特許第6305418号(P6305418)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6305418
(24)【登録日】2018年3月16日
(45)【発行日】2018年4月4日
(54)【発明の名称】半導体構造体の製造方法
(51)【国際特許分類】
   H01L 21/20 20060101AFI20180326BHJP
   H01L 21/205 20060101ALI20180326BHJP
   H01L 21/203 20060101ALI20180326BHJP
   H01L 29/06 20060101ALI20180326BHJP
   H01L 33/32 20100101ALI20180326BHJP
   C23C 16/34 20060101ALI20180326BHJP
【FI】
   H01L21/20
   H01L21/205
   H01L21/203
   H01L29/06 601N
   H01L33/32
   C23C16/34
【請求項の数】7
【全頁数】14
(21)【出願番号】特願2015-538449(P2015-538449)
(86)(22)【出願日】2013年10月24日
(65)【公表番号】特表2016-503577(P2016-503577A)
(43)【公表日】2016年2月4日
(86)【国際出願番号】EP2013072326
(87)【国際公開番号】WO2014064220
(87)【国際公開日】20140501
【審査請求日】2016年10月14日
(31)【優先権主張番号】1260234
(32)【優先日】2012年10月26日
(33)【優先権主張国】FR
(73)【特許権者】
【識別番号】502124444
【氏名又は名称】コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】ダヴィド・ヴォーフレ
(72)【発明者】
【氏名】ユベール・ボノ
【審査官】 桑原 清
(56)【参考文献】
【文献】 国際公開第2009/009612(WO,A1)
【文献】 米国特許出願公開第2007/0108466(US,A1)
【文献】 特表2009−522822(JP,A)
【文献】 特表2009−542560(JP,A)
【文献】 特開平11−145516(JP,A)
【文献】 国際公開第2012/035243(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/20
H01L 21/203
H01L 21/205
H01L 29/06
H01L 33/32
C23C 16/34
(57)【特許請求の範囲】
【請求項1】
基板(100)の表面(105)に少なくとも1つの半導体構造体(130)を製造する製造方法であって、
前記方法が、
−その表面(105)がシリコンを含む前記基板(100)を提供する段階、
−形成領域と称される前記表面(105)の少なくとも1つの領域(101)に接触する第1の材料の層(120)、前記第1の材料がないままである、自由領域と称される前記表面(105)の残部(102)を形成し、前記少なくとも1つの形成領域(101)及び前記第1の材料の寸法が、100nmから1μmである横方向の寸法を有する前記構造体(130)の形成に相応しく、前記第1の材料が、ガリウムを含み、前記層(120)の形成が、600℃未満の温度で行われる段階、及び、
−前記層(120)に接触する前記構造体(130)を形成する段階であって、前記構造体が半導体ワイヤである段階
を含み、
前記第1の材料の層(120)を形成する段階が、物理気相堆積を用いて前記第1の材料を堆積するための副段階を含む、製造方法。
【請求項2】
前記第1の材料の層(120)を形成する段階及び前記構造体(130)を形成する段階の間に、前記表面(105)の自由領域(102)の窒化のための段階が提供される、請求項1に記載の製造方法。
【請求項3】
前記半導体構造体を形成する段階が、前記層(120)に接触する前記半導体構造体の少なくとも一部を形成するように、有機金属前駆体を用いて前記層(120)上における前記第1の材料の気相エピタキシャル成長のための段階を含み得る、請求項1又は2に記載の製造方法。
【請求項4】
前記第1の材料の層(120)を形成する段階が、
−前記表面(105)の自由領域(102)のみを覆う保護層(110)を形成する段階、
