特許第6307960号(P6307960)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 凸版印刷株式会社の特許一覧

特許6307960固体高分子形燃料電池用触媒層付電解質膜の製造方法、固体高分子形燃料電池および触媒層付電解質膜
<>
  • 特許6307960-固体高分子形燃料電池用触媒層付電解質膜の製造方法、固体高分子形燃料電池および触媒層付電解質膜 図000002
  • 特許6307960-固体高分子形燃料電池用触媒層付電解質膜の製造方法、固体高分子形燃料電池および触媒層付電解質膜 図000003
  • 特許6307960-固体高分子形燃料電池用触媒層付電解質膜の製造方法、固体高分子形燃料電池および触媒層付電解質膜 図000004
  • 特許6307960-固体高分子形燃料電池用触媒層付電解質膜の製造方法、固体高分子形燃料電池および触媒層付電解質膜 図000005
  • 特許6307960-固体高分子形燃料電池用触媒層付電解質膜の製造方法、固体高分子形燃料電池および触媒層付電解質膜 図000006
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6307960
(24)【登録日】2018年3月23日
(45)【発行日】2018年4月11日
(54)【発明の名称】固体高分子形燃料電池用触媒層付電解質膜の製造方法、固体高分子形燃料電池および触媒層付電解質膜
(51)【国際特許分類】
   H01M 8/1004 20160101AFI20180402BHJP
   H01M 8/1081 20160101ALI20180402BHJP
   H01M 8/10 20160101ALI20180402BHJP
   H01M 4/88 20060101ALI20180402BHJP
【FI】
   H01M8/1004
   H01M8/1081
   H01M8/10 101
   H01M4/88 K
【請求項の数】5
【全頁数】15
(21)【出願番号】特願2014-54718(P2014-54718)
(22)【出願日】2014年3月18日
(65)【公開番号】特開2015-88447(P2015-88447A)
(43)【公開日】2015年5月7日
【審査請求日】2017年2月21日
(31)【優先権主張番号】特願2013-201366(P2013-201366)
(32)【優先日】2013年9月27日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000003193
【氏名又は名称】凸版印刷株式会社
(72)【発明者】
【氏名】桜田 雄
【審査官】 山内 達人
(56)【参考文献】
【文献】 特開2004−164866(JP,A)
【文献】 特開平10−096810(JP,A)
【文献】 特開2006−261124(JP,A)
【文献】 特開2004−111818(JP,A)
【文献】 特開2011−216647(JP,A)
【文献】 特開2010−257669(JP,A)
【文献】 特開2008−270045(JP,A)
【文献】 特開2002−169303(JP,A)
【文献】 特開2007−048701(JP,A)
【文献】 特開2007−115532(JP,A)
【文献】 特開2010−123371(JP,A)
【文献】 特開2010−073587(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/02
H01M 8/10
H01M 4/88
(57)【特許請求の範囲】
【請求項1】
高分子電解質膜と、前記高分子電解質膜の一方の面に設けたアノード触媒層と、前記高分子電解質膜の他方の面に設けたカソード触媒層とを備える触媒層付電解質膜の製造方法であって、
触媒担持粒子と高分子電解質と溶媒とを含む触媒インクに親和性のある親和性エリアと前記触媒インクに親和性が無い非親和性エリアとを、剥離基材上にパターン形成するパターン形成工程と、
前記親和性エリアに前記触媒インクを塗布して塗膜を形成し、形成された塗膜中の溶媒を除去し、前記カソード触媒層を形成するカソード触媒層形成工程と、
前記カソード触媒層上に、高分子電解質と溶媒とを含む電解質インクを塗布して塗膜を形成し、形成された塗膜中の溶媒を除去し、前記高分子電解質膜を形成する高分子電解質膜形成工程と、
触媒担持粒子と高分子電解質と溶媒とを含む触媒インクに親和性のある親和性エリアと前記触媒インクに親和性が無い非親和性エリアとを、転写基材上にパターン形成するパターン形成工程と、
前記親和性エリアに前記触媒インクを塗布して塗膜を形成し、形成された塗膜中の溶媒を除去し、前記アノード触媒層を形成するアノード触媒層形成工程と、
前記転写基材上に作製されたアノード触媒層を前記カソード触媒層が形成された裏面の高分子電解質膜に積層し、ホットプレスによりアノード触媒層を前記高分子電解質膜に転写するホットプレス工程と、
前記剥離基材と転写基材とを剥離除去する剥離除去工程と、
を有することを特徴とする触媒層付電解質膜の製造方法。
【請求項2】
前記パターン形成工程は、前記剥離基材上、又は前記転写基材上の全エリアにシランカップリング剤を形成するシランカップリング剤形成工程と、前記親和性エリア上に形成されたシランカップリング剤のみを除去するシランカップリング剤限定除去工程と、前記触媒層形成工程により触媒層を形成された後に、前記非親和性エリアの残存シランカップリング剤を除去する残存シランカップリング剤除去工程と、
