特許第6321861号(P6321861)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ サンパワー コーポレイションの特許一覧

特許6321861ワイドバンドギャップ半導体材料含有のエミッタ領域を有する太陽電池
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6321861
(24)【登録日】2018年4月13日
(45)【発行日】2018年5月9日
(54)【発明の名称】ワイドバンドギャップ半導体材料含有のエミッタ領域を有する太陽電池
(51)【国際特許分類】
   H01L 31/072 20120101AFI20180423BHJP
   H01L 31/18 20060101ALI20180423BHJP
【FI】
   H01L31/06 400
   H01L31/04 420
【請求項の数】8
【外国語出願】
【全頁数】15
(21)【出願番号】特願2017-112826(P2017-112826)
(22)【出願日】2017年6月7日
(62)【分割の表示】特願2015-501665(P2015-501665)の分割
【原出願日】2012年12月19日
(65)【公開番号】特開2017-195391(P2017-195391A)
(43)【公開日】2017年10月26日
【審査請求日】2017年6月13日
(31)【優先権主張番号】13/429,138
(32)【優先日】2012年3月23日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】505379467
【氏名又は名称】サンパワー コーポレイション
(74)【代理人】
【識別番号】110000877
【氏名又は名称】龍華国際特許業務法人
(72)【発明者】
【氏名】スワンソン、リチャード エム.
(72)【発明者】
【氏名】ブネア、マリウス エム.
(72)【発明者】
【氏名】スミス、デイビッド ディー.
(72)【発明者】
【氏名】シェン、ユ−チェン
(72)【発明者】
【氏名】カズンズ、 ピーター ジェイ.
(72)【発明者】
【氏名】デニス、ティム
【審査官】 井上 徹
(56)【参考文献】
【文献】 欧州特許出願公開第02339648(EP,A1)
【文献】 特開2003−298078(JP,A)
【文献】 特表2008−533730(JP,A)
【文献】 特開2012−054424(JP,A)
【文献】 国際公開第2006/135443(WO,A2)
【文献】 国際公開第2005/093856(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 31/02−31/078、31/18−31/20、
51/42−51/48
H02S 10/00−50/15
H01L 21/205
H01L 21/31
(57)【特許請求の範囲】
【請求項1】
シリコン基板と、
第1の導電型にドープされ薄い酸化アルミニウム(Al)層の上に配置された窒化アルミニウム(AlN)層を有し、前記シリコン基板の表面に配置された第1のエミッタ領域と、
薄い誘電体層の上に配置された第2の、反対の導電型にドープされた半導体材料を有し、前記シリコン基板の前記表面に配置された第2のエミッタ領域と、
それぞれ前記第1および前記第2のエミッタ領域の上に配置され、前記第1および前記第2のエミッタ領域に導電的に接続された第1および第2のコンタクトと、
を備え、
前記窒化アルミニウム(AlN)層、前記第2の、反対の導電型にドープされた前記半導体材料の少なくとも一部分の上にも配置される太陽電池。
【請求項2】
前記薄い酸化アルミニウム(Al)層は、前記第2の、反対の導電型にドープされた前記半導体材料の少なくとも前記一部分の上にも配置される、請求項1に記載の太陽電池。
【請求項3】
前記窒化アルミニウム(AlN)層は、可視スペクトルにて実質的に透明である、請求項1または2に記載の太陽電池。
【請求項4】
前記半導体材料は、前記シリコン基板のバンドギャップを少なくとも約0.2エレクトロンボルト(eV)上回るバンドギャップを有する、請求項1から3のいずれか1項に記載の太陽電池。
【請求項5】
前記半導体材料は、多結晶シリコンを有する、請求項1〜のいずれか1項に記載の太陽電池。
【請求項6】
前記第1のエミッタ領域は前記シリコン基板の前記表面のうち粗面化された非平滑部分に配置され、前記第2のエミッタ領域は前記シリコン基板の前記表面の粗面化されていない平坦部分に配置される、請求項1〜のいずれか1項に記載の太陽電池。
【請求項7】
前記第1および前記第2のエミッタ領域は、前記シリコン基板の裏面側接触面に配置され、
前記シリコン基板は、前記裏面側接触面とは反対側に受光面をさらに有し、
前記受光面には薄い酸化アルミニウム(Al)層が配置されており、前記薄い酸化アルミニウム(Al)層上には窒化アルミニウム(AlN)層が配置される、請求項1〜のいずれか1項に記載の太陽電池。
【請求項8】
前記窒化アルミニウム(AlN)層の一部は、前記第2のエミッタ領域の少なくとも一部分の上に配置される、請求項1〜のいずれか1項に記載の太陽電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、再生可能エネルギー、特に、ワイドバンドギャップ半導体材料から構成されるエミッタ領域を有する太陽電池の分野におけるものである。
【背景技術】
【0002】
