【実施例】
【0032】
以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
本発明による経口投与用吸着剤として用いる球状活性炭が有する各物性値、すなわち、平均粒子径、嵩密度、比表面積、細孔容積、粒度分布、全酸性基、全塩基性基、及びインドール吸着試験は以下の方法によって測定される。
【0033】
(1)平均粒子径(Dv50)
レーザー回折式粒度分布測定装置〔(株)島津製作所:SALAD−3000S〕を用い、体積基準の粒度累積線図を作成し、粒度累積率50%における粒子径を平均粒子径(Dv50)とした。
【0034】
(2)嵩密度
JIS K 1474−5.7.2の充てん密度測定法に準じ、測定を行った。
【0035】
(3)比表面積(BET法による比表面積の計算法)
ガス吸着法による比表面積測定器(例えば、MICROMERITICS社製「ASAP2010」又は「ASAP2020」)を用いて、球状活性炭試料のガス吸着量を測定し、下記の式により比表面積を計算することができる。具体的には、試料である球状活性炭を試料管に充填し、350℃で減圧乾燥した後、乾燥後の試料重量を測定する。次に、試料管を−196℃に冷却し、試料管に窒素を導入し球状活性炭試料に窒素を吸着させ、窒素分圧と吸着量の関係(吸着等温線)を測定する。
窒素の相対圧をp、その時の吸着量をv(cm
3/g STP)とし、BETプロットを行う。すなわち、縦軸にp/(v(1−p))、横軸にpを取り、pが0.05〜0.20の範囲でプロットし、そのときの傾きb(単位=g/cm
3)、及び切片c(単位=g/cm
3)から、比表面積S(単位=m
2/g)は下記の式により求められる。
【数2】
ここで、MAは窒素分子の断面積で0.162nm
2を用いた。
【0036】
(4)ガス吸着法によるミクロ孔の細孔容積(Saito−Foleyの計算式)
ガス吸着法による比表面積測定装置(ASAP2010又はASAP2020:Micromeritics社製)を用いて、液体窒素温度(−196℃)で、窒素分圧と球状活性炭試料の吸着量の関係(吸着等温線)を測定した。得られた吸着等温線より、前記比表面積測定装置(ASAP2010又はASAP2020)付属の解析ソフトを用い、Saito−Foleyの計算式〔Saito, A. and Foley, H. C., AlChE Journal 37 (3), 429 (1991)〕により細孔分布を計算した。細孔の形状をスリット幾何学で解析したものがオリジナルのHorverth−Kawazoeの計算法〔Horvath, G. and Kawazoe, K., J. Chem. Eng. Japan 16 (6), 470 (1983)〕であるが、炭素の構造が難黒鉛化性炭素で三次元的に乱れた構造であるため、ここではシリンダー幾何学〔Saito, A. and Foley, H. C., AlChE Journal 37 (3), 429 (1991)〕による計算を選択し計算した。
計算に使用した各種パラメータを以下に示す。
相互作用パラメータ(Interaction Parameter):1.56×10
-43ergs・cm
4
吸着ガスの分子径(Diameter of Adsorptive Molecule):0.3000nm
サンプルの原子直径(Diameter of Sample Molecule):0.3400nm
密度変換係数(Density Conversion Factor):0.001547(cm
3液体/cm
3STP)
【0037】
(5)水銀圧入法によるメソ孔の細孔容積