−前記少なくとも1つの形成領域(101)に前記第1の材料を堆積する段階であって、前記自由領域(102)が、前記保護層(110)によって保護される段階、
−前記保護層(110)を除去する段階、
からなる副段階を含み得る、請求項1からの何れか一項に記載の製造方法。
【請求項5】
前記層(120)を形成する段階が、
−前記基板(100)全体の表面(105)に前記第1の材料を堆積する段階、
−前記自由領域(102)を覆う前記第1の材料の部分を除去する段階、
からなる副段階を含む、請求項1からの何れか一項に記載の製造方法。
【請求項6】
前記基板(100)が、少なくともその表面に、30質量%を超える割合でシリコンを含み、前記基板(100)の表面(105)が、基本的にシリコンからなる、請求項1からの何れか一項に記載の製造方法。
【請求項7】
前記構造体(130)を形成する段階が、少なくともその一部において前記層に接触し、前記第1の材料(120)で作られる半導体ワイヤを形成する段階であり、前記第1の材料が窒化ガリウムGaNである、請求項1からの何れか一項に記載の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体構造体に基づくエレクトロニクス及びオプトエレクトロニクス部品の分野に関する。
【0002】
半導体構造体の性能を高める目的で、この分野の研究は、マイクロメートル又は場合によってはナノメートルサイズの構造体に注目を集めている。
【0003】
実際に、このような構造体の使用は、多くの利点を与える。これらの利点は、特に、このような構造体がもはや平坦ではなく、三次元である部品の開発のオプションを与える。このように、部品の機能表面領域は、その寸法が大幅に増加することなく大幅に増加する。これは、特に半導体ナノワイヤの場合に当て嵌まる。
【0004】
これらの構造体の研究分野のうち、特に半導体ワイヤにおいて、制御されたその製造方法を最適化することは、優先順位が高いままである。
【0005】
このように、本発明は、特に半導体構造体及び半導体部品を製造する方法に関する。
【背景技術】
【0006】
窒化ガリウム(GaN)ワイヤ等の半導体構造体の制御された製造方法は、半導体構造体のタイプ及びその構成材料に関連する制約、並びに、基板の構成材料に関連する制約を考慮しなければならない。
【0007】
実際に、基板に構造体を形成するために通常使用される方法は、構造体が形成される材料を堆積することからなる。この堆積は、堆積される材料が、形成領域と称される基板のある領域において選択的にのみ成長するような方法で行われる。この選択的成長は、構造体の構成材料及び基板表面の材料によって種々の方法で得られ得る。
【0008】
このように、堆積される材料の核形成中心を形成するために、例えば表面テクスチャー加工を用いて予め局所的に形成領域を改質することによってこの成長選択性を得ることは、従来技術における特徴である。このように、形成領域の核形成エネルギーが低下され、改質領域におけるその材料の成長を促進することを可能にする。基板表面に堆積される材料の堆積中に、従って、材料は、形成領域において優先的に成長し、構造体成長の種を形成する。種形成の後、基板及び種の間の材料核形成エネルギーの差は、種の材料の堆積を大幅に促進し、選択的成長を可能にする。従って、構造体は、形成領域にのみ形成される。
【0009】
このような方法が基板上における制御された構造体形成を可能にする一方で、それは、それにもかかわらず、主たる欠点を伴う。実際に、表面を改質するこの方法は、局所的であり、従って、近視野顕微鏡又はイオンビーム焦点表面改質技術等の連続的な方法である。結果として、20cmの直径のシリコンウエハ等の大面積の構造体を製造するために、この表面改質段階は、大量生産の制約に全く適合しない長い時間を要する。
【0010】
従来技術はまた、特に米国特許第8039854号では、基板表面に既に堆積されたマスクを用いて堆積される材料の成長選択を得ることを特徴とする。このような方法において、マスクは、堆積される材料の成長が低減され又は場合によっては抑制される材料で作られる。マスクはまた、形成領域を自由にするためだけに構成される。このように、堆積される材料は、形成領域にのみ成長し得、基板表面の残部におけるその成長は、制限される。
【0011】
この方法は、形成領域を自由にするために、フォトリソグラフィ法に適合するという利点を与える。このように、マスクを形成するために要求される段階、特に形成領域を自由にするための段階は、基板のサイズにかかわらず、基板全体表面に同時に行われ得る。このように、この方法が、局所的で、従って連続的な表面改質方法の使用を要求しないので、大量生産の制約に関する不適合な段階を有しない。