太陽電池として既知の光起電力電池は、太陽放射を電力に直接変換させるための装置として既知である。概して、太陽電池は、基板の表面近くにpn接合を形成するための半導体処理技術を使用して半導体ウェハ上又は基板上に製造される。基板の表面に衝突し、これに進入する太陽放射は、基板のバルク内に電子−正孔対を生じる。電子−正孔対は、基板のp型にドープされた領域及びn型にドープされた領域内に移動し、それによって、ドープされた領域の間に電圧差を生じさせる。ドープされた領域は、太陽電池上の導電性領域に接続され、電池からの電流を、電池に繋がれた外部回路に方向付ける。
【発明の概要】
【課題を解決するための手段】
【0003】
効率は、太陽電池が電力を生成する能力に直接関連することから、太陽電池の重要な特性である。同様に、太陽電池を生産する効率は、このような太陽電池の費用対効果に直接関連する。したがって、太陽電池の効率を増加させるための技術、又は太陽電池の製造効率を増加させるための技術が、概ね望ましい。本発明の幾つかの実施形態は、太陽電池構造を製造するための新規な処理を提供することによって、太陽電池の製造効率の増加を可能にする。本発明の幾つかの実施形態は、新規な太陽電池構造を提供することによって、太陽電池の効率向上を可能にする。
【図面の簡単な説明】
【0004】
図1】界面トンネル酸化物を用いない従来型のヘテロ接合コンタクトに対するエネルギー(E)増加の関数としてのバンドダイアグラムを示す図である。
図2】本発明の実施形態に係る界面トンネル酸化物を用いたヘテロ接合コンタクトに対するエネルギー(E)増加の関数としてのバンドダイアグラムを示す図である。
図3】本発明の実施形態に係る太陽電池の製造方法における工程を表したフローチャートである。
図4A】本発明の別の実施形態に係る太陽電池の製造における施行物であって、太陽電池の製造のための基本構造が提供されており、かつシリコン基板、薄い誘電体層、及び堆積されたシリコン層を含む施行物の断面図である。
図4B】本発明の別の実施形態に係る太陽電池の製造における施行物であって、図4Aの堆積されたシリコン層上にドーピング材料の層が堆積した施行物の断面図である。
図4C】本発明の別の実施形態に係る太陽電池の製造における施行物であって、図4Bのドーピング材料の層の上に第1の酸化物層410が堆積した施行物の断面図である。
図4D】本発明の別の実施形態に係る太陽電池の製造における施行物であって、図4Cの構造体に対し材料除去処理を実行することによって露出ポリシリコン領域が形成された施行物の断面図である。
図4E】本発明の別の実施形態に係る太陽電池の製造における施行物であって、図4Dの構造体に対しエッチング処理を実行することによって露出ポリシリコン領域のエッチングを促進し、かつ太陽電池の裏面上に第1の粗面化シリコン領域が形成された施行物の断面図である。
図4F】本発明の別の実施形態に係る太陽電池の製造における施行物であって、図4Eのドーピング材料の層及び第1の粗面化シリコン領域の上に酸化物層が形成された施行物の断面図である。
図4G】本発明の別の実施形態に係る太陽電池の製造における施行物であって、図4Fの構造体からドープ済みポリシリコン層が形成された施行物の断面図である。
図4H】本発明の別の実施形態に係る太陽電池の製造における施行物であって、図4Gの構造体上に、ドープされたワイドバンドギャップ半導体層が形成された施行物の断面図である。
図4I】本発明の別の実施形態に係る太陽電池の製造における施行物であって、図4Hの粗面化シリコン領域上に、ドープされたワイドバンドギャップ半導体が堆積した施行物の断面図である。
図4J】本発明の別の実施形態に係る太陽電池の製造における施行物であって、図4Hのドープされたワイドバンドギャップ半導体の部分的除去が実行された施行物の断面図である。
図4K】本発明の別の実施形態に係る太陽電池の製造における施行物であって、図4Jの構造体の裏面上に第1の金属グリッド又はグリッド線が形成された施行物の断面図である。
図4L】本発明の別の実施形態に係る太陽電池の製造における施行物であって、図4Kの構造体の裏面上に第2の金属グリッド又はグリッド線が形成された施行物の断面図である。
【発明を実施するための形態】
【0005】
本明細書には、ワイドバンドギャップ半導体材料から構成されるエミッタ領域を有する太陽電池が記載されている。本発明の実施形態を十分に理解できるよう、具体的な処理フロー工程及び材料レジーム(material regimes)など多数の具体的な詳細については、以降の説明に記載する。これらの具体的な詳細を使用することなく、本発明の実施形態を実践することができる点が、当業者には明らかとなるであろう。他の場合には、本発明の実施形態を不必要に不明瞭にしないために、続く金属接触部形成技術などの周知の製造技術は、詳細に記載されない。更には、図に示される様々な実施形態が例示的な表示であって、必ずしも一定のスケールで描写されるものではないことは理解されるであろう。
【0006】
本明細書においては、太陽電池を製造する方法が開示されている。一実施形態において、或る方法は、制御雰囲気を有する処理ツールにて太陽電池の半導体基板の表面上に薄い誘電体層を形成する段階を含む。半導体基板はバンドギャップを有する。処理ツールの制御雰囲気から半導体基板を除去することなしに、薄い誘電体層上に半導体層が形成される。半導体層のバンドギャップは、半導体基板のバンドギャップを少なくとも約0.2エレクトロンボルト(eV)上回る。
【0007】