水銀ポロシメーター(例えば、MICROMERITICS社製「AUTOPORE 9200」)を用いて細孔容積を測定することができる。試料である球状活性炭を試料容器に入れ、2.67Pa以下の圧力で30分間脱気する。次いで、水銀を試料容器内に導入し、徐々に加圧して水銀を球状活性炭試料の細孔へ圧入する(最高圧力=414MPa)。このときの圧力と水銀の圧入量との関係から以下の各計算式を用いて球状活性炭試料の細孔容積分布を測定する。
具体的には、細孔直径21μmに相当する圧力(0.06MPa)から最高圧力(414MPa:細孔直径3nm相当)までに球状活性炭試料に圧入された水銀の体積を測定する。細孔直径の算出は、直径(D)の円筒形の細孔に水銀を圧力(P)で圧入する場合、水銀の表面張力を「γ」とし、水銀と細孔壁との接触角を「θ」とすると、表面張力と細孔断面に働く圧力の釣り合いから、次式:
−πDγcosθ=π(D/2)
2・P
が成り立つ。従って
D=(−4γcosθ)/P
となる。
本明細書においては、水銀の表面張力を484dyne/cmとし、水銀と炭素との接触角を130度とし、圧力PをMPaとし、そして細孔直径Dをμmで表示し、下記式:
D=1.24/P
により圧力Pと細孔直径Dの関係を求める。例えば細孔直径20〜10000nmの範囲の細孔容積とは、水銀圧入圧0.124MPaから62MPaまでに圧入された水銀の体積に相当する。細孔直径7.5〜15000nmの範囲の細孔容積とは、水銀圧入圧0.083MPaから165MPaまでに圧入された水銀の体積に相当する。細孔直径3〜20nmの範囲の細孔容積とは、水銀圧入圧413MPaから62MPaまでに圧入された水銀の体積に相当する。
【0038】
(6)粒度分布
レーザー回折式粒度分布測定装置〔(株)島津製作所:SALAD−3000S〕を用い、個数基準の粒度分布を測定し、測定粒子径区分の代表粒子径D、及びその測定粒子径区分内の個数nの値を求め、以下の式により長さ平均粒子径D
1、及び重量平均粒子径D
4を計算する。
【数3】
【数4】
【0039】
(7)インドール吸着試験
実施例及び比較例で得られた球状活性炭に関して、インドール吸着試験及びコール酸共存下でのインドール吸着試験を以下の方法で実施した。
溶出試験第2液にて調製し脱気処理したインドール濃度500mg/Lインドールの溶液又はインドール濃度500mg/Lかつコール酸ナトリウム濃度15mmol/Lの溶液900mLを入れた容器にそれぞれ乾燥した球状活性炭1gを正確に添加し、溶出試験器を用いてパドル回転数50rpm、37℃にて24時間試験した。試験開始から24時間後に溶液10mLサンプリングし、球状活性炭をメンブランフィルターでろ過し、ろ液中のインドールの残存濃度を液体クロマトグラフにより測定した。インドールの残存濃度は、別に作成した検量線から求め、それを基に球状活性炭1gあたりのインドールの吸着量(mg/g)を次式から算出した。
球状活性炭1gあたりのインドールの吸着量(mg/g)=(500(mg/L)−残存濃度(mg/L))×0.9(L)/活性炭質量(g)
【0040】
《実施例1》
イオン交換水4338g、亜硝酸ナトリウム6g、及びメトローズ 60SH−15(信越化学工業株式会社製)の4wt%水溶液169gを10Lの重合反応器に入れた。これにスチレン582g、ジビニルベンゼン(57%のジビニルベンゼンと43%のエチルビニルベンゼン)393g、アクリロニトリル525g、2,2’−アゾビス(2,4−ジメチルバレロニトリル)8.7g、及びポロゲンとしてヘキサン375gを適宜加えたのち、窒素ガスで系内を置換した。この二相系を攪拌して分散、懸濁し、55℃に加熱し、そのまま20時間保持した。得られた樹脂を水洗及び濾過し、窒素流通下200℃において16時間乾燥させ、平均粒子径195μmの球状の多孔性合成樹脂を得た。