を有することを特徴とする、請求項1に記載の触媒層付電解質膜の製造方法。
【請求項3】
前記シランカップリング剤限定除去工程において、フォトマスクを介して親和性エリア上にのみ真空紫外光を照射することにより除去することを特徴とする、請求項2に記載の触媒層付電解質膜の製造方法。
【請求項4】
前記パターン形成工程において、前記親和性エリアでは親水性を活用し、前記非親和性エリアでは撥水性を活用してパターン形成することを特徴とする、請求項1乃至3のいずれか一項に記載の触媒層付電解質膜の製造方法。
【請求項5】
前記親和性エリアの水接触角が15度以下であり、前記非親和性エリアの水接触角が100度以上であることを特徴とする、請求項1乃至4のいずれか一項に記載の触媒層付電解質膜の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固体高分子形燃料電池に用いられる触媒層付電解質膜の製造方法に関する。
【背景技術】
【0002】
燃料電池は、水素等の燃料と空気等の酸化剤を電気化学的に反応させることにより、燃料の化学エネルギーを電気エネルギーに変換して取り出す発電方式である。この発電方式は、発電効率が高く、静粛性に優れ、大気汚染の原因となる窒素酸化物(NO)や硫黄酸化物(SOx)、更に地球温暖化の原因となる二酸化炭素(CO)の排出量が少ない等の利点がある。これらの利点から、燃料電池は新エネルギーとして期待されている。燃料電池の適用分野の例として、携帯電気機器の長時間電力供給、コジェネレーション用定置型発電温水供給機、燃料電池自動車等があり、用途も規模も多様である。
【0003】
燃料電池の種類は、使用する電解質によって、固体高分子形、リン酸形、溶融炭酸塩形、固体酸化物形、アルカリ形等に分類され、それぞれ運転温度が大きく異なり、それに伴い発電規模や利用分野も異なる。
上述した各種の燃料電池の中で、長所の多い固体高分子形燃料電池が知られている。この固体高分子形燃料電池は、陽イオン交換膜を電解質として用いたものである。その長所として、(1)燃料電池の中でも比較的低温で動作するため室温付近で使用可能である点、(2)電解質膜の薄膜化により内部抵抗を低減できるため高出力化及びコンパクト化が可能である点に着目されている。そのため、固体高分子形燃料電池は、車載用電源や家庭用据置電源等への用途が有望視されており、近年、様々な研究開発が行われている。
【0004】
固体高分子形燃料電池は、高分子電解質の両面に一対の電極触媒層が形成された膜に、一対のガス拡散層が配置されるとともに、中心部材としての膜電極接合体(Membrane Electrode Assembly:MEA)が構成されている。また、電極触媒層の周縁部にはガスケットが配置されている。そして、中心部材である膜電極接合体を、一対のセパレータ板で挟持することによって電池が構成されている。この固体高分子形燃料電池において、一方の電極に水素を含有する燃料ガスを供給し、他方の電極に酸素を含む酸化剤ガスを供給するために、それぞれのガス流路が形成されている。なお、高分子電解質の両面に一対の電極触媒層が形成された膜は、触媒層付電解質膜(Catalyst Coated Membrane:CCM)とも呼ばれている。そして、一対のセパレータ板で挟持された電池を単電池セルと呼ぶ。
【0005】
固体高分子形燃料電池は、出力密度の増大と燃料電池全体のコンパクト化を目的として、複数の単電池セルを積層(スタック)して用いられる。スタックする枚数は、必要な電力により異なり、一般的な携帯電気機器のポータブル電源では数枚から10枚程度、コジェネレーション用定置型電気及び温水供給機では60〜90枚程度、自動車用途では250〜400枚程度である。高出力化をするためにはスタック枚数を増やすことが必要となり、単電池セルのコスト(費用)が燃料電池全体のコストに大きく影響する。プロセスコストの観点から、安価で簡便な触媒層付電解質膜や膜電極接合体の製造方法が望まれている。
【0006】
触媒層付電解質膜の製造において、固体高分子電解質層の上に所望の形状の電極触媒層を形成する方法として、被覆部材を用いる手法が検討されている(特許文献1、特許文献2)。例えば、(1)固体高分子電解質膜に枠状の被覆部材を貼合し、枠内開口部の固体高分子電解質膜に触媒を含む塗工液を塗布することにより、触媒層を固体高分子電解質膜上に形成する方法、(2)別途用意した基材フィルム上に触媒を含む塗工液を塗布し、枠状の被覆部材が貼合された固体高分子電解質膜と積層してホットプレスすることにより枠内開口部にのみ触媒層を固体高分子電解質膜上に転写する方法等が知られている。
【0007】
また、安価で簡便に触媒層付電解質膜を製造する方法として、基材上に第1の電極触媒層を製造し、次に高分子電解質層8を製造し、最後に第2の電極触媒層を製造する逐次積層による方法が提案されている(特許文献3)。この逐次積層による方法は、タクト時間が短く、生産効率が高くなるため、製造コストが低くなる。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2007−294183号公報
【特許文献2】特開2008−77984号公報
【特許文献3】特許第4696462号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、特許文献1、特許文献2に開示された触媒層付電解質膜の製造方法では、所望の形状の触媒層が固体高分子電解質膜上に形成することができるが、被覆部材上に形成された触媒層がロスとなる。触媒層中には、白金に代表される貴金属が触媒として存在していることから、触媒層のロスは、コスト増に繋がるという問題があった。