また、本明細書においては、ワイドバンドギャップ半導体材料から構成されるエミッタ領域を有する太陽電池も開示されている。一実施形態において、太陽電池はシリコン基板を具備する。第1のエミッタ領域は、シリコン基板の表面上に配置されていて、かつ第1の導電型にドープされた窒化アルミニウム(AlN)層から構成されている。AlN層は、薄い酸化アルミニウム(Al)層の上に配置されている。第2のエミッタ領域は、シリコン基板の表面上に配置されていて、かつ第2の、反対の導電型にドープされた半導体材料から構成されている。第2の半導体材料は、薄い誘電体層の上に配置されている。第1及び第2のコンタクトはそれぞれ、第1及び第2のエミッタ領域上に配置されていて、かつそのエミッタ領域に導電的に繋がれている。
【0008】
太陽電池表面のパッシベーションは典型的に、拡散及び酸化によって、太陽電池の1または複数の表面上に薄い誘電体材料を形成することで達成される。そのような薄い誘電体材料の形成によって、太陽電池の表面における少数キャリアを抑制するための構造的手法の提供が可能になる。更にまた、太陽電池の最も外側の表面に存在し得る界面の欠陥を効率的にタイアップするように酸化処理を設計することも可能になる。形成された誘電体材料は、制限はされないが、水分バリアとしての効用、水素源としての効用、及び、おそらく反射防止コーティングとしての効用などの幾つかの機能を有し得る。
【0009】
上述の太陽電池表面のパッシベーションの3つのアスペクトは典型的に、太陽電池の製造の間の2または2より多い処理工程にて実現される。しかしながら、複数の処理工程を使用すると、ハンドリングの複雑化および処理コストの増大といった、新たな一連の問題を招来する可能性もある。また、典型的に、1つのツールで(例えば、拡散炉で)酸化及び拡散工程が実行され、次いで、一般的に別個の処理ツールで誘電体の形成が実行される。残念なことに、形成された酸化物は、第1の処理ツール(例えば、炉)から除去された場合、大気条件及び湿気などの汚染物質に暴露されることもあり得る。したがって、本発明の実施形態においては高品質な酸化物を形成し、続いて、更なる処理工程の実行に先立って空気及び水に暴露させないようにする。
【0010】
誘電体の堆積が後に続く拡散では、多くの場合、比較的高いコストの複数の処理ツールが必要とされる。故に、或る実施形態においては、制御雰囲気の炉ツールで、例えば、約3ナノメートル未満(また、約2ナノメートル未満の可能性もある)の薄いシリコン酸化物層を成長させることによって、シリコンのパッシベーション工程を実行する。続いて、同じツールで(かつ、具体的には、外部のラボ雰囲気若しくはファブ雰囲気、又は周囲条件に暴露することなしに)、ドープされたワイドバンドギャップ半導体を薄い酸化物層上に堆積させる。そのような一実施形態において、炉は、低圧化学蒸着(CVD)炉、又は高速熱アニールツール若しくは高速熱処理(RTP)ツールのいずれか1つである。特定の実施形態では、最終的に太陽電池の形成に用いられるウェハまたは基板の両面において酸化物の成長及び堆積が発生する。或る実施形態において、酸化物層上に堆積したフィルムは、例えば約3エレクトロンボルト(eV)を超えるバンドギャップを有するワイドバンドギャップ半導体材料であり、大きい価電子帯オフセット、水分バリア特性、シリコンに対する低応力、及び、オーミック接触される能力のうちの1または複数を有する。多結晶シリコンはしばしばシリコン基板と結合されるが、少数キャリアをブロックするためにはさほど好適でない場合もある。対照的に、或る実施形態において、ワイドバンドギャップ半導体材料は、少数キャリアをブロックすると共に、多数キャリアに対して高度な伝導性を発揮する。
【0011】
或る実施形態において、ワイドバンドギャップ材料はシリコン基板との関連で考慮され、後で詳しく述べるように、制限はされないが、ドープ済みアモルファスシリコン、炭化ケイ素、又は窒化アルミニウムガリウムを含み得る。ドープ済みポリシリコンは、以前に開示された別の選択肢である。ドープ済みアモルファスシリコンは、パッシベーション及びオーミック接触に好適な選択肢であり得る。一実施形態において、使用されるドープ済みアモルファスシリコンは、光学的吸収が最小限に抑えられるように十分薄く形成される。後で詳しく述べるように、別の実施形態において、バンドギャップが更に高い材料は、基板の受光表面上での光伝送を促進する目的に使用される。或る実施形態において、高温、例えば、約900℃に達する可能性のある管型低圧化学蒸着(LPCVD)反応器を備えた真空ツールの構成は、酸化物及びその上を覆うワイドバンドギャップ半導体材料を形成するために用いられる。別の実施形態においては、プラズマ強化CVD(PECVD)ツールと組み合わされたRTPツールが、酸化物及びその上を覆うワイドバンドギャップ半導体材料の両方を形成するために用いられる。他の可能な実施形態については、後で詳述する。
【0012】
本明細書に記載されている実施形態のうちの少なくとも幾つかに関して含まれる概念の幾つかをわかり易く図示するため、界面トンネル酸化物を用いない従来型ヘテロ接合コンタクトに対するエネルギー(E)増加の関数としてのバンドダイアグラムを図1に示してある。図1を参照すると、従来型n型基板及びワイドバンドギャップパッシベーション/コンタクトのバンドダイアグラム100に、原子価エネルギー準位(Evalence)、フェルミ準位、及び、電子(多数キャリア)および正孔(少数キャリア)の伝導エネルギー準位(Econduction)が示してある。最適なパッシベーションを実現できるのは少数キャリアバンドオフセットが大きい場合であり、最適なオーミック接触を実現できるのは多数キャリアオフセットが小さい場合である。ただし、シリコン基板上に直接に高バンドギャップ材料を製造するのが困難であることはしばしば明らかにされている。
【0013】