得られた球状の多孔性合成樹脂を目皿つき反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化処理として、乾燥空気を反応管下部より上部に向かって流し、180℃まで昇温後、180℃から290℃まで9時間で昇温して反応を行うことにより、球状の多孔性酸化樹脂を得た。これを窒素雰囲気中850℃で焼成し、嵩密度0.83g/mLの球状炭素を得た。得られた球状炭素を、流動床を用い、水蒸気を含む窒素雰囲気中900℃にて、BET比表面積が1850m
2/gになるまで賦活処理を行い、球状活性炭を得た。得られた球状活性炭の特性を表1に示す。
【0041】
《実施例2》
イオン交換水4338g、亜硝酸ナトリウム6g、及びメトローズ 60SH−15(信越化学工業株式会社製)の4wt%水溶液169gを10Lの重合反応器に入れた。これにスチレン582g、ジビニルベンゼン(57%のジビニルベンゼンと43%のエチルビニルベンゼン)393g、アクリロニトリル525g、2,2’−アゾビス(2,4−ジメチルバレロニトリル)8.7g、及びポロゲンとしてヘキサン375gを適宜加えたのち、窒素ガスで系内を置換した。この二相系を攪拌して分散、懸濁し、55℃に加熱し、そのまま20時間保持した。得られた樹脂を水洗及び濾過し、窒素流通下200℃において16時間乾燥させ、平均粒子径245μmの球状の多孔性合成樹脂を得た。
得られた球状の多孔性合成樹脂を目皿つき反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化処理として、乾燥空気を反応管下部より上部に向かって流し、180℃まで昇温後、180℃から290℃まで9時間で昇温して反応を行うことにより、球状の多孔性酸化樹脂を得た。これを窒素雰囲気中850℃で焼成し、嵩密度0.83g/mLの球状炭素を得た。得られた球状炭素を、流動床を用い、水蒸気を含む窒素雰囲気中900℃にて、BET比表面積が1790m
2/gになるまで賦活処理を行い、球状活性炭を得た。得られた球状活性炭の特性を表1に示す。
【0042】
《実施例3》
イオン交換水4338g、亜硝酸ナトリウム6g、及びメトローズ 60SH−15(信越化学工業株式会社製)の4wt%水溶液169gを10Lの重合反応器に入れた。これにスチレン582g、ジビニルベンゼン(57%のジビニルベンゼンと43%のエチルビニルベンゼン)393g、アクリロニトリル525g、2,2’−アゾビス(2,4−ジメチルバレロニトリル)8.7g、及びポロゲンとしてヘキサン375gを適宜加えたのち、窒素ガスで系内を置換した。この二相系を攪拌して分散、懸濁し、55℃に加熱し、そのまま20時間保持した。得られた樹脂を水洗及び濾過し、窒素流通下200℃において16時間乾燥させ、平均粒子径197μmの球状の多孔性合成樹脂を得た。
得られた球状の多孔性合成樹脂を目皿つき反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化処理として、乾燥空気を反応管下部より上部に向かって流し、180℃まで昇温後、180℃から290℃まで9時間で昇温して反応を行うことにより、球状の多孔性酸化樹脂を得た。これを窒素雰囲気中850℃で焼成し、嵩密度0.83g/mLの球状炭素を得た。得られた球状炭素を、流動床を用い、水蒸気を含む窒素雰囲気中900℃にて、BET比表面積が1670m
2/gになるまで賦活処理を行い、球状活性炭を得た。得られた球状活性炭の特性を表1に示す。
【0043】
《実施例4》
イオン交換水4338g、亜硝酸ナトリウム6g、及びメトローズ 60SH−15(信越化学工業株式会社製)の4wt%水溶液169gを10Lの重合反応器に入れた。これにスチレン582g、ジビニルベンゼン(57%のジビニルベンゼンと43%のエチルビニルベンゼン)393g、アクリロニトリル525g、2,2’−アゾビス(2,4−ジメチルバレロニトリル)8.7g、及びポロゲンとしてヘキサン375gを適宜加えたのち、窒素ガスで系内を置換した。この二相系を攪拌して分散、懸濁し、55℃に加熱し、そのまま20時間保持した。得られた樹脂を水洗及び濾過し、窒素流通下200℃において16時間乾燥させ、平均粒子径200μmの球状の多孔性合成樹脂を得た。