また、特許文献3、特許文献4に開示された触媒層付電解質膜の製造方法では、熱プレス工程を含まないために製造コストは低くなるが、共に触媒層の形状が塗布する手法に依存し、所望の形状の触媒層を得ることができないという問題があった。
【0010】
更に、高分子電解質膜に触媒インクを塗布し、触媒層を形成した場合、膜と触媒層の界面のみが接合しており、触媒層がむき出しとなる断面から乾燥しやすいため、将来的に求められている発生水のみのような低加湿条件下で、発電性能が下がるという問題があった。
本発明は、上記問題を考慮して成し遂げられたものであり、(1)触媒インクのロスが少なく、(2)所望の形状に高精度で触媒層を形成でき、(3)イオン抵抗が小さく、(4)低加湿条件下で高い発電性能を有する触媒層付電解質膜の製造方法、及びその触媒層付電解質膜を提供することを目的とする。
【課題を解決するための手段】
【0011】
上記の課題を解決するために、本発明の一態様に係る触媒層付電解質膜の製造方法は、パターン形成工程と、カソード触媒層形成工程と、高分子電解質膜形成工程と、パターン形成工程と、アノード触媒層形成工程と、ホットプレス工程と、剥離工程とを有する。なお、触媒層付電解質膜は、高分子電解質膜と、当該高分子電解質膜の一方の面に設けたアノード触媒層と、当該高分子電解質膜の他方の面に設けたカソード触媒層とを備える。
【0012】
パターン形成工程において、触媒担持粒子と高分子電解質と溶媒とを含む触媒インクに親和性のある親和性エリアと触媒インクに親和性が無い非親和性エリアとを、剥離基材上にパターン形成する。カソード触媒層形成工程において、親和性エリアに触媒インクを塗布して塗膜を形成し、形成された塗膜中の溶媒を除去し、カソード触媒層を形成する。高分子電解質膜形成工程において、カソード触媒層上に、高分子電解質と溶媒とを含む電解質インクを塗布して塗膜を形成し、形成された塗膜中の溶媒を除去し、高分子電解質膜を形成する。パターン形成工程において、触媒担持粒子と高分子電解質と溶媒とを含む触媒インクに親和性のある親和性エリアと触媒インクに親和性が無い非親和性エリアとを、転写基材上にパターン形成する。アノード触媒層形成工程において、親和性エリアに触媒インクを塗布して塗膜を形成し、形成された塗膜中の溶媒を除去し、アノード触媒層を形成する。ホットプレス工程において、転写基材上に作製されたアノード触媒層をカソード触媒層が形成された裏面の高分子電解質膜に積層し、ホットプレスによりアノード触媒層を高分子電解質膜に転写する。剥離工程において、剥離基材と転写基材とを剥離除去する。
【発明の効果】
【0013】
本発明によれば、(1)触媒インクのロスが少なく、(2)所望の形状に高精度で触媒層を形成でき、(3)イオン抵抗が小さく、(4)低加湿条件下で高い発電性能を有する触媒層付電解質膜の製造方法、及びその触媒層付電解質膜を提供することができる。
【図面の簡単な説明】
【0014】
図1】本発明の実施形態に係る触媒層付電解質膜の製造方法を工程順に説明するための模式図である。
図2】本発明の実施形態に係る触媒層付電解質膜の理想的な構成を示す断面図である。
図3】本発明の実施形態の理想とは異なる触媒層付電解質膜の構成を示す断面図である。
図4】本発明の実施形態に係る膜電極接合体の構成を示す断面図である。
図5】本発明の実施形態に係る触媒層付電解質膜の製造方法を工程順に説明するためのフローチャートである。
【発明を実施するための形態】
【0015】
以下、図面を参照して本発明の実施形態について詳細に説明する。
図1は、本実施形態に係る触媒層付電解質膜の製造方法を工程順に説明するための模式図である。
本実施形態に係る触媒層付電解質膜の製造方法の概略は以下のとおりである。
本実施形態に係る触媒層付電解質膜の製造方法は、(1)剥離基材1a上にカソード触媒層7bと固体高分子電解質膜8が形成されたカソード触媒層付電解質膜の形成工程と、(2)転写基材上に転写基材1b上にアノード触媒層7cが形成されたアノード触媒層の形成工程と、(3)アノード触媒層のカソード触媒層付電解質膜への転写工程との3つの工程から成る。
【0016】
(1)カソード触媒層付電解質膜の形成工程
まず、剥離基材1a上に、触媒インク7aと親和性のある親和性エリア5と触媒インク7aと親和性が無い非親和性エリア6とをパターン形成する工程(図1(1b))を実行する。次に、剥離基材1上の触媒インク7aと親和性のある親和性エリア5に触媒インク7aを塗布して塗膜を形成し、形成した塗膜中の溶媒を除去してカソード触媒層7bを形成する工程(図1(1c))を実行する。次に、カソード触媒層7b上に、少なくとも高分子電解質と溶媒を含む電解質インクを塗布して塗膜を形成し、形成した塗膜中の溶媒を除去し、高分子電解質膜8を形成する工程(図1(1e))を実行する。これにより、カソード触媒層が固体高分子電解質膜の片面に形成されたカソード触媒層付電解質膜を形成する。
【0017】
(2)アノード触媒層の形成工程
まず、転写基材1b上に、触媒インク7aと親和性のある親和性エリア5と触媒インク7aと親和性が無い非親和性エリア6とをパターン形成する工程(図1(2b))を実行する。次に、転写基材1上の触媒インク7aと親和性のある親和性エリア5に触媒インク7aを塗布して塗膜を形成し、形成した塗膜中の溶媒を除去し、当該アノード触媒層7cを形成する工程(図1(2c))を実行する。