【0012】
それにもかかわらず、使用されるこの製造方法が連続的な製造方法又は平行製造方法であるかにかかわらず、シリコンを含む表面にガリウム(Ga)を含む構造体を製造する方法は、特に、ガリウム(Ga)とのシリコン(Si)エッチング現象が、堆積される材料の結晶化現象と競合するという問題を残したままである。
【0013】
結果として、シリコン(Si)を含む表面にガリウム(Ga)を含む構造体の形成に関して、相対的に非導電性であるという欠陥を有する窒化アルミニウム(AlN)等の保護層を用いて基板表面を予め保護するか、形成される構造体に特に相応しい成長条件を見出す必要がある。第1に、基板及び形成される構造体の間の満足のいく電気接触の形成を可能にせず、第2に、形成される構造体の各タイプにおいて長い適合手順を必要とするので、これらの2つの解決方法は、ある程度理想的ではない部分を残す。
【先行技術文献】
【特許文献】
【0014】
【特許文献1】米国特許第8039854号明細書
【発明の概要】
【発明が解決しようとする課題】
【0015】
本発明の目的は、これらの欠点を解消することである。
【0016】
従って、本発明の一目的は、基板表面に半導体構造体を製造する方法であって、この構造体がガリウムを含み、基板表面がシリコンを含む方法を提供することであり、それは、窒化アルミニウム(AlN)核形成層の使用における固有の問題を伴わず、長い適応手順を必要としない。
【課題を解決するための手段】
【0017】
このために、本発明は、
基板の表面に少なくとも1つの半導体構造体を製造する製造方法であって、
前記方法が、
−その表面がシリコンを含む前記基板を提供する段階、
−形成領域と称される前記表面の領域に接触する第1の材料の層、前記第1の材料がないままである、自由領域と称される前記表面の残部を形成し、前記形成領域及び前記第1の材料の寸法が、前記構造体の形成に相応しく、前記第1の材料が、ガリウムを含み、前記層の形成が、600℃未満の温度で行われる段階、及び、
−前記層に接触する前記構造体を形成する段階、
を含む製造方法に関する。
【0018】
前記形成領域及び前記第1の材料の寸法は、100nmから1μmを含む側方寸法で前記構造体の形成に相応しい。
【0019】
このような方法は、構造体形成段階の前に、第1の材料からのガリウムが、表面からのシリコンと相互作用することなく、又は、ガリウム及びシリコンの相互作用を最小化しながら、基板表面にガリウムを含む第1の材料の形成領域を生成することを可能にする。実際に、シリコンとのガリウムの反応性は、800℃を超える温度で支配的になる。このように、形成領域が作られる材料は、堆積される材料のガリウム組成と等しいガリウムGa組成を実質的に保持し、ガリウムは、その表面との反応をする傾向がない。
【0020】
第1の材料の場合、この層は、表面と直接接触する。
【0021】
以上及び以下で使用される“600℃未満の温度における層の形成”という表現は、層の成長中に、基板表面の温度が平均で600℃又は773°Kを超えないことを暗に示す。
【0022】
生成される形成領域は、構造体形成のために相応しいその組成のために、基板表面の核形成エネルギーより低い核形成エネルギーを有し、表面の構造体の形成を促進する。これは、表面の残りの部分のマスクを必要とすることなく、形成領域を用いて、窒化アルミニウム(AlN)の層を予め提供することによって、制御された構造体の成長をもたらす。
【0023】
さらに、形成領域の第1の材料の層の製造は、フォトリソグラフィ法に適合し、従って、その寸法にかかわらず基板全体表面に同時に実現可能である。この可能性のために、このような方法は、半導体構造体の大量生産に特に相応しい。
【0024】
第1の材料は、ガリウム、ガリウム及びインジウムに基づく合金、又はガリウム及びアルミニウムに基づく合金であり得る。
【0025】
アルミニウム及びインジウムの割合は、少量であり得、アルミニウム又はインジウムのモル比は、例えば、20%未満である。
【0026】
低減した量のアルミニウムを有するガリウム−アルミニウムに基づく合金、又は、低減した量のインジウムを有するガリウム−インジウムに基づく合金であるこのような第1の材料は、室温において特に安定である第1の材料の層の取り付けを可能にする。
【0027】