対照的に、図2には、本発明の実施形態に係る界面トンネル酸化物を用いたヘテロ接合コンタクトに対するエネルギー(E)増加の関数としてのバンドダイアグラムが図示してある。図2を参照すると、薄い界面トンネル酸化物が挟まれているn型基板及びワイドバンドギャップパッシベーション/コンタクトのバンドダイアグラム200であって、原子価エネルギー準位(Evalence)、フェルミ準位、及び、電子(多数キャリア)及び正孔(少数キャリア)の伝導エネルギー準位(Econduction)を示すバンドダイアグラム200が記載されている。或る実施形態においては、表面欠陥密度の低減を促す目的で、界面酸化物(例えば、SiOの薄層)250が提供される。つまり、一実施形態において、薄い誘電体(例えば、トンネリング酸化物層)は、シリコン基板とワイドバンドギャップ半導体界面との間に挟まれていて、表面状態をタイアップしている。特定の実施形態において、誘電体250によるシリコン基板のパッシベーションでは、約1012欠陥/cm未満の界面が提供される。図2に図示するように、或る実施形態においては、そのような誘電体層を含めた場合でも、フェルミ準位がバンドエッジに近くなる。
【0014】
半導体基板表面の上部にワイドバンドギャップ半導体材料を有しかつそれらの間に挟まれて界面誘電体及び/又はパッシベーション層が配置される太陽電池を提供するうえで好適であり得る処理スキームは、多数あると考えられる。そのようなプロセススキームの基本的な例として、本発明の一実施形態に係る太陽電池の製造方法における工程をフローチャート300に表したのが、図3である。フローチャート300の工程302を参照すると、太陽電池の製造方法は、太陽電池の半導体基板の表面上に薄い誘電体層を形成する段階を含む。薄い誘電体層は、制御雰囲気を有する処理ツールで形成される。フローチャート300の工程304を参照すると、本方法は、この場合、処理ツールの制御雰囲気から半導体基板を除去することなしに薄い誘電体層上に半導体層を形成する段階を含む。そのような一実施形態において、半導体層のバンドギャップは、半導体基板のバンドギャップを少なくとも約0.2エレクトロンボルト(eV)上回る。或る実施形態において、本方法は、半導体層から太陽電池のエミッタ領域を形成する段階を更に含む。
【0015】
本発明の1または複数の実施形態に付随した処理上の利点が存在し得る。例えば、本明細書に記載されている1または複数の実施形態では、単一工程のパッシベーション処理が提供されている。本明細書に記載されている1または複数の実施形態では、そのようなパッシベーションを利用することで、裏面n型コンタクトを作製し、かつ、単一工程のパッシベーション処理以上に太陽電池のプロセスシーケンスを簡素化することができる。本明細書に記載されている1または複数の実施形態は、形成された酸化物を大気に暴露させない手法を提供している。本明細書に記載されている1または複数の実施形態は、高光反射率のコンタクトを形成するための手法を提供している。本明細書に記載されている1または複数の実施形態は、n型コンタクトの裏面に電極窓を開かずに済むようにするための手法を提供している。本明細書に記載されている1または複数の実施形態は、全エリアの(full area)金属コンタクト形成を促進するための手法を提供している。
【0016】
本発明の実施形態に従い、太陽電池製造のための改良型技術は、単一の処理ツールにてシリコン基板の裏面上に薄い誘電体層及び堆積させたワイドバンドギャップ半導体層を提供することを目的としたものである。エミッタ領域の形成を目的としてワイドバンドギャップ半導体材料及び半導体基板の対を形成するための多数ある可能な実施形態のうちの1つを例示するための詳細な処理スキームについては、後ほど説明する。具体的には、図4A〜4Lは、本発明の別の実施形態に従って、ワイドバンドギャップ半導体材料から構成されるエミッタ領域を有する太陽電池の製造における様々なステージの断面図を図示する。
【0017】
概して、例示されている特定の実施形態においては、ドーパントを堆積されたシリコン層に移動するか、又はドープ済みポリシリコン領域のその場形成によって、ドープ済みポリシリコンの領域が最初に形成される。次いで、単一の処理ツールで、太陽電池の前面及び裏面上に、酸化物層及びドープされたワイドバンドギャップ半導体層が形成される。一変形態様は、酸化物の形成及びドープされたワイドバンドギャップ半導体の形成に先立って、前面及び裏面を粗面化することを伴う。続いて、上位層を貫くコンタクトホールが形成され、その結果、ドープ済みポリシリコン領域が露出され得る。その後、メタライゼーション処理を実行することによって、ドープ済みポリシリコン層上にコンタクトを形成し得る。また、太陽電池の裏面上のドープ済みポリシリコンの領域の間に挟まれて位置するワイドバンドギャップ半導体層により形成されたシリコン基板上のエミッタ領域に対し、金属を直接繋ぐことによって、コンタクトの第2のグループが形成され得る。本発明の実施形態には図示及び記載されている全ての工程を必ずしも含める必要はないし、実施形態は図示及び記載されているものだけに制限されないことが理解されよう。
【0018】
図4Aを参照すると、太陽電池の製造のための基本構造400は、シリコン基板402(例えば、n型単結晶基板)、薄い誘電体層406、及び堆積されたシリコン層404を含む。幾つかの実施形態では、薄い誘電体層406の形成に先立って、シリコン基板402を洗浄、研磨、平坦化かつ/若しくは薄膜化するか、又は別の方法で処理することができる。薄い誘電体層406及び堆積されたシリコン層404は、熱処理によって成長させることができる。
【0019】