【0018】
(3)アノード触媒層のカソード触媒層付電解質膜への転写工程
まず、アノード触媒層が形成された転写基材上にカソード触媒層付電解質膜のカソード触媒層形成裏面側がアノード触媒層に接するように積層し、ホットプレス工程(図1(3f))を実行する。次に、剥離基材と転写基材を順次剥離除去し、固体高分子電解質の両面にカソー触媒層、アノード触媒層が形成された触媒層付電解質膜を形成する。
【0019】
より詳しくは、本実施形態に係る触媒層付電解質膜の製造方法において、まず、剥離基材1a、転写基材1b上に触媒インク7aと親和性のある親和性エリア5と親和性が無い非親和性エリア6をパターン形成する。パターン形成する工程は、第一工程(シランカップリング剤形成工程)と、第二工程(シランカップリング剤限定除去工程)と、第三工程(残存シランカップリング剤除去工程)を有する。
【0020】
パターン形成の第一工程(シランカップリング剤形成工程)として、シランカップリング剤2を剥離基材1a、転写基材1b上に形成する(図1(1a)、図1(2a))。そして、シランカップリング剤2が形成された剥離基材1a、転写基材1b上をシランカップリング剤2の低表面エネルギーの官能基により撥水化処理する。
シランカップリング剤2の種類としては、触媒インク7aと親和性が無いものであり、且つ真空紫外光3で除去できるものであれば、特に限定されるものでは無いが、低表面エネルギーの官能基を有し、結合が真空紫外光3で分解され易いフルオロアルキルシランが望ましい。また、シランカップリング剤2の形成法は、スプレーコーティング、スピンコーティング、化学蒸着法、浸漬法等が挙げられ、特に限定されるものでは無い。
【0021】
次に、パターン形成の第二工程(シランカップリング剤限定除去工程)として、第一工程で形成されたシランカップリング剤2の触媒層形成エリアにのみ限定して、所定の形状のフォトマスク4を介して真空紫外光3を照射する(図1(1b)、図1(2b))。そして、真空紫外光3が照射されたエリアのシランカップリング剤2を分解し、真空紫外光3が照射されたエリアの剥離基材1a、転写基材1b上のみを親水化処理する。
真空紫外光3の波長は、シランカップリング剤2のSi−Cの結合が切断できる波長であれば、特に限定されるものでは無いが、Si−Cの結合が切断され易いことから172nmであることが望ましい。
【0022】
次に、剥離基材1a上にカソード触媒層7bを、転写基材1b上にアノード触媒層7cを形成する工程として、触媒担持粒子と高分子電解質と溶媒とを含む第2の触媒インク7aを用意し、パターン形成された剥離基材1a、転写基材1b上の親和性エリア5に触媒インク7aを滴下し、カソード触媒層7b、アノード触媒層7cを形成する(図1(1c)、図1(2c))。なお、本実施形態で用いる触媒インク7aには、白金又は白金と他の金属(例えばRu、Rh、Mo、Cr、Co、Fe等)との合金の微粒子(平均粒径は10nm以下が望ましい)が表面に担持されたカーボンブラック等の導電性炭素微粒子(平均粒径:20〜100nm程度)と、パーフルオロスルホン酸樹脂溶液等の高分子溶液とがシランカップリング剤2と親和性が無い溶剤(水等)の中で均一に混合されたインクを用いて製造されるものが使用できる。
【0023】
なお、本実施形態に係る触媒層付電解質膜において、カソード触媒層7bの白金担持量は、アノード触媒層7cの白金担持量以上である。
次に、パターン形成の第三工程(残存シランカップリング剤除去工程)として、真空紫外光3をカソード触媒層7b、アノード触媒層7cが形成された剥離基材1a、転写基材1bの上に照射し、触媒インク7aと親和性が無いシランカップリング剤2により形成されたエリア6のシランカップリング剤2を分解・除去する(図1(1d)、図1(2d))。
【0024】
次に、高分子電解質と溶媒とを含む電解質溶液が用意され、カソード触媒層7b上に電解質溶液が塗布され、高分子電解質膜8が形成される(図1(1e))。
次に、アノード触媒層が形成された転写基材上にカソード触媒層付電解質膜のカソード触媒層形成裏面側がアノード触媒層に接するように積層した後にホットプレスを実施することにより、アノード触媒層を固体高分子電解質膜に転写される(図1(3f))。
【0025】
最後に、カソード触媒層7bと、高分子電解質層8と、アノード触媒層7cからなる触媒層付電解質膜が、剥離基材1a、転写基材1bから剥離されることによって、本実施形態の触媒層付電解質膜を製造する。
図2は、本実施形態に係る触媒層付電解質膜の理想的な構成を示す断面図である。このように、本実施形態に係る製造方法により製造された触媒層付電解質膜において、カソード触媒層7bと電解質膜8の間には、触媒層と高分子電解質膜の混合層7dを有している。
【0026】
また、本実施形態に係る製造方法により製造された触媒層付電解質膜において、カソード触媒層7bと、高分子電解質層8の表面とは剥離基材1上の同一平面上に形成される。つまり、触媒層付電解質膜は、高分子電解質膜8と、高分子電解質膜8の一方の面に設けたアノード触媒層7cと、高分子電解質膜8の他方の面に設けたカソード触媒層7bとを備える触媒層付電解質膜であって、カソード触媒層7bの表面と、カソード触媒層7bを設けた高分子電解質膜8の表面とが略同一平面上にある。
【0027】
図3は、本実施形態の理想とは異なる触媒層付電解質膜の構成を示す断面図である。図3(a)は、カソード触媒層7bが凸になっている構成を示し、図3(b)は、カソード触媒層7bが高分子電解質膜8に完全に囲まれて外部に露出し無い構成を示している。