本明細書の上記及び残りの部分において、ガリウムアルミニウムに基づく合金とは、二元系合金ガリウム−アルミニウム、又は、ガリウム及びアルミニウムのモル比が主流であり、他の要素がドーパントであり、すなわち各ドーパント元素のモル比が1%未満である、より高次の合金を意味すると理解されるべきである。
【0028】
本明細書の上記及び残りの部分において、ガリウムインジウムに基づく合金とは、二元系合金ガリウム−インジウム、又は、ガリウム及びインジウムのモル比が主流であり、他の要素がドーパントであり、すなわち各ドーパント元素のモル比が1%未満である、より高次の合金を意味すると理解されるべきである。
【0029】
前記第1の材料の層を形成する段階は、物理気相堆積等の、前記第1の材料を堆積するための副段階を含む。
【0030】
第1の材料を堆積するためにこのような副段階は、ガリウム及び基板表面の相互作用を制限する一方で第1の材料の層を形成するのに相応しい。実際に、物理気相堆積法は、低温堆積を行うのに相応しく、この材料の一部は、カチオンの形態で堆積され、その組成は、堆積される材料の形態に基づく、原子の形態ではない。このように、低温堆積温度、及び堆積されるある程度のガリウム原子が他の原子と結合する事実によって、基板表面の原子及びガリウム原子の間の相互作用のリスクが低減される。
【0031】
物理気相堆積とは、本明細書の上記及び残りの部分において、カソードスパッタリングとしてのスパッタリング堆積、及び、パルスレーザー堆積としての蒸着堆積の両方であると理解されなければならない。
【0032】
前記第1の材料の層を形成する段階及び前記構造体を形成する段階の間に、前記表面の自由領域の窒化のための段階が提供される。
【0033】
このような窒化段階は、第1の層によって保護されない表面の領域のみにおいて、すなわち自由領域において、表面に存在するシリコンを用いて、窒化シリコンを形成するのに相応しい。このように、その表面の組成の変化によって、自由領域は、ガリウム(Ga)に関して低い反応性を有する。この窒化シリコン層はまた、自由領域の基板表面の電気的保護に相応しく、構造体の成長後における費用の掛かる追加の被覆段階を行わなければならないことを回避する。
【0034】
窒化段階は、自由領域及び第1の材料の層の両方の上で行われ得る。
【0035】
前記半導体構造体を形成する段階は、前記層に接触する前記半導体構造体の少なくとも一部を形成するように、有機金属前駆体を用いて前記層上における前記第1の材料の気相エピタキシャル成長のための段階を含み得る。
【0036】
前記第1の材料の層を形成する段階は、
−前記表面の自由領域のみを覆う保護層を形成する段階、
−前記形成領域に前記第1の材料を堆積する段階であって、前記自由領域が、前記保護層によって保護される段階、
−前記保護層を除去する段階、
からなる副段階を含み得る。
【0037】
前記層を形成する段階は、
−前記基板全体の表面に前記第1の材料を堆積する段階、
−前記自由領域を覆う前記第1の材料の部分を除去する段階、
からなる副段階を含み得る。
【0038】
これらの2つのオプションは、形成領域上のみに第1の材料の層を形成するのに相応しく、従って、形成領域上にのみワイヤを形成する。
【0039】
前記基板は、少なくともその表面に、30質量%を超える割合でシリコンを含み得、前記基板の表面は、基本的に優先的にシリコンからなる。
【0040】
このような方法は、このような基板を用いた用途に特に相応しい。実際に、ガリウムが非常に高いシリコンとの反応性を有するので、このような方法は、高い割合のシリコン質量を有する基板上にこのような方法によって形成された構造体のこの反応性の影響を取り除くことを可能にする。
【0041】
前記構造体を形成する段階は、少なくともその一部において前記層に接触し、窒化ガリウム(GaN)である前記第1の材料で作られる半導体ワイヤを形成する段階である。
【0042】
本発明はまた、
−その表面がシリコンを含む基板、
−半導体構造体、
を含む部品であって、
−その部品が、形成領域と称される表面の領域の基板表面に接触する第1の材料の層をさらに含み、基板表面の残部が自由領域と称され、第1の材料がガリウムを含み、構造体が第1の材料の層に接触する部品に関する。
【0043】
このような部品は、従来技術による部品と異なって、半導体構造体の形成のために表面にハードマスクを提供する複雑な段階を必要とすることなく、本発明による方法を用いて容易に製造され得る。これは、構造体形成後における従来技術による部品において通常実施される必要があるハードマスクを除去するための方法に関連する構造体の汚染のあらゆる危険性を防止する。