得られた球状の多孔性合成樹脂を目皿つき反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化処理として、乾燥空気を反応管下部より上部に向かって流し、180℃まで昇温後、180℃から290℃まで9時間で昇温して反応を行うことにより、球状の多孔性酸化樹脂を得た。これを窒素雰囲気中850℃で焼成し、嵩密度0.83g/mLの球状炭素を得た。得られた球状炭素を、流動床を用い、水蒸気を含む窒素雰囲気中900℃にて、BET比表面積が1280m
2/gになるまで賦活処理を行い、球状活性炭を得た。得られた球状活性炭の特性を表1に示す。
【0044】
《実施例5》
イオン交換水4338g、亜硝酸ナトリウム6g、及びメトローズ 60SH−15(信越化学工業株式会社製)の4wt%水溶液169gを10Lの重合反応器に入れた。これにスチレン582g、ジビニルベンゼン(57%のジビニルベンゼンと43%のエチルビニルベンゼン)393g、アクリロニトリル525g、2,2’−アゾビス(2,4−ジメチルバレロニトリル)8.7g、及びポロゲンとしてヘキサン375gを適宜加えたのち、窒素ガスで系内を置換した。この二相系を攪拌して分散、懸濁し、55℃に加熱し、そのまま20時間保持した。得られた樹脂を水洗及び濾過し、窒素流通下200℃において16時間乾燥させ、平均粒子径165μmの球状の多孔性合成樹脂を得た。
得られた球状の多孔性合成樹脂を目皿つき反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化処理として、乾燥空気を反応管下部より上部に向かって流し、180℃まで昇温後、180℃から290℃まで9時間で昇温して反応を行うことにより、球状の多孔性酸化樹脂を得た。これを窒素雰囲気中850℃で焼成し、嵩密度0.83g/mLの球状炭素を得た。得られた球状炭素を、流動床を用い、水蒸気を含む窒素雰囲気中900℃にて、BET比表面積が850m
2/gになるまで賦活処理を行い、球状活性炭を得た。得られた球状活性炭の特性を表1に示す。
【0045】
《実施例6》
イオン交換水4338g、亜硝酸ナトリウム6g、及びメトローズ 60SH−15(信越化学工業株式会社製)の4wt%水溶液169gを10Lの重合反応器に入れた。これにスチレン582g、ジビニルベンゼン(57%のジビニルベンゼンと43%のエチルビニルベンゼン)393g、アクリロニトリル525g、2,2’−アゾビス(2,4−ジメチルバレロニトリル)8.7g、及びポロゲンとしてヘキサン375gを適宜加えたのち、窒素ガスで系内を置換した。この二相系を攪拌して分散、懸濁し、55℃に加熱し、そのまま20時間保持した。得られた樹脂を水洗及び濾過し、窒素流通下200℃において16時間乾燥させ、平均粒子径250μmの球状の多孔性合成樹脂を得た。
得られた球状の多孔性合成樹脂を目皿つき反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化処理として、乾燥空気を反応管下部より上部に向かって流し、180℃まで昇温後、180℃から290℃まで9時間で昇温して反応を行うことにより、球状の多孔性酸化樹脂を得た。これを窒素雰囲気中850℃で焼成し、嵩密度0.83g/mLの球状炭素を得た。得られた球状炭素を、流動床を用い、水蒸気を含む窒素雰囲気中900℃にて、BET比表面積が900m
2/gになるまで賦活処理を行い、球状活性炭を得た。得られた球状活性炭の特性を表1に示す。