カソード触媒層7bが凸になっている構成の場合、そのカソード触媒層7bの断面が高分子電解質膜8に覆われていないことからカソード触媒層7bの保湿性が低下する(図3(a))。一方で高分子電解質膜8がカソード触媒層7bと剥離基材1間の界面に入る構成、すなわち、カソード触媒層7bが高分子電解質膜8に完全に囲まれて外部に露出しない構成の場合、導電性が低下するとともに、カソード触媒層7bのガス拡散性が低下する(図3(b))。カソード触媒層7bの断面が完全に高分子電解質膜8に覆われて、かつ、カソード触媒層7bの表面と高分子電解質膜8の表面が完全に一致している構成がより望ましい。
【0028】
図4は、本実施形態の触媒層付電解質膜にガス拡散層、及びガスケット層を設けた膜電極接合体の構成を示す断面図である。触媒層付電解質膜の表裏の触媒層(カソード触媒層7b、アノード触媒層7c)の露出面にガス拡散層(カソード側ガス拡散層11b、アノード側ガス拡散層11c)が、電解質膜露出面にガスケット層(カソード側ガスケット層12b、アノード側ガスケット層12c)がそれぞれ設けられている。
【0029】
本実施形態に係る触媒層付電解質膜のカソード触媒層7bと高分子電解質膜8の表面は完全に一致していることから、カソード側ガス拡散層11bとカソード側ガスケット層12bの厚みが同一となるようにガスケット厚を調整することが望ましい。
【0030】
アノード触媒層7cと高分子電解質膜8の表面は完全に一致しておらず、アノード触媒層が下に凸となっていることから、より厳密には、アノード側ガスケット層12cの厚みは、アノード側ガス拡散層11cの厚みとアノード触媒層7cの厚みの和となるように調整することが望ましいが、アノード触媒層7cは5μm以下の薄層であることから、アノード側ガスケット層12cの厚みはアノード側ガス拡散層11cの厚みと同一であっても好適に用いることができる。
【0031】
ガス拡散層、ガスケット層の厚みを制御することにより、膜電極接合体をスタックした際に、触媒層形成部と触媒層周縁部とに加わる圧力を均一化できることから、燃料電池の劣化を抑制することができる。
【0032】
ガス拡散層、ガスケット層の形成法は、特に限定されるものではない。ガス拡散層を触媒層付電解質膜の表裏の触媒層形成部に貼合した後に、ガスケット層を形成する手法、ガス拡散層とガスケット層が予め一体化されているガスケット付ガス拡散層を触媒層付電解質膜に貼合することによる形成手法が好適に用いることができる。
【0033】
本実施形態に係る触媒層付電解質膜の製造方法によれば、触媒インク7aのロスを無くすことができる。その理由は、カソード触媒層7b、アノード触媒層7cを形成する際に、触媒インク7aと親和性がある親和性エリア5にのみ、触媒層を形成するからである。その結果、製造コストの低減を図ることができる。
本実施形態に係る触媒層付電解質膜の製造方法によれば、イオン抵抗を小さくできる。その理由は、カソード触媒層7b上に直接高分子電解質層8を塗布されることにより、カソード触媒層−高分子電解質膜混合層が形成され、カソード触媒層7bと高分子電解質膜8の接触が向上するからである。その結果、より良好な発電性能が得られる。
【0034】
本実施形態に係る触媒層付電解質膜は、低加湿条件下で発電性能を高くできる。その理由は、カソード触媒層7bが、断面を含めた四方を高分子電解質層8で覆われているため、低加湿条件下でも触媒層が保湿され、高いプロトン伝導性を有する膜電極接合体(MEA)を形成できるからである。
触媒層付電解質膜の触媒層の白金担持量は、カソード触媒層7bの白金担持量がアノード触媒層7cの白金担持量以上である。すなわち、カソード触媒層7bの白金担持量は、0.20〜0.40mg/cm、アノード触媒層7cの白金担持量は0.05〜0.10mg/cmが望ましい。
【0035】
また、本実施形態の触媒層付電解質膜の構成は、カソード触媒層7bと高分子電解質層8の表面が略同一面上にあり、触媒層の断面も高分子電解質で覆われている。そのため、特に低加湿条件下において、電極触媒層の保湿性が高まり、高いプロトン伝導性を有するため、発電性能を向上させることができる。
以上、説明したように、本実施形態に係る触媒層付電解質膜及びその製造方法によれば、安価で十分な発電性能を備える触媒層付電解質膜を提供することができる。
【実施例】
【0036】
[実施例]
以下、図5を参照し、具体的な実施例により、本実施形態に係る膜電極接合体の製造方法について説明する。なお、後述する実施例は本発明の一実施例であり、本発明はこの実施例のみに限定されるものでは無い。また、本実施例に係る触媒層付電解質膜は、固体高分子形燃料電池に用いられる。
[触媒層付電解質膜の製造方法の工程順]
図5は、本実施形態に係る触媒層付電解質膜の製造方法を工程順に説明するためのフローチャートである。
【0037】
図5(a)に示すように、触媒層付電解質膜の製造方法は、剥離基材上の工程と、転写基材上の工程と、共通の工程とに分けられる。
剥離基材上の工程は、剥離基材上へのシランカップリング剤形成工程(S110)と、剥離基材上のシランカップリング剤限定除去工程(S120)と、カソード触媒層形成工程(S125)と、剥離基材上の残存シランカップリング剤除去工程(S130)と、高分子電解質膜形成工程(S135)と、を有する。
【0038】
転写基材上の工程は、転写基材上へのシランカップリング剤形成工程(S210)と、転写基材上のシランカップリング剤限定除去工程(S220)と、アノード触媒層形成工程(S225)と、転写基材上の残存シランカップリング剤除去工程(S130)と、を有する。