図4B及び4Cを参照すると、ドーピング材料の層408とそれに続く第1の酸化物層410は、従来型堆積処理を介して堆積されたシリコン層404上に堆積されている。ドーピング材料408の層は、ドーピング材料又はドーパント409を含んでいてもよく、制限はされないが、ホウ素などのポジ型ドーピング材料の層、又はリン若しくはヒ素などのネガ型ドーピング材料の層から構成され得る。薄い誘電体層406及び堆積されたシリコン層404はそれぞれ、熱処理により成長されるもの、又は従来型堆積処理を通して堆積されるものとして記述されているが、各層は適切な処理を利用して形成され得る。例えば、化学蒸着(CVD)処理、低圧CVD(LPCVD)、大気圧CVD(APCVD)、プラズマ強化CVD(PECVD)、熱成長若しくはスパッタリング処理、又は別の好適な技術を利用できる。一実施形態においては、堆積技術、スパッタ、又はインクジェット印刷若しくはスクリーン印刷などの印刷処理を介して、又はイオン注入によって、ドーピング材料408を基板402上に形成する。
【0020】
図4Dを参照すると、図4Cの構造体に適用された材料除去処理を経た後の太陽電池400が図示してある。材料除去処理によって、露出ポリシリコン領域424が形成される。材料除去処理の好適な例としては、マスク及びエッチング処理、レーザアブレーション処理、並びに他の同様な技術が挙げられる。露出ポリシリコン領域424及びドーピング材料の層408は、最終的なエミッタの形成に適した形状及びサイズを有するようにパターニングされ得る。好適なパターンレイアウトには、制限はされないが、交差指型パターン(interdigitated pattern)の形成が包含され得る。マスキング処理が用いられる場合には、マスクインクを既定の交差指型パターンに適用するために、マスキングはスクリーンプリンタ又はインクジェットプリンタを使用して実行され得る。それ故、従来型の化学湿式エッチング技術を利用してマスクインクを除去すれば、結果として、露出ポリシリコン領域424及びドーピング材料の層408の交差指型パターンの形成が可能になる。一実施形態では、第1の酸化物層410の一部又は全部が除去される。そのような除去は、堆積されたシリコン層404及び誘電体層406の領域を除去するのと同じエッチング又はアブレーション処理で達成され得る。
【0021】
図4Eを参照すると、第2のエッチング処理を実施することによって、露出ポリシリコン領域424に対するエッチングを促し、太陽電池400の裏面に第1の粗面化シリコン領域430を形成し、太陽電池400の前面に第2の粗面化シリコン領域432を形成して日射集光量の増大を可能にしている。粗面化表面は、入射光を散乱させることによって太陽電池400の受光表面から反射される光の量を減少させる、規則的又は不規則的な形状の表面を有するものであってよい。
【0022】
図4Fを参照すると、太陽電池400を加熱440によって、ドーピング材料409をドーピング材料の層408から堆積されたシリコン層404へ移動できるようにしている。また、同じ加熱440によって、酸化ケイ素又は第2の酸化物層412を、ドーピング材料の層408及び第1の粗面化シリコン領域430上に形成することもできる。この処理の間に、第3の酸化物層414を、第2の粗面化シリコン領域432上に成長させることができる。一実施形態において、酸化物層412、414は両方とも、高品質な酸化物で構成される。そのような特定の実施形態において、高品質な酸化物は、典型的に約900℃を超える温度での熱酸化によって成長する低界面状態密度の酸化物であり、基板402の露出領域のパッシベーションの向上を実現し得る。
【0023】
故に、或る実施形態において、第2の酸化物層412の少なくとも一部は、半導体基板402の一部を熱酸化によって消費させることで形成される。そのような一実施形態において、半導体基板402の一部を消費させる段階は、n型単結晶シリコン基板の一部を熱酸化させることによって、厚さが約3ナノメートルまたはそれより小さい二酸化ケイ素(SiO)412の層をシリコン基板の露出表面上に形成する段階を含む。代替実施形態においては、第1の粗面化シリコン領域430上に誘電体材料層を堆積させる段階によって、第1の粗面化シリコン領域430上に薄い誘電体層を形成する。そのような一実施形態において、堆積段階は、n型単結晶シリコン基板の表面上に酸化アルミニウム(Al)層を形成する段階を含む。そのような特定の実施形態において、酸化アルミニウム(Al)層は、非晶質酸化アルミニウム(Al)層である。そのような実施形態は、例えば、原子層堆積(ALD)、又は他の好適な堆積技術で実施され得る。
【0024】
図4Gを参照すると、一実施形態において、酸化物層412、414の形成中に、同時に温度を上昇させてドーパント409をドーピング材料の層408から堆積されたシリコン層404に移動する間に、ドープ済みポリシリコン層の形成が達成され得る。そのような一実施形態においては、堆積されたシリコン層404をドーピング材料の層408からのドーパント409でドープすることによって、結晶化されたドープ済みポリシリコン層又はドープ済みポリシリコン層450を形成する。そのような特定の実施形態において、ポジ型ドーピング材料が使用されている場合、ドープ済みポリシリコン層450は、正ドープされたポリシリコンの層である。そのような特定の実施形態において、シリコン基板402はバルクn型シリコン基板で構成される。別の特定の実施形態において、ネガ型ドーピング材料が使用されている場合、ドープ済みポリシリコン層450は、負ドープされたポリシリコンの層である。そのような特定の実施形態において、シリコン基板102はバルクp型シリコン基板で構成される。それ故、概して、堆積されたシリコン層404をドーパント材料408の層からのドーピング材料409でドープし、ドープ済みポリシリコン層450を形成することができる。