【0044】
基板は、少なくともその表面に、20質量%の割合のシリコン(Si)を含み得る。
【0045】
基板は、シリコンSi基板であり得る。
【0046】
このような部品は、基板がその表面に同一の割合の質量を有する従来技術による部品に対して構造体及び基板の間に向上した界面を備える。実際に、このような部品に関して、構造体の形成は、バッファ層を必要とすることなく、構造体及び基板の間の界面を劣化させる、基板のシリコン及び構造体のガリウムの間の相互作用をもたらさない。
【0047】
自由領域の基板表面は、窒化材料からなり得る。
【0048】
この構造体は、窒化ガリウムGaNの第1の材料で作られる層と少なくとも一部で接触する半導体ワイヤであり得る。
【図面の簡単な説明】
【0049】
図1a図1aは、第1の実施形態による構造体を形成するための種々の段階の断面図を示す。
図1b図1bは、第1の実施形態による構造体を形成するための種々の段階の断面図を示す。
図1c図1cは、第1の実施形態による構造体を形成するための種々の段階の断面図を示す。
図1d図1dは、第1の実施形態による構造体を形成するための種々の段階の断面図を示す。
図1e図1eは、第1の実施形態による構造体を形成するための種々の段階の断面図を示す。
図2a図2aは、本発明の第2の実施形態による形成領域の第1の材料の層を調整する種々の段階の断面図を示す。
図2b図2bは、本発明の第2の実施形態による形成領域の第1の材料の層を調整する種々の段階の断面図を示す。
図2c図2cは、本発明の第2の実施形態による形成領域の第1の材料の層を調整する種々の段階の断面図を示す。
図2d図2dは、本発明の第2の実施形態による形成領域の第1の材料の層を調整する種々の段階の断面図を示す。
図3a図3aは、本発明の第3の実施形態による表面の自由領域の窒化のための段階及び構造体を成長させる段階の断面図を示す。
図3b図3bは、本発明の第3の実施形態による表面の自由領域の窒化のための段階及び構造体を成長させる段階の断面図を示す。
【発明を実施するための形態】
【0050】
本発明は、添付の図面を参照して、限定的ではない方法で単に例示として与えられる実施例の詳細な説明を読むことによって容易に理解されるだろう。
【0051】
種々の図面の同一、類似又は等価な部品は、図面の比較を容易にするために同一の参照符号が付される。
【0052】
図面に示される種々の部品は、図面を読み易くするために必ずしも均一な寸法に基づくものではない。
【0053】
本発明は、例えばマイクロワイヤ、ナノワイヤ又は円錐形の要素である三次元構造体の製造に関する。マイクロワイヤ又はナノワイヤを製造する実施形態は、以下において詳細な説明に開示される。しかしながら、これらの実施形態は、マイクロワイヤ又はナノワイヤ以外の三次元構造体の製造以外に、例えば円錐形の三次元構造体の製造に使用され得る。
【0054】
本明細書を通して、“ワイヤ”という用語は、三次元構造及び細長い形状を有する半導体構造体の半導体ナノワイヤ又はマイクロワイヤを意味し、ここで、2つが、5nmから2.5μmの同程度の大きさであり、3つ目の寸法は、それらの2つの寸法の少なくとも2倍、5倍、優先的には10倍である。
【0055】
ある実施形態において、横方向の寸法は、約1μm以下であり得、好ましくは100nmから300nmである。ある実施形態において、各ナノワイヤの高さ、又は長手方向の寸法は、500nm以上であり得、好ましくは1μmから50μmである。
【0056】
図1aから図1eは、特にシリコン(Si)基板100上における窒化ガリウム(GaN)半導体ワイヤ130に対する特定の用途において本発明の第1の実施形態による構造体を製造する方法の主段階を示す。
【0057】
このような特定の用途は、本発明の好ましい用途である。それにもかかわらず、本発明は、シリコン(Si)基板100上における窒化ガリウム(GaN)ワイヤ130の製造に限定されず、シリコン又はその表面にシリコンを含む基板であり得る基板上におけるガリウムヒ素(GaAs)、窒化インジウムガリウム(InGaN)又は窒化アルミニウムガリウム(AlGaN)などの、窒化ガリウム以外のガリウムを含む他の半導体材料で作られる半導体ワイヤを製造する方法を対象とする。
【0058】
このような製造方法は、
図1に示されるように、基板100を提供する段階、