共通の工程は、アノード触媒層の高分子電解質膜への転写工程(S305)、剥離基材及び転写基材の剥離除去工程(S315)と、を有する。
【0039】
図5(b)に示すように、本実施形態に係る触媒層付電解質膜の製造方法におけるパターン形成工程(S1000)のみに着目すると、第一工程としてのシランカップリング剤形成工程(S110)(S210)と、第二工程としてのシランカップリング剤限定除去工程(S120)(S220)と、第三工程としての残存シランカップリング剤除去工程(S130)(S230)との三段階に分けることができる。すなわち、パターン形成工程(S1000)は、剥離基材1a、転写基材1b上の全エリアにシランカップリング剤2を形成するシランカップリング剤形成工程(S110)(S210)と、親和性エリア5上に形成されたシランカップリング剤2のみを限定して除去するシランカップリング剤限定除去工程(S120)(S220)と、触媒層形成工程(S125)(S225)により触媒層7b、7cが形成された後に、非親和性エリア6の残存シランカップリング剤2を除去する残存シランカップリング剤除去工程(S130)(S230)とを有する。
【0040】
上述したパターン形成工程(S1000)において、親和性エリア5では親水性を活用し、非親和性エリア6では撥水性を活用してパターン形成する。
(1)シランカップリング剤形成工程(S110)(S210)
シランカップリング剤2を、剥離基材1a、転写基材1b上の全エリアに形成する。
ここでは、図1(1a)(2a)に示すように、剥離基材1aとしてガラス基板(以下、ガラス基板1aという)を、転写基材1bとしてポリエチレンテレフタラートフィルム(以下、PETフィルム1bという)用いている。このガラス基板1a、PETフィルム1bの上に波長172nmの真空紫外光3を照射し、ガラス基板1a、PETフィルム1bの表面にヒドロキシル基を形成した。続いて、ガラス基板1a、PETフィルム1b上のヒドロキシル基と加水分解されたシランカップリング剤2とを反応させるようにする。ここで、フルオロアルキル系のシランカップリング剤2であるフルオロメトキシシラン(商品名:KBM―7103、信越化学工業製)と、上述したヒドロキシル基が形成されたガラス基板1とを160℃に加温する。それから、化学蒸着法(Chemical Vapor Deposition法:CVD法)によりガラス基板1上にシランカップリング剤2を形成した。
【0041】
(2)シランカップリング剤限定除去工程(S120)(S220)
フォトマスク4を介して親和性のある親和性エリア5上にのみ真空紫外光3を照射することにより、触媒インク7aと親和性エリア5上に形成されたシランカップリング剤2のみを除去する。
ここでは、図1(1b)(2b)に示すように、50mm四方の開口部を有するフォトマスク4を介して、波長172nmの真空紫外光3をシランカップリング剤2が形成されたガラス基板、PETフィルム上に照射する。そして、シランカップリング剤2が分解された触媒インク7aと親和性がある親和性エリア5とシランカップリング剤2が残存している触媒インク7aと親和性が無い非親和性エリア6をパターン形成した。
【0042】
なお、本実施形態に係る触媒層付電解質膜の製造方法によれば、触媒層を高精度で所望の形状に形成できる。その理由は、シランカップリング剤限定除去工程(S120)(S220)において用いるフォトマスク4の精度が、カソード触媒層7b、アノード触媒層7cの形状に反映されるからである。したがって、所望の精度・形状のフォトマスク4を用いることにより、高精度で所望の形状の触媒層を形成することができる。
【0043】
(3)触媒層の形成工程(S125)(S225)
剥離基材1a、転写基材1b上の親和性エリア5に触媒インク7aを塗布して塗膜を形成し、形成された塗膜中の溶媒を除去し、カソード触媒層7b、アノード触媒層7cを形成する。
ここでは、図1(1c)(2c)に示すように、白金担持量が50%である白金担持カーボン触媒(商品名:TEC10E50E、田中貴金属工業製)と、20質量%高分子電解質溶液であるNafion(登録商標、デュポン社製)を、溶媒である水と混合した。続いて、遊星ボールミルで分散処理を行い、触媒インク7aを調整した。そして、パターン形成したガラス基板、PETフィルム上に、触媒インク7aと親和性がある親和性エリア5に、調整した触媒インク7aを、白金担持量がそれぞれ、0.30mg/cm、0.10mg/cmとなるように滴下した。このように滴下された触媒インク7aによって形成された塗膜を乾燥させて、カソード触媒層7b、アノード触媒層7cを形成した。
【0044】
(4)残存シランカップリング剤除去工程(S130)(S230)
カソード触媒層71b、アノード触媒層7c形成後に触媒インク7aと親和性の無い非親和性エリア6の残存シランカップリング剤2を除去する。
ここでは、図1(1d)(2d)に示すように、カソード触媒層7bが形成されたガラス基板、アノード触媒層7cが形成されたPETフィルム上に波長が172nmの真空紫外光3を照射し、カソード触媒層7a、アノード触媒層7b周縁部の触媒インク7a親和性が無い非親和性エリア6のシランカップリング剤2を分解・除去した。
【0045】
(5)高分子電解質膜形成工程(S135)
カソード触媒層7b上に、少なくとも高分子電解質と溶媒を含む電解質インクを塗布して塗膜を形成し、形成された塗膜中の溶媒を除去し、高分子電解質膜8を形成する。
