(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6322581
(24)【登録日】2018年4月13日
(45)【発行日】2018年5月9日
(54)【発明の名称】発光用途用成形ナノ粒子蛍光体
(51)【国際特許分類】
C09K 11/00 20060101AFI20180423BHJP
C09K 11/08 20060101ALI20180423BHJP
H01L 33/50 20100101ALI20180423BHJP
【FI】
C09K11/00 C
C09K11/08 A
C09K11/08 G
H01L33/50
【請求項の数】10
【全頁数】10
(21)【出願番号】特願2014-552711(P2014-552711)
(86)(22)【出願日】2013年1月17日
(65)【公表番号】特表2015-509125(P2015-509125A)
(43)【公表日】2015年3月26日
(86)【国際出願番号】IB2013000408
(87)【国際公開番号】WO2013108125
(87)【国際公開日】20130725
【審査請求日】2016年1月8日
(31)【優先権主張番号】61/588,377
(32)【優先日】2012年1月19日
(33)【優先権主張国】US
【前置審査】
(73)【特許権者】
【識別番号】509295262
【氏名又は名称】ナノコ テクノロジーズ リミテッド
(74)【代理人】
【識別番号】110001438
【氏名又は名称】特許業務法人 丸山国際特許事務所
(72)【発明者】
【氏名】ナーサニ,イマド
(72)【発明者】
【氏名】パン,ハオ
【審査官】
磯貝 香苗
(56)【参考文献】
【文献】
国際公開第2011/036447(WO,A1)
【文献】
特表2010−528118(JP,A)
【文献】
米国特許出願公開第2010/0155744(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C09K 11/00
C09K 11/08
H01L 33/50
(57)【特許請求の範囲】
【請求項1】
成形ナノ粒子蛍光体を作製する方法であって、
マトリックス材料前駆体に懸濁したナノ粒子の懸濁液を、モールドに準備する工程と、
前記ナノ粒子が分散したマトリックス材料へと前記マトリックス材料前駆体を転化する工程と、
前記マトリックス材料を前記モールドから取り出す工程と、
前記マトリックス材料の各面を気体遮断材料でコーティングして、成形ナノ粒子蛍光体を形成する工程と、
を含んでいる、方法。
【請求項2】
前記マトリックス材料は、ポリマーである、請求項1に記載の方法。
【請求項3】
前記マトリックス材料は、エポキシ、シリコーン、又はアクリレートである、請求項1に記載の方法。
【請求項4】
前記気体遮断材料は、ポリマー、金属酸化物、金属窒化物、又はガラスである、請求項1に記載の方法。
【請求項5】
前記気体遮断材料は、エポキシ、シリコーン、又はアクリレートである、請求項1に記載の方法。
【請求項6】
前記マトリックス材料前駆体は、モノマー配合物を含む、請求項1に記載の方法。
【請求項7】
前記マトリックス材料前駆体は、更に、触媒、架橋剤、又は開始剤を含む、請求項7に記載の方法。
【請求項8】
前記マトリックス材料前駆体を前記マトリックス材料に転化する工程は、重合成形、接触成形、鋳造成形、押出成形又は射出成形を含む、請求項1に記載の方法。
【請求項9】
前記マトリックス材料の各面を気体遮断材でコーティングする工程は、原子層堆積、ブラシコーティング、蒸着コーティング、又はスプレーコーティングを含む、請求項1に記載の方法。
【請求項10】
請求項1乃至9の何れかによる成形ナノ粒子蛍光体を製造する工程と、
前記成形されたナノ粒子蛍光体を光放出ダイオードパッケージに組込む工程と、
を含む、ナノ粒子ベースの発光デバイスの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
<関連出願>
本出願は、2012年1月19日に出願された米国仮出願第61/588,377号の利益を主張し、その内容の全ては、引用を以って、本明細書の一部となる。
【背景技術】
【0002】