【0025】
図4Hを参照すると、酸化物層412、414の形成に用いられる処理ツールの制御雰囲気から基板402を除去することなしに、第1のドープされたワイドバンドギャップ半導体層460を太陽電池400の裏面上に堆積させている。或る実施形態において、第1のワイドバンドギャップ半導体層460のバンドギャップは、半導体基板402のバンドギャップを少なくとも約0.2エレクトロンボルト(eV)上回る。例えば、第1のワイドバンドギャップ半導体層460は、約1.0eVのバンドギャップを有するn型単結晶シリコン基板のバンドギャップを少なくとも約0.2エレクトロンボルト(eV)上回るバンドギャップを有し得る。そのような一実施形態において、第1のワイドバンドギャップ半導体層460は、可視スペクトルで実質的に透明である。そのような特定の実施形態において、第1のワイドバンドギャップ半導体層460は、バンドギャップが約3eVを超え、制限はされないが、窒化アルミニウム(AlN)、窒化アルミニウムガリウム(AlGa1−xN(式中、0<x<1))、窒化ホウ素(BN)、4H相の炭化ケイ素(SiC)(約3.23eV)、又は6H相の炭化ケイ素(SiC)(約3.05eV)などの材料から構成される。別の実施形態において、半導体基板402は、n型単結晶シリコンから構成され、第1のワイドバンドギャップ半導体層460は、バンドギャップが約1.5eVを超え、制限はされないが、アモルファスシリコン(a−Si、約1.5eV)、炭化ケイ素(SiC、様々な相が約2.0eVを超える)、窒化アルミニウム(AlN)、窒化アルミニウムガリウム(AlGa1−xN(式中、0<x<1)、又は窒化ホウ素(BN)などの材料から構成される。
【0026】
或る実施形態において、酸化物層412、414及び第1のワイドバンドギャップ半導体層460を同じ処理ツールで形成する段階は、低圧化学蒸着(LPCVD)チャンバ、高速熱アニール(RTA)チャンバ、高速熱処理(RTP)チャンバ、大気圧化学蒸着(APCVD)チャンバ、ハイドライド気相成長(HVPE)チャンバ、又は、RTPチャンバ及びプラズマ強化化学蒸着(PECVD)チャンバの両方を使用する段階を含む。或る実施形態において、処理ツールが収容される施設の雰囲気とは異なる雰囲気が制御雰囲気である限り、「同じ」処理ツールは単一又は複数チャンバの処理ツールであり得る。
【0027】
或る実施形態において、本方法は、第1のワイドバンドギャップ半導体層460を約1×1017〜1×1021原子/cmの範囲の濃度を有する電荷キャリアドーパント不純物原子で更にドープする。そのような一実施形態においては、第1のワイドバンドギャップ半導体層460の形成時に、その場でドープする段階が実行される。そのような代替実施形態においては、第1のワイドバンドギャップ半導体層460の形成に続いてドープする段階が実行される。
【0028】
図4Iを参照すると、第2のドープされたワイドバンドギャップ半導体層462が、太陽電池400の前面上の第2の粗面化シリコン領域432上に堆積され得る。或る実施形態において、層460及び462は同じ処理工程において形成される。但し、別の実施形態においては、層460及び462は、別々の処理工程において同じ又は別の処理ツールで形成される。一実施形態において、太陽電池400の裏面及び前面上のドープされたワイドバンドギャップ半導体層460、462の両方は、ドープされたワイドバンドギャップネガ型半導体から構成される。一実施形態において、第2のドープされたワイドバンドギャップ半導体462は、ドープされた厚い第1のワイドバンドギャップ半導体層460と比較して相対的に薄い。そのような特定の実施形態において、第2の薄いドープされたワイドバンドギャップ半導体層462は、第1の厚いドープされたワイドバンドギャップ半導体層460の厚さの約10%〜30%である。別の実施形態において、太陽電池400の裏面及び前面上のドープされたワイドバンドギャップ半導体層460、462の両方は、ドープされたワイドバンドギャップポジ型半導体から構成される。続いて、図4Iに図示されているように、第2のドープされたワイドバンドギャップ半導体462の上に、反射防止コーティング(ARC)層470が堆積され得る。そのような一実施形態において、ARC層470は窒化ケイ素から構成される。
【0029】
図4Jを参照すると、太陽電池400の裏面上の第1のドープされたワイドバンドギャップ半導体460、第2の酸化物層412及びドーピング材料の層408を部分的に除去することによって、一連のコンタクト開口部480が形成されている。一実施形態においては、アブレーション処理を使用して除去技術が達成される。このようなアブレーション処理の1つは、レーザアブレーション処理である。別の実施形態において、除去技術は、マスクのスクリーン印刷又はインクジェット印刷などの従来型のパターニング処理であり、その後にエッチング処理が続く。或る実施形態において、図4Jに図示されているように、第1のワイドバンドギャップ半導体層460を形成する段階は、ドープ済みポリシリコン層450がパターニングを経た後でさえも、ドープ済みポリシリコン層450の少なくとも一部分の上に第1のワイドバンドギャップ半導体層460の一部分を形成する段階を含む。
【0030】