図1bに示されるように、基板表面上にマスク110を堆積する段階であって、マスク110が、形成領域と称される、半導体ワイヤの形成のための表面の領域101を残し、表面105の残部102が所謂自由領域を表す段階、
図1cに示されるように、形成領域101にガリウムを含む第1の材料の層120を堆積する段階であって、自由領域102がマスク110によって保護される段階、
図1dに示されるように、自由領域を解放し、第1の材料によって覆われた形成領域101を表面105にだけ残すようにマスク110を除去する段階であって、自由領域102が、第1の材料及びマスク110がない段階、
図1eに示されるように、ガリウムを含む第2の材料を堆積することによってワイヤ130を成長させる段階であって、この成長が本質的に、第1の材料の組成によって、自由領域の核形成エネルギーより低い核形成エネルギーを有する形成領域101に接触して起こる段階、
からなる段階を含む。
【0059】
基板100を提供する段階は、より具体的には、表面105の一方が半導体ワイヤ130の形成のためのものである、実質的に平坦な基板を提供することからなる。このような基板100は、一般的に、例えばシリコン(Si)、炭化シリコン(SiC)又はシリコン(Si)を含む表面を有するサファイア(Al)等の半導体基板である。
【0060】
理解を容易にするために、本明細書の以下の部分において、“表面”という用語は、ワイヤ130の形成のための基板100の表面105を意味する。本発明によれば、この表面は、シリコンを含む材料からなる。
【0061】
基板100はまた、本発明の範囲を逸脱することなく、ガラス(SiO)等の非半導体材料で作られ得、または単にワイヤ130の形成のための表面105に沿って延長する半導体層を含み得る。本発明の用途の特に相応しいオプションによれば、基板100は、その表面に、30質量%を超える割合のシリコン(Si)を有する。
【0062】
上述のように、特定の用途において、基板100は、マイクロエレクトロニクス又はオプトエレクトロニクスの分野で使用されるシリコン基板である。主キャリアの濃度及び導電性の種類は、本発明による方法を用いて得られるワイヤから形成される部品のタイプに基づいて決定される。このように、基板の導電性のタイプは、例えば主キャリアが電子であり、主キャリア濃度が1018cm−3を超える。このような濃度は、基板による分極を可能にするのに特に相応しい。
【0063】
マスク110を形成する段階中に形成されるマスク110は、例えば、シリカ、窒化シリコン、又は、層120の堆積温度が120℃未満である場合にはポリマー樹脂等である、マイクロエレクトロニクス分野で通常使用されるマスクである。マスク110は、自由領域102を覆い、形成領域101を開放状態にするために相応しい。マスク110を形成するこのような段階が当業者に知られているので、この段階は、より詳細に本明細書において記載されない。
【0064】
マスク110は、自由領域の保護層として作用する。
【0065】
特定の用途において、形成領域101の各々は、直径が50nmから5μmである円板形状である。このよに、1平方センチメートルあたり10から10領域の密度で形成領域101を基板表面上に分布させることが可能である。明らかに、この特定の用途によれば、形成領域101の各々の形状は、円板の形状と異なるものであり得、例えば、六角形によって、正方形によって又は三角形によって画定される。
【0066】
第1の材料を堆積する段階中に堆積される第1の材料の層120は、ガリウムGaを含む半導体材料からなる。このように、第1の材料は、同様に、ガリウムヒ素(GaAS)及び窒化ガリウム(GaN)等の二元系半導体、又はインジウムガリウムヒ素(InGaAs)、窒化インジウムガリウム(InGaN)及び窒化アルミニウムガリウム(AlGaN)等の三元系半導体、又は、例えば、インジウムガリウムヒ素リン(InGaAsP)等の四元系半導体であり得る。
【0067】
本発明の好ましいオプションにおいて、第1の材料層120は、ガリウム、ガリウムベースの合金、又はアルミニウム及びガリウムベースの合金である。この可能性によれば、アルミニウム及びガリウムベース又はガリウム及びインジウムベースの合金の場合、ガリウム濃度は、支配的であり、アルミニウム又はインジウムのモル比は、好ましくは20%未満である少量である。
【0068】