量子ドット(QDs)及び/又はナノ粒子とよく呼ばれる、直径が2乃至100nmの粒子からなる化合物半導体については、それらの調整と特性付け(characterization)について大きな関心がもたれている。これらの研究は、主に、サイズ調整可能(size-tunable)なナノ粒子の電子的、光学的及び化学的特性に集中している。半導体ナノ粒子は、生体標識、太陽電池、触媒、生体撮像や発光ダイオードなどの多様な商業的用途への適用可能性によって、大きな関心を得ている。
【0003】
可能性のある特に魅力的な半導体ナノ粒子の利用分野は、次世代発光ダイオード(LED)の開発である。LEDは、例えば、自動車照明、交通信号、一般照明、液晶ディスプレイ(LCD)バックライトやディスプレイスクリーン等において、ますます重要になってきている。ナノ粒子ベースの発光デバイスは、典型的にはシリコーン又はアクリレートである、光学的に明澄な(つまり、ほぼ透明な)LED封入媒体に、半導体ナノ粒子を埋め込んで、次に、ソリッドステートLED上に配置することで作製される。ナノ粒子は、ソリッドステートLEDの一次光によって励起されて、二次光を発する。その色は、ナノ粒子の固有のタイプとサイズによって、特徴づけられる。例えば、ソリッドステートLEDの一次放出光が青色であり、特定のナノ粒子の特有の放出光が赤色である場合、ナノ粒子は一部の青色光を吸収して、赤色光を発する。ソリッドステートLEDの放出光の一部は、これによって、「ダウンコンバート」され、デバイスは青色と赤色が混合した光をもたらす。
【0004】
半導体ナノ粒子の使用は、従来の蛍光体の使用を超える大きな利点を潜在的に有している。例えば、半導体ナノ粒子は、LEDの放出波長を調整する能力を提供する。しかしながら、ナノ粒子がLED封入材料に組み込まれた後であっても、酸素が、封入材料を通ってナノ粒子表面に移動して、光酸化が起こって、結果として、量子収率(QY)が低下し得る。
【0005】
量子ドットベースの発光デバイスを含むがこれに限られない、幅広い範囲の用途に亘った量子ドットの用途の大きな可能性に鑑みて、量子ドットをより明るくし、量子ドットの寿命をより長く、及び/又は、種々の種類の処理条件に対して反応し難くするように量子ドットの安定性を高める方法を開発する必要性が大いにある。消費者の要求を満足する程十分に高い性能レベルをもたらすであろう、発光デバイス等の量子ドットベースのデバイスを経済的に実行可能な規模で製造するための方法と粒子ドットベース材料とを開発する重要な課題が残っている。
【発明の概要】
【0006】
発光用途の成形ナノ粒子蛍光体は、マトリックス材料前駆体にナノ粒子が懸濁した懸濁液を、マトリックス材料とナノ粒子を含む成形ナノ粒子蛍光体に転化させることによって作製される。マトリックス材料は、ナノ粒子が分散可能であって、成形可能な任意の材料であってよい。例えば、マトリックス材料は、高分子材料であってもよい。マトリックス材料が高分子材料である場合、マトリックス材料前駆体は、適当なモノマーの調合物であってもよい。マトリックス材料前駆体はまた、触媒、架橋剤、開始剤等を含んでよい。
【0007】
成形ナノ粒子蛍光体は、任意の成形技術を用いて、マトリックス材料前駆体/ナノ粒子懸濁液から、形成できる。成形技術には、例えば、重合成形(polymerization molding)、接触成形、押出成形、射出成形が挙げられる。成形されると、成形ナノ粒子蛍光体は、ポリマー、金属酸化物、金属窒化物、又はガラスなどの気体遮断材料でコーティングされてよい。コーティングは、原子層堆積法、蒸着コーティング、スプレーコーティング、又はブラシコーティングなどの任意のコーティング技術によって、成形ナノ粒子蛍光体に付着されてよい。
【0008】
バリアをコーティングされた成形ナノ粒子蛍光体は、LEDなどの発光デバイスで利用できる。例えば、蛍光体は、従来のソリッドステートLEDのパッケージ内に組み込まれてよく、ソリッドステートLEDエミッタの放出光の一部をダウンコンバージョンするために使用できる。
【0009】
上記の概要は、本発明の潜在的な実施例の各々や全ての態様を概説することを意図するものではない。
【図面の簡単な説明】
【0010】
【
図1】
図1は、従来技術であるナノ粒子ベースの発光デバイスを示す。
【
図2A】
図2Aは、従来技術であるナノ粒子ベースの発光デバイスを示す。
【
図2B】
図2Bは、従来技術であるナノ粒子ベースの発光デバイスを示す。
【
図3】
図3は、従来技術であるナノ粒子ベースの発光デバイスを示す。
【0011】
【
図4】
図4は、予め作製されたナノ粒子ディスクを用いてナノ粒子ベースの発光デバイスを作る方法を示す。