図4Kを参照すると、太陽電池400の裏面上に第1の金属グリッド又はグリッド線490が形成されている。第1の金属グリッド線490は、コンタクト開口部480内部のドープ済みポリシリコン450に電気的に繋がれ得る。一実施形態において、コンタクト開口部480を貫通して、第1のドープされたワイドバンドギャップ半導体460、第2の酸化物層412及びドーピング材料の層408に至るまで第1の金属グリッド線490を形成することによって、太陽電池400により電力供給される外部電気回路の正の電気端子を接続する。
【0031】
図4Lを参照すると、太陽電池400の裏面上に第2の金属グリッド又はグリッド線492が形成されている。第2の金属グリッド線492は、電気的に第2の粗面化シリコン領域432と繋がれ得る。一実施形態において、太陽電池400の裏面上のエリア内でヘテロ接合として作用する第1の粗面化シリコン領域430、第1のドープされたワイドバンドギャップ半導体460、および、第2の酸化物層412に第2の金属グリッド線492を繋ぐことによって、太陽電池400により電力供給される外部電気回路の負の電気端子に接続される。幾つかの実施形態では、電気メッキ処理、スクリーン印刷処理、インクジェット処理、アルミニウム金属ナノ粒子から形成される金属へのメッキ、又は他のメタライゼーション若しくは金属形成処理工程によって、図4K及び4Lで参照される金属グリッド線の形成が実行される。
【0032】
故に、或る実施形態において、ドープされた多結晶シリコンから第1のエミッタ領域が形成される一方、ワイドバンドギャップ半導体材料から第2のエミッタ領域が形成される。一方、別の実施形態において、第1のエミッタ領域はまた、ドープ済みポリシリコンの代わりに、シリコン基板402、例えばn型単結晶シリコン基板のバンドギャップを少なくとも約0.2エレクトロンボルト上回るバンドギャップを有する材料からも形成される。
【0033】
別の態様においては、上で図4Fを参照しながら説明したように、幾つかの実施形態は、より大きなエキゾチック酸化物層を基板とワイドバンドギャップ界面との間のパッシベーション層として使用することを含む。例示的な実施形態において、そのような1つの太陽電池はシリコン基板を具備する。第1のエミッタ領域は、シリコン基板の表面上に配置されていて、かつ第1の導電型にドープされた窒化アルミニウム(AlN)層から構成されている。AlN層は、薄い酸化アルミニウム(Al)層の上に配置されている。第2のエミッタ領域は、シリコン基板の表面上に配置されていて、かつ第2の、反対の導電型にドープされた半導体材料から構成されている。第2の半導体材料は、薄い誘電体層上に配置されている。第1及び第2のコンタクトはそれぞれ、第1及び第2のエミッタ領域上に配置されていて、かつそのエミッタ領域に導電的に繋いている。
【0034】
そのような一実施形態において、半導体材料のバンドギャップは、シリコン基板のバンドギャップを少なくとも約0.2エレクトロンボルト(eV)上回る。つまり、両方の種類のエミッタ領域にワイドバンドギャップ材料が含まれる。ただし、そのような別の実施形態において、半導体材料は、例えば図4A〜4Kに関連して説明された構造体に類似の多結晶シリコンから構成される。或る実施形態において、第1のエミッタ領域はシリコン基板の表面の非平滑化部分に配置され、第2のエミッタ領域はシリコン基板の表面の平坦部分に配置される。
【0035】
一実施形態においては、半導体基板の裏面側接触面上に第1及び第2のエミッタ領域が配置される。シリコン基板は、裏面側接触面とは反対側の受光表面を更に備える。受光表面には薄い酸化アルミニウム(Al)層が配置されており、この薄い酸化アルミニウム(Al)層上には窒化アルミニウム(AlN)層が配置されている。一実施形態においては、図4Jに関連して説明した構造体と同様に、窒化アルミニウム(AlN)層の一部が第2のエミッタ領域の少なくとも一部分の上に配置される。
【0036】
本明細書に記載されている幾つかの実施形態は、単一の処理ツールで、薄い誘電体層及びシリコン基板の裏面上に堆積させたワイドバンドギャップ半導体層を提供することによって、太陽電池のエミッタ領域を形成する段階を含む。当然のことながら、他の実施形態をそれだけに制限する必要はない。例えば、或る実施形態においては、単一の処理ツールで、薄い誘電体層及びシリコン基板の前側及び裏側に堆積させたワイドバンドギャップ半導体層を提供することによって、太陽電池のパッシベーション層を形成する。そのパッシベーション層からエミッタ領域を形成する必要はない。
【0037】
それ故、ワイドバンドギャップ半導体材料から構成されるエミッタ領域を有する太陽電池、及び太陽電池の製造方法が開示されている。本発明の実施形態に従い、或る方法は、制御雰囲気を有する処理ツールにて太陽電池の半導体基板の表面上に薄い誘電体層を形成する段階を含む。半導体基板はバンドギャップを有する。その場合、処理ツールの制御雰囲気から半導体基板を除去することなしに、薄い誘電体層上に半導体層が形成される。半導体層のバンドギャップは、半導体基板のバンドギャップを少なくとも約0.2エレクトロンボルト(eV)上回る。そのような一実施形態において、本方法は、半導体層から太陽電池のエミッタ領域を形成する段階を更に含む。そのような別の実施形態において、半導体層を形成する段階は、可視スペクトルにて実質的に透明な層を形成する段階を含む。
[項目1]
太陽電池の製造方法であって、
制御雰囲気を有する処理ツールにて、前記処理ツールの前記制御雰囲気から半導体基板を除去することなしに前記太陽電池の前記半導体基板の表面上に薄い誘電体層を形成する段階と、
前記薄い誘電体層上に半導体層を形成する段階と、
を含み、
前記半導体基板がバンドギャップを有し、
