機関を確実に始動させることが可能となる。
【0086】
特に、本実施形態では、基準クランク角度αの学習値の修正により、VVT機構6が固着した場合であってもより真値に近い吸気バルブタイミングの進角量を求めることが可能である。だが、基準クランク角度αを修正し吸気バルブタイミングの進角量の過小評価を改めることは、基本噴射量TPを減少させる方向に作用する。VVT機構6が進角したまま固着した内燃機関を再始動するに際して、燃料噴射量が不足すると、内燃機関の始動が遅れたり、始動に失敗したりするリスクが高まる。故に、本実施形態では、内燃機関の停止前の基準クランク角度αの(修正による)変化量に応じて、始動時の燃料噴射量の増量補正を行っているのである。
【0087】
なお、本発明は以上に詳述した実施形態に限られるものではない。例えば、上記実施形態における吸気VVT機構6は、作動液圧(油圧)により吸気カムシャフトのクランクシャフトに対する回転位相角を変化させるベーン式のものであったが、その回転位相角の変化を電動機によって実現するモータドライブVVTを吸気VVT機構6として採用しても構わない。
【0088】
その他、各部の具体的構成や処理の手順等は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。