【0046】
《比較例1》
イオン交換水4567g、及びメチルセルロース249gを10Lの重合缶に入れ、これにスチレン481g、純度57%ジビニルベンゼン(57%のジビニルベンゼンと43%のエチルビニルベンゼン)1119g、2,2’−アゾビス(2,4−ジメチルバレロニトリル)9.3g、及びポロゲンとしてヘキサン560gを適宜加えたのち、窒素ガスで系内を置換し、この二相系を攪拌して分散、懸濁し、55℃に加熱してからそのまま20時間保持した。得られた樹脂を水洗及び濾過し、窒素流通下200℃において16時間乾燥させ、平均粒子径157μmの球状の多孔性合成樹脂を得た。
得られた球状の多孔性合成樹脂を目皿付き反応装置に仕込み、縦型管状炉にて不融化処理を行った。不融化処理として、乾燥空気を反応管下部より上部に向かって流し、180℃まで昇温後、180℃から240℃まで3時間で昇温し240℃で1時間保持、240℃から260℃まで1時間で昇温し260℃に5時間保持、260℃から300℃まで2時間で昇温し300℃で1時間保持を行うことにより、球状の多孔性酸化樹脂を得た。球状の多孔性酸化樹脂を窒素雰囲気中850℃で焼成した後、流動床を用い、水蒸気を含む窒素ガス雰囲気中、BET比表面積が2660m2/gになるまで賦活処理を行い、球状活性炭を得た。
【0047】
《比較例2》
イオン交換水4338g、亜硝酸ナトリウム6g、及びメトローズ 60SH−15(信越化学工業株式会社製)の4wt%水溶液169gを10Lの重合反応器に入れた。これにスチレン432g、ジビニルベンゼン(57%のジビニルベンゼンと43%のエチルビニルベンゼン)393g、アクリロニトリル675g、2,2’−アゾビス(2,4−ジメチルバレロニトリル)8.7g、及びポロゲンとしてヘキサン375gを適宜加えたのち、窒素ガスで系内を置換した。この二相系を攪拌して分散、懸濁し、55℃に加熱し、そのまま20時間保持した。得られた樹脂を水洗及び濾過し、窒素流通下200℃において16時間乾燥させ、平均粒子径189μmの球状の多孔性合成樹脂を得た。
得られた球状の多孔性合成樹脂を目皿つき反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化処理として、乾燥空気を反応管下部より上部に向かって流し、180℃まで昇温後、180℃から240℃まで3時間で昇温し240℃で1時間保持、240℃から260℃まで1時間で昇温し260℃に5時間保持、260℃から300℃まで2時間で昇温し300℃で1時間保持を行うことにより、球状の多孔性酸化樹脂を得た。これを窒素雰囲気中850℃で焼成し、嵩密度0.75g/mLの球状炭素を得た。得られた球状炭素を、流動床を用い、水蒸気を含む窒素雰囲気中850℃にて、BET比表面積が1650m
2/gになるまで賦活処理を行い、球状活性炭を得た。得られた球状活性炭の特性を表1に示す。
【0048】
《比較例3》
イオン交換水4338g、亜硝酸ナトリウム6g、及びメトローズ 60SH−15(信越化学工業株式会社製)の4wt%水溶液169gを10Lの重合反応器に入れた。これにスチレン582g、ジビニルベンゼン(57%のジビニルベンゼンと43%のエチルビニルベンゼン)393g、アクリロニトリル525g、2,2’−アゾビス(2,4−ジメチルバレロニトリル)8.7g、及びポロゲンとしてヘキサン375gを適宜加えたのち、窒素ガスで系内を置換した。この二相系を攪拌して分散、懸濁し、55℃に加熱し、そのまま20時間保持した。得られた樹脂を水洗及び濾過し、窒素流通下200℃において16時間乾燥させ、平均粒子径170μmの球状の多孔性合成樹脂を得た。