ここでは、図1(1e)に示すように、20質量%高分子電解質溶液であるNafion(登録商標、デュポン社製)を、カソード触媒層7a上に膜厚が20μmとなるように、ドクターブレード法により塗布し、塗膜を乾燥させて、高分子電解質膜8を形成した。
【0046】
(6)アノード触媒層の高分子電解質膜への転写工程(S305)
アノード触媒層が形成された転写基材上にカソード触媒層付電解質膜のカソード触媒層形成裏面側がアノード触媒層に接するように積層し、ホットプレス工程を実行し、アノード触媒層7cを高分子電解質膜8に転写する。
ここでは、図1(3f)に示すように、アノード触媒層7cが形成された転写基材上にカソード触媒層付電解質膜のカソード触媒層形成裏面側がアノード触媒層に接するように積層し、130℃、6.0×10Paの条件でホットプレスを行い、アノード触媒層7cを高分子電解質膜8に転写した。
【0047】
(7)剥離基材、転写基材の剥離除去工程(S315)
カソード触媒層7bと、高分子電解質層8と、アノード触媒層7cからなる触媒層付電解質膜から、剥離基材1a、転写基材1bを剥離する。
ここでは、カソード触媒層7b、高分子電解質膜8、アノード触媒層7cをガラス基板1a、PETフィルム1bから剥離し、触媒層付電解質膜とした。
【0048】
[比較例]
(A)カソード触媒層形成工程(S125)
白金担持量が50%である白金担持カーボン触媒(商品名:TEC10E50E、田中貴金属工業製)と、20質量%高分子電解質溶液であるNafion(登録商標、デュポン社製)を、溶媒である水と混合した。続いて、遊星ボールミルで分散処理を行い、触媒インク70を調整した。そして、PETフィルム上に50mm四方の開口部を有するマスク材が貼合された転写基材上に、調整した触媒インク7aを塗布した。この触媒インク7aは、白金担持量が0.30mg/cmとなるようにドクターブレード法により塗布される。塗布された後に、塗膜を乾燥させ、カソード触媒層7bが形成される。
【0049】
(B)アノード触媒層形成工程(S225)
PETフィルム上に50mm四方の開口部を有するマスク材が貼合された転写基材上に、触媒インク70を、白金担持量が0.10mg/cmとなるように、ドクターブレード法により塗布し、塗膜を乾燥させ、アノード触媒層72を形成した。
(C)高分子電解質膜形成工程(S135)
20質量%高分子電解質溶液であるNafion(登録商標、デュポン社製)を、ガラス基板上に、膜厚が20μmとなるようドクターブレード法により塗布し、塗膜を乾燥させ、高分子電解質膜8を形成した。高分子電解質膜8を形成した後にガラス基板を剥離した。
【0050】
(D)ホットプレス工程(S305)
PETシート上に製造された両電極触媒層を、高分子電解質溶液から製造した高分子電解質膜8の両面に正対するように配置し、130℃、6.0×10Paの条件でホットプレスを行い、触媒層付電解質膜を製造した。
【0051】
[評価結果]
実施例と比較例とそれぞれの製造方法において使用した触媒インク7aの体積を調べた結果、実施例の製造方法によれば、触媒インク7aの使用量を40%削減できていることを確認した。
また、実施例と比較例とそれぞれの製造方法により製造した触媒層付電解質膜について、それぞれ低加湿での発電特性を調べた結果、実施例の方が、発電性能が高いことを確認した。
【0052】
[まとめ]
本実施形態では、以下の触媒層付電解質膜の製造方法を採用した。
本実施形態に係る触媒層付電解質膜の製造方法は、高分子電解質膜(8)と、当該高分子電解質膜(8)の一方の面に設けたアノード触媒層(7c)と、当該高分子電解質膜(8)の他方の面に設けたカソード触媒層(7b)とを備える触媒層付電解質膜の製造方法に関するものである。この製造方法は、パターン形成工程(S1000)と、カソード触媒層形成工程(S125)と、高分子電解質膜形成工程(S135)と、パターン形成工程(S1000)と、アノード触媒層形成工程(S225)と、ホットプレス工程(S305)と、剥離工程(S315)とを有する。
【0053】
パターン形成工程(S1000)において、触媒担持粒子と高分子電解質と溶媒とを含む触媒インク(7a)に親和性のある親和性エリア(5)と触媒インク(7a)に親和性が無い非親和性エリア(6)とを、剥離基材(1a)上にパターン形成する。カソード触媒層形成工程(S125)において、親和性エリア(5)に触媒インク(7a)を塗布して塗膜を形成し、形成された塗膜中の溶媒を除去し、カソード触媒層(7b)を形成する。高分子電解質膜形成工程(S135)において、カソード触媒層(7b)上に、高分子電解質と溶媒とを含む電解質インクを塗布して塗膜を形成し、形成された塗膜中の溶媒を除去し、高分子電解質膜(8)を形成する。パターン形成工程(S1000)において、触媒担持粒子と高分子電解質と溶媒とを含む触媒インク(7a)に親和性のある親和性エリア(5)と触媒インク(7a)に親和性が無い非親和性エリア(6)とを、転写基材(1b)上にパターン形成する。アノード触媒層形成工程(S225)において、親和性エリア(5)に触媒インク(7a)を塗布して塗膜を形成し、形成された塗膜中の溶媒を除去し、アノード触媒層(7c)を形成する。ホットプレス工程(S305)において、転写基材(1b)上に作製されたアノード触媒層(7c)をカソード触媒層(7b)が形成された裏面の高分子電解質膜(8)に積層し、ホットプレスによりアノード触媒層を高分子電解質膜に転写する。剥離工程(S315)において、剥離基材(1a)と転写基材(1b)とを剥離除去する。