第1の材料を堆積するこの段階は、第1の材料の層120の形成温度を600℃未満(又は873°K)に維持することを保証する適切な堆積方法を用いて行われる。第1の材料の層120のこのような形成温度は、基板表面105の温度が、層120を形成する段階を通して平均で600℃未満であることを意味する。基板表面105の温度は、本発明の好ましいオプションによれば、層120を形成する段階を通して600℃未満である。
【0069】
このように、この段階中、使用される堆積方法は、例えば、カソードスパッタリング又はパルスレーザー堆積(又はPLD)法等の物理気相堆積(又はPVD)法であり得る。
【0070】
600℃未満の第1の材料の層の形成温度を可能にする堆積方法は、第1の層120の形成中に第1の材料のガリウム原子及び表面105のガリウム原子の間の相互作用を制限するのに相応しい。これは、構造体の形成に有害であろう第1の材料の層120及び表面105の両方の劣化を避ける。
【0071】
この段階中、堆積される材料の層120の厚さは、優先的には3nmから100nmで選択され、有利には3から30nmの範囲で選択される。
【0072】
特定の用途において、表面105に形成されるものであるワイヤ130が窒化ガリウムGaNワイヤであるので、第1の材料は、窒化ガリウムGaNであり、第1の材料の層120は、反応性カソードスパッタリング中に形成される。このオプションによれば、堆積される材料は、ドーパント元素としてのシリコンを有する窒化ガリウムGaNで作られる第1の材料の層120を形成するように、少量のシリコンを含み得る。
【0073】
マスク110を除去する段階は、基板の表面105及び第1の材料の表面をエッチングしないように相応しいマスク110を形成する材料の選択的エッチング中に行われる。このエッチングは、反応性イオンエッチング等の湿式エッチング又は乾式エッチングであり得る。このような選択的エッチング方法が当業者に周知であり、本発明に特定のものではないので、それらは、詳細には本明細書で記載されない。
【0074】
構造体130を形成する段階に関して、これは、半導体構造体の形成に通常使用される堆積方法を用いて得られる。この段階において、第2の材料は、優先的には第1の材料と実質的に等しい。第1の材料と実質的に等しい第2の材料は、形成領域101が、第2の材料の堆積中に自由領域102の表面の核形成エネルギーよりかなり低い核形成エネルギーを有することを可能にする。実際に、これらの状況において、第1の材料の層120の格子定数は、第2の材料の格子定数と実質的に等しく、第1の材料の層における第2の材料の堆積は、実際上、ホモエピタキーである。これは、形成領域101上で基本的に、場合よっては排他的に起こる構造体130の成長の満足のいく選択を保証する。
【0075】
特定の用途において、第2の材料は、第1の材料と実質的に同一であり、従って窒化ガリウムGaNである。この特定の用途において、構造体130を形成する段階中に使用される堆積方法は、優先的には、有機金属化学気相堆積(MOCVD)法である。
【0076】
明らかに、本明細書の一般的な説明において又は特定の用途の範囲において、対応する形成領域101に接触して形成される構造体130の各々の部分の組成のみが、優先的には第1の材料と実施的に同一の第2の材料からなる。構造体130の各々の残部は、意図される用途によって構造体の各々の機能領域を形成するように異なる組成を有し得る。
【0077】
従って、このような方法は、構造体形成のモニタリングを提供することによって、基板表面の領域の構造体130の成長を促進することによって、ガリウム(Ga)を含む構造体130を製造するのに相応しい。さらに、それは、構造体の大量生産に相応しく、構造体130の成長中におけるマスク110の使用に固有の問題をもたらさない。
【0078】
このような構造体130は、半導体部品の製造に相応しい。このような部品は、示されないが、
−基板100、
−形成領域101における基板100の表面105に接触する第1の材料の層120であって、第1の材料がガリウムを含む層120、
−それぞれが形成領域101の1つに接触する複数の半導体構造体130、
を含む。
【0079】
図2Aから図2dは、本発明の第2の実施形態による製造方法の主段階を示す。このような方法は、構造体130が形成される基板100の全体表面105の形成段階が行われ、マスク110が、形成領域101にのみ接触して堆積され、自由領域120にマスクがなく、マスク110を形成する段階及びマスク110を除去する段階の間に、マスク110によって保護されない第1の材料の層の部分をエッチングするのに相応しい選択的なエッチング段階が提供される、第1の実施形態による方法と区別される。