得られた球状の多孔性合成樹脂を目皿つき反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化処理として、乾燥空気を反応管下部より上部に向かって流し、180℃まで昇温後、180℃から290℃まで9時間で昇温して反応を行うことにより、球状の多孔性酸化樹脂を得た。これを窒素雰囲気中850℃で焼成し、嵩密度0.83g/mLの球状炭素を得た。得られた球状炭素を、流動床を用い、水蒸気を含む窒素雰囲気中850℃にて、BET比表面積が2050m
2/gになるまで賦活処理を行い、球状活性炭を得た。得られた球状活性炭の特性を表1に示す。
【0049】
《比較例4》
イオン交換水4338g、亜硝酸ナトリウム6g、及びメトローズ 60SH−15(信越化学工業株式会社製)の4wt%水溶液169gを10Lの重合反応器に入れた。これにスチレン582g、ジビニルベンゼン(57%のジビニルベンゼンと43%のエチルビニルベンゼン)393g、アクリロニトリル525g、2,2’−アゾビス(2,4−ジメチルバレロニトリル)8.7g、及びポロゲンとしてヘキサン375gを適宜加えたのち、窒素ガスで系内を置換した。この二相系を攪拌して分散、懸濁し、55℃に加熱し、そのまま20時間保持した。得られた樹脂を水洗及び濾過し、窒素流通下200℃において16時間乾燥させ、平均粒子径164μmの球状の多孔性合成樹脂を得た。
得られた球状の多孔性合成樹脂を目皿つき反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化処理として、乾燥空気を反応管下部より上部に向かって流し、180℃まで昇温後、180℃から290℃まで9時間で昇温して反応を行うことにより、球状の多孔性酸化樹脂を得た。これを窒素雰囲気中850℃で焼成し、嵩密度0.83g/mLの球状炭素を得た。得られた球状炭素を、流動床を用い、水蒸気を含む窒素雰囲気中900℃にて、BET比表面積が540m
2/gになるまで賦活処理を行い、球状活性炭を得た。得られた球状活性炭の特性を表1に示す。
【0050】
《比較例5》
イオン交換水4338g、亜硝酸ナトリウム6g、及びメトローズ 60SH−15(信越化学工業株式会社製)の4wt%水溶液169gを10Lの重合反応器に入れた。これにスチレン582g、ジビニルベンゼン(57%のジビニルベンゼンと43%のエチルビニルベンゼン)393g、アクリロニトリル525g、2,2’−アゾビス(2,4−ジメチルバレロニトリル)8.7g、及びポロゲンとしてヘキサン375gを適宜加えたのち、窒素ガスで系内を置換した。この二相系を攪拌して分散、懸濁し、55℃に加熱し、そのまま20時間保持した。得られた樹脂を水洗及び濾過し、窒素流通下200℃において16時間乾燥させ、平均粒子径169μmの球状の多孔性合成樹脂を得た。
得られた球状の多孔性合成樹脂を目皿つき反応管に仕込み、縦型管状炉にて不融化処理を行った。不融化処理として、乾燥空気を反応管下部より上部に向かって流し、180℃まで昇温後、180℃から290℃まで9時間で昇温して反応を行うことにより、球状の多孔性酸化樹脂を得た。これを窒素雰囲気中850℃で焼成し、嵩密度0.83g/mLの球状炭素を得た。得られた球状炭素を、流動床を用い、水蒸気を含む窒素雰囲気中900℃にて、BET比表面積が340m
2/gになるまで賦活処理を行い、球状活性炭を得た。得られた球状活性炭の特性を表1に示す。
【0051】
【表1】
【0052】
表1に示すように、実施例1〜6のBET比表面積が800m
2/g以上、嵩密度が0.3〜0.8g/mL、細孔直径3nm未満の細孔容積が0.3mL/g以上、そしてミクロ孔/メソ孔比が3.0以上である球状活性炭は、優れたコール酸共存下でのインドール吸着能を示した。しかしながら、前記の物性を有さない比較例1〜5の球状活性炭は、コール酸非存在下では一定のインドール吸着能を示したが、コール酸共存下ではインドール吸着能が顕著に低下した。