前記半導体層のバンドギャップが前記半導体基板の前記バンドギャップを少なくとも約0.2エレクトロンボルト(eV)上回る、太陽電池の製造方法。
[項目2]
前記半導体層から前記太陽電池のエミッタ領域を形成する段階を更に含む、項目1に記載の太陽電池の製造方法。
[項目3]
前記半導体層を、約1×1017〜1×1021原子/cmの範囲の濃度を有する電荷キャリアドーパント不純物原子でドープする段階を更に含む、項目1に記載の太陽電池の製造方法。
[項目4]
前記半導体層を形成する段階の間に前記ドープする段階がその場で実行される、項目3に記載の太陽電池の製造方法。
[項目5]
前記半導体層を形成する段階の後に前記ドープする段階が実行される、項目3に記載の太陽電池の製造方法。
[項目6]
前記半導体層を形成する段階が、可視スペクトルにて実質的に透明な層を形成する段階を含む、項目1に記載の太陽電池の製造方法。
[項目7]
前記可視スペクトルにて実質的に透明な前記層を形成する段階が、約3eVを超えるバンドギャップを有し、かつ、窒化アルミニウム(AlN)、窒化アルミニウムガリウム(AlGa1−xN(式中、0<x<1))、窒化ホウ素(BN)、4H相の炭化ケイ素(SiC)、及び6H相の炭化ケイ素(SiC)からなるグループから選択される材料を含んでなる半導体層を形成する段階を含む、項目6に記載の太陽電池の製造方法。
[項目8]
前記半導体基板がn型単結晶シリコンを含み、前記半導体層を形成する段階が、約1.5eVを超えるバンドギャップを有し、かつ、アモルファスシリコン(a−Si)、炭化ケイ素、窒化アルミニウム(AlN)、窒化アルミニウムガリウム(AlGa1−xN(式中、0<x<1))、及び窒化ホウ素(BN)からなるグループから選択される材料を含んでなる半導体層を形成する段階を含む、項目1に記載の太陽電池の製造方法。
[項目9]
前記半導体基板の前記表面上に前記薄い誘電体層を形成する段階が、前記半導体基板の一部を熱酸化によって消費させる段階を含む、項目1に記載の太陽電池の製造方法。
[項目10]
前記半導体基板の前記一部を消費させる段階が、n型単結晶シリコン基板の一部を熱酸化することによって厚さが約3ナノメートル以下の二酸化ケイ素(SiO)層を形成する段階を含む、項目9に記載の太陽電池の製造方法。
[項目11]
前記半導体基板の前記表面上に前記薄い誘電体層を形成する段階が、前記半導体基板の前記表面上に誘電体材料層を堆積させる段階を含む、項目1に記載の太陽電池の製造方法。
[項目12]
前記半導体基板の前記表面上に前記誘電体材料層を堆積させる段階が、n型単結晶シリコン基板の表面上に酸化アルミニウム(Al)層を形成する段階を含む、項目11に記載の太陽電池の製造方法。
[項目13]
前記処理ツールで前記薄い誘電体層及び前記半導体層を形成する段階が、低圧化学蒸着(LPCVD)チャンバ、急速熱アニール(RTA)チャンバ、高速熱アニール(RTP)チャンバ、大気圧化学蒸着(APCVD)チャンバ、ハイドライド気相成長(HVPE)チャンバ、又は、RTPチャンバ及びプラズマ強化化学蒸着(PECVD)チャンバの両方を使用する段階を含む、項目1に記載の太陽電池の製造方法。
[項目14]
前記薄い誘電体層を形成する段階に先立って前記半導体基板の前記表面を粗面化する段階を更に含む、項目1に記載の太陽電池の製造方法。
[項目15]
前記半導体基板の前記表面上に前記薄い誘電体層及び前記半導体層を形成する段階が、前記半導体基板の裏面側接触面上に形成する段階を含み、前記形成する段階が、前記半導体基板の受光表面上に前記薄い誘電体層及び前記半導体層を形成する段階を更に含む、項目1に記載の太陽電池の製造方法。
[項目16]
項目1に記載の太陽電池の製造方法に従って製造される太陽電池。
[項目17]
太陽電池の製造方法であって、
太陽電池の半導体基板の表面上に第1のエミッタ領域を形成する段階であって、前記第1のエミッタ領域が、第1の導電型にドープされかつ第1の薄い誘電体層上に形成された半導体材料を含む、段階と、
前記半導体基板の前記表面上に第2のエミッタ領域を形成する段階と、
を含み、
前記形成する段階が、
制御雰囲気を有する処理ツールにて、前記処理ツールの前記制御雰囲気から前記半導体基板を除去することなしに前記半導体基板の前記表面上に第2の薄い誘電体層を形成する段階であって、前記半導体基板がバンドギャップを有する、段階と、
前記第2の薄い誘電体層上にワイドバンドギャップ半導体層を形成する段階であって、前記ワイドバンドギャップ半導体層のバンドギャップが前記半導体基板の前記バンドギャップを少なくとも約0.2エレクトロンボルト(eV)上回る、段階と、
前記ワイドバンドギャップ半導体層を第2の、反対の導電型の電荷キャリアドーパント不純物原子でドープする段階と、
を含む、太陽電池の製造方法。
[項目18]
前記半導体基板がn型単結晶シリコンを含み、前記ワイドバンドギャップ半導体層を形成する段階が、約1.5eVを超えるバンドギャップを有し、かつ、アモルファスシリコン(a−Si)、炭化ケイ素、窒化アルミニウム(AlN)、窒化アルミニウムガリウム(AlGa1−xN(式中、0<x<1))、及び窒化ホウ素(BN)からなるグループから選択される材料を含んでなる半導体層を形成する段階を含む、項目17に記載の太陽電池の製造方法。
[項目19]
前記第2の薄い誘電体層の形成に先立って前記半導体基板の前記表面を粗面化する段階を更に含む、項目17に記載の太陽電池の製造方法。
[項目20]
項目17に記載の太陽電池の製造方法に従って製造される太陽電池。
図1
図2
図3
図4A
図4B
図4C
図4D
図4E
図4F
図4G
図4H
図4I
図4J
図4K
図4L