【0080】
このように、この第2の実施形態による製造方法は、
図1aに示されるような第1の実施形態による製造方法の段階と等しい、基板100を提供する段階、
図2aに示されるように、構造体130に接触するための基板100の表面105にガリウムを含む第1の材料の層120を堆積する段階、
図2bに示されるように、第1の材料の層120の表面にマスク110を堆積する段階であって、このマスク110が、形成領域101のみを覆い、第1の材料の層120の部分がマスク110によって覆われない自由領域101を覆う段階、
図2cに示されるように、自由領域102を覆う第1の材料の層120の部分を除去する段階であって、形成領域101を覆う第1の材料の層120の部分が、マスク110によって保護される段階、
図2dに示されるように、形成領域101を覆う第1の材料の層120の部分を開放するようにマスク110を除去する段階、
−ガリウムGaを含む第2の材料を堆積することによって図1eに示されるような第1の実施形態による製造方法の段階と同様の方法でワイヤ130を成長させる段階であって、この成長が、基本的に、第1の材料の組成によって、自由領域102の核形成エネルギーより低い核形成エネルギーを有する形成領域101に接触して起こる段階、
からなる段階を含む。
【0081】
自由領域102を覆う第1の材料の層120の部分を除去する段階は、基板100の表面及びマスク110をエッチングしないように適した第1の材料の層120の選択的エッチングを用いて行われ得る。
【0082】
第2の実施形態による方法の他の段階は、本発明の第1の実施形態による方法の他のステップと同一である。
【0083】
図3a及び図3bは、本発明の第3の実施形態による製造方法の2つの段階を示す。第3の実施形態による製造方法は、マスク110を除去する段階及びワイヤ130を形成する段階の間に自由領域102の表面105の窒化のための段階を含む第2の実施形態による方法と区別される。
【0084】
窒化段階は、基板100の表面105のシリコンSi及び窒素Nの原子の間の窒化反応を得るために高温で窒素N又はアンモニアNHの流れに基板100を晒す段階からなる。このような段階を行う条件は、文献(“Thin Solid films” 474 in 2005 on pages 326 to 329 by Z. HONGLIANG et al)で公開された記事に記載されている。
【0085】
このような段階は、基板100の表面105に、自由領域102の窒化シリコンSiN103の層を形成するのに相応しい。このように形成された窒化シリコン103の層は、基板100の表面105に、自由領域102上における化学的及び電気的な被覆を提供する。次いで第2材料の成長が自由領域102において抑制される、自由領域102における基板100の表面105のこのような被覆に関して、形成領域101における第2の材料の成長の選択性は、第1及び第2の実施形態の成長に対して増加される。
【0086】
窒化段階は、自由領域及び第1の材料の層の両方において行われ得る。
【0087】
好ましくは、この窒化条件は、形成領域101の最小表面寸法の半分未満である窒化シリコン(SiN)の厚さを形成するのに相応しい。このような窒化シリコンの厚さの条件は、基板及びワイヤの良質な電気接触を提供するために相応しい。
【0088】
このような窒化シリコン103は、従来技術で実施されるような費用の掛かるリソグラフィを必要とする追加の段階を要求することなく、ワイヤに接触しない表面の部分に対応する自由領域の基板の領域の基板の電気的被覆を最適化するのに相応しい。
【0089】
本明細書において、記載されたワイヤは、その組成が長さ全体にわたって均質である半導体ワイヤである一方で、このワイヤを形成する段階中に形成されるワイヤは、本発明の範囲を逸脱することなく、例えば発光ダイオードの半導体接合を形成するため等のように、その高さの少なくとも一部において種々の組成を有するワイヤであり得る。同様に、このワイヤを形成する段階中に形成されるワイヤは、コアシェルワイヤであり得、そのワイヤの組成は、半径方向に変化する。
【符号の説明】
【0090】
100 基板
101 形成領域
102 形成領域
103 層
105 表面
110 保護層
120 層
130 構造体
図1a
図1b
図1c
図1d
図1e
図2a
図2b
図2c
図2d
図3a
図3b