【0054】
また、パターン形成工程(S1000)は、シランカップリング剤形成工程(S110、S210)と、シランカップリング剤限定除去工程(S120、S220)と、残存シランカップリング剤除去工程(S130、S230)とを有していても良い。
シランカップリング剤形成工程(S110、S210)において、剥離基材(1a)上、又は転写基材(1b)上の全エリアにシランカップリング剤(2)を形成する。シランカップリング剤限定除去工程(S120、S220)において、親和性エリア(5)上に形成されたシランカップリング剤(2)のみを除去する。残存シランカップリング剤除去工程(S130、S230)において、触媒層形成工程(S125、S225)により触媒層(7b、7c)を形成された後に、非親和性エリア(6)の残存シランカップリング剤(2)を除去する。
【0055】
また、シランカップリング剤限定除去工程(S120、S220)において、フォトマスク(4)を介して親和性エリア(5)上にのみ真空紫外光(3)を照射することにより除去するようにしても良い。
また、パターン形成工程(S1000)において、親和性エリア(5)では親水性を活用し、非親和性エリア(6)では撥水性を活用してパターン形成するようにしても良い。
【0056】
また、親和性エリア(5)の水接触角を15度以下とし、非親和性エリア(6)の水接触角を100度以上としても良い。
本実施形態に係る触媒層付電解質膜は、高分子電解質膜(8)と、高分子電解質膜(8)の一方の面に設けたアノード触媒層(7c)と、高分子電解質膜(8)の他方の面に設けたカソード触媒層(7b)とを備える。触媒層付電解質膜は、カソード触媒層(7b)と高分子電解質膜(8)の間に触媒層と高分子電解質膜の混合層(7d)を有し、カソード触媒層(7b)の表面とカソード触媒層を設けた高分子電解質膜(8)の表面とが略同一平面上にある。
【0057】
[本実施形態の効果]
本実施形態は、以下のような効果を奏する。
本実施形態によれば、(1)触媒インクのロスが少なく、(2)所望の形状に高精度で触媒層を形成でき、(3)イオン抵抗が小さく、(4)低加湿条件下で高い発電性能を有するという効果を奏する触媒層付電解質膜の製造方法、及び触媒層付電解質膜を提供することができる。
【0058】
(1)触媒インクのロスが少なくできる理由は、カソード触媒層、アノード触媒層を形成する際に、触媒インクと親和性がある親和性エリアにのみ、触媒層を形成するからである。その結果、製造コストの低減を図ることができる。
(2)所望の形状に高精度で触媒層を形成できる理由は、シランカップリング剤を除去する工程において用いるフォトマスクの精度が、カソード触媒層とアノード触媒層の形状に反映されるからである。したがって、所望の精度・形状のフォトマスクを用いることにより、高精度で所望の形状の触媒層を形成することができる。
【0059】
(3)イオン抵抗を小さくできる理由は、高分子電解質層とカソード触媒層の接触が向上するからである。高分子電解質層をカソード触媒層上に塗工するため、高分子電解質層とカソード触媒層間に2層の混合層ができ、密着性が向上し、良好な発電性能結果が得られる。
(4)低加湿条件下で発電性能を高くできる理由は、カソード触媒層が、断面を含めた四方を高分子電解質層で覆われているため、低加湿条件下でも触媒層が保湿され、高いプロトン伝導性を有する膜電極接合体(MEA)を形成できるからである。
【0060】
このように、本実施形態によれば、高価な触媒インクのロス無く、所望の形状に触媒層を形成することができる。更に、高分子電解質層とカソード触媒層間に混合層ができることにより、高分子電解質膜とカソード触媒層間の接触が向上し、イオン抵抗が減少する効果を奏する触媒層付電解質膜を提供することができる。
また、本実施形態によれば、断面を含めた四方を高分子電解質膜で覆われているため、低加湿条件下でも触媒層が保湿され、高いプロトン伝導性を有する膜電極接合体となり、特に低加湿条件下で発電性能が高いという効果を奏する触媒層付電解質膜の製造方法、及び触媒層付電解質膜を提供することができる。
【産業上の利用可能性】
【0061】
本実施形態によれば、触媒インクのロスとイオン抵抗が少なく、所望の形状に触媒層を形成することが可能で高い発電性能を有する名触媒層付電解質膜及びその製造方法を提供できる。したがって、固体高分子形燃料電池、特に燃料電池自動車や家庭用燃料電池等における、固体高分子形燃料電池に用いられる単セルやスタックに好適に活用することができる。
以上、本発明の実施形態を詳述してきたが、実際には、上記の実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の変更があっても本発明に含まれる。
【符号の説明】
【0062】
1a・・・剥離基材
1b・・・転写基材
2・・・シランカップリング剤
3・・・真空紫外光
4・・・フォトマスク
5・・・触媒インクと親和性の有るエリア(親和性エリア)
6・・・触媒インクと親和性が無いエリア(非親和性エリア)
7a・・・触媒インク
7b・・・カソード触媒層
7c・・・アノード触媒層
7d・・・カソード触媒層−高分子電解質膜混合層
8・・・高分子電解質膜
9・・・カソード触媒層付電解質膜
10・・・プレス用熱盤
11b・・・カソード側ガス拡散層
11c・・・アノード側ガス拡散層
12b・・・カソード側ガスケット層
12c・・・アノード側ガスケット層
図1
図2
図3
図4
図5