【0012】
【
図5】
図5は、実施例であるナノ粒子ベースの発光デバイスと、従来技術のナノ粒子ベースの発光デバイスとの放出強度との比較を示す。
【0013】
【
図6】
図6は、実施例であるナノ粒子ベースの発光デバイスの性能を示す。
【発明を実施するための形態】
【0014】
図1は、「背景技術」で説明された従来技術のナノ粒子ベースの発光デバイス100を示している。発光デバイス100は、典型的にはシリコーン又はアクリレートである、光学的に明澄な(つまり、ほぼ透明な)LED封入媒体102中にある半導体ナノ粒子101を有しており、当該媒体は、ソリッドステートLED103の上に配置されている。封入媒体は、パッケージ104内に収納されている。上述したように、ナノ粒子がLED封入材料に組み込まれた後でも、酸素は、封入材料を通って、ナノ粒子の表面に移動して、光酸化をもたらし、その結果、量子収率(QY)が低下し得る。
【0015】
図2Aは、封入材料202へと移動する酸素による光酸化の問題に対処している従来技術のナノ粒子ベースの発光デバイス200を示している。ナノ粒子201は、マイクロビーズ205に組み込まれており、当該マイクロビーズは、LED封入材料202中に懸濁している。ビーズ205を、
図2Bにおいてより詳細に示す。ナノ粒子201は、一次マトリックス材料206に組み込まれている。一次マトリックス材料は、好ましくは、光透過性媒体、つまり、光が通過できる媒体であるが、光学的に非常に明澄である必要はないであろう。一次マトリックスは、樹脂、ポリマー、モノリス、ガラス、ソルゲル、エポキシ、シリコーン、メタクリレートなどであってよく、或いは、シリカを含んでよい。一次マトリックス材料の例には、アクリレートポリマー(例えば、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリオクチルメタクリレート、アルキルシアノアクリレート、ポリエチレングリコールジメタクリレート、ポリビニルアセテートなど)、エポキシ樹脂(例えば、EPOTEK 301A+B熱硬化エポキシ、EPOTEK OG112−4シングルポット(single pot)UV硬化エポキシ、又は、EX0135A及びB熱硬化エポキシ)、ポリアミド、ポリイミド、ポリエステル、ポリカーボネート、ポリチオエーテル、ポリアクリロニトリル、ポリジエン、ポリスチレンポリブタジエンコポリマー(Kratons)、ピレン(pyrelenes)、ポリ−パラ−キシリレン(パリレン)、シリカ、シリカ―アクリレートハイブリッド、ポリエーテルエーテルケトン(PEEK)、ポリビニリデンフルオリド(PVDF)、ポリジビニルベンゼン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリイソブチレン(ブチルラバー)、ポリイソプレン、及びセルロース誘導体(メチルセルロース、エチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルメチルセルロースフタレート、ニトロセルロース)、並びに、これらの組合せがある。
【0016】
マイクロビーズ205はまた、酸素、水分、又はフリーラジカルが一次マトリックス材料を通って進む又は拡散するのを防止するコーティング207を含んでよい。コーティングは、誘電体、金属酸化物、金属窒化物、又はシリカのような無機材料であってよい。或いは、コーティングは、高分子材料のような他の材料であってもよい。
【0017】
図2Aを再度参照すると、マイクロビーズ205に関する欠点は、それらが光を散乱し、反射し、屈折させることである。これらの光学効果は、発光デバイスの全体的な性能(明るさ)の損失を導く。
【0018】
図3は、気密シールされたナノ粒子ベースの発光デバイス300を示しており、当該デバイスは、LEDパッケージ304をシールする気体遮断フィルム308を含んでおり、酸素、水分やラジカルのような有害な種が、封入材料302へと移動することが防止されている。しかしながら、気体遮断材308として適切な材料(例えば、セラミック)は、高価で処理し難く、気密シールされたデバイス300を、特に商業規模で製造するのは困難である。気体遮断材308とLEDパッケージ304との間に、不透過性のシールを施すことは困難なことがあって、その結果、有害な種が、インターフェイス309にてデバイスへと拡散するかも知れない。さらに、シールされたパッケージは、局所気候の効果を大きくして、LEDの配線と放射チップの性能を悪化させるということが最近確認された。そのため、LED封入材料に、酸素等が移動することを防ぐことが望ましい一方で、驚くべきことに、LEDパッケージ自体が、「呼吸」するのを可能にすることが望ましい。本発明の目的は、これら2つの表面的には矛盾するゴールを実現するナノ粒子ベース発光デバイスを提供することである。
【0019】
図4は、上記の課題を解決するナノ粒子ベースの発光デバイスを作製する方法を示している。マトリックス材料前駆体中にナノ粒子が懸濁した懸濁液401が、モールド402へ移される。モールドへ移されると、マトリックス材料前駆体はマトリックス材料に転化して、成形ナノ粒子蛍光体403が得られる。成形ナノ粒子蛍光体は、
図4において、模式的に矩形で示されていることに注意されたい。しかしながら、当然のことながら、成形ナノ粒子蛍光体403の実際の形状は、モールド402の形状によって定められる。本発明は、如何なる特定の形状に限定されない。また、
図1乃至
図4は、実物大ではないことに留意のこと。典型的なマトリックス材料は、樹脂、ポリマー、ソルゲル、エポキシ、シリコーン、メタクリレートなどであってよく、或いは、シリカを含んでよい。マトリックス材料の具体例には、アクリレートポリマー(例えば、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリオクチルメタクリレート、アルキルシアノアクリレート、ポリエチレングリコールジメタクリレート、ポリビニルアセテートなど)、エポキシ樹脂(例えば、EPOTEK 301A+B熱硬化エポキシ、EPOTEK OG112―4シングルポットUV硬化エポキシ、又はEX0135A及びB熱硬化エポキシ)、ポリアミド、ポリイミド、ポリエステル、ポリカーボネート、ポリチオエーテル、ポリアクリロニトリル、ポリジエン、ポリスチレンポリブタジエンコポリマー(Kratons)、ピレン(pyrelenes)、ポリ−パラ−キシリレン(パリレン)、シリカ、シリカ−アクリレートハイブリッド、ポリエーテルエーテルケトン(PEEK)、ポリビニリデンフルオリド(PVDF)、ポリジビニルベンゼン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリイソブチレン(ブチルラバー)、ポリイソプレン、及びセルロース誘導体(メチルセルロース、エチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルメチルセルロースフタレート、ニトロセルロース)、並びに、それらの組合せが含まれる。
【0020】
マトリックス材料前駆体は、ナノ粒子が懸濁又は溶解でき、且つ、マトリックス材料に転換できる任意の前駆配合物であってよい。例えば、マトリックス材料がポリマーの場合、マトリックス材料前駆体は、対応するモノマーと付加的な任意の種との配合物であってよい。付加的な任意の種としては、例えば、マトリックス材料前駆体をマトリックス材料に転化するための光開始剤、触媒、及び/又は架橋剤が挙げられる。マトリックス材料がアクリレートポリマーである実施形態では、マトリックス材料前駆体は、適切なメタクリレートモノマー、光開始剤、及び架橋剤の配合物であってよい。マトリックス材料前駆体は、任意の公知の技術によって、マトリックス材料に転化されてよく、それら技術には、光重合を含むが、これに限定されるものではない。
【0021】
モールド402は、所望の形状の成形ナノ粒子蛍光体403を作製するための形状を有する任意のモ−ルドであってよい。ある実施形態では、モールド402は、それ自身がLEDパッケージングであって、最終的なナノ粒子発光デバイスにおいて用いられるLEDパッケージングと実質的に同一である。本発明は、成形ナノ粒子蛍光体403を形成するための如何なる特定の方法に限定されない。例えば、接触成形、鋳造、押出成形又は射出成形のような任意の公知の成形又は鋳造技術が使用できる。
【0022】
成形ナノ粒子蛍光体403が気体遮断材料でコーティングされて、コーティングされた成形ナノ粒子蛍光体404が得られる。コーティングは、酸素又は任意のタイプの酸化剤が、一次マトリックス材料を通過することを妨げることが好ましい。コーティングは、フリーラジカル種が、一次マトリックス材料を通過することを妨げてよく、及び/又は、吸湿防止材料であることが好ましい。当然のことながら、気体遮断材は、気体及び/又は水分の通過を完全には防止しなくともさしつかえない。
【0023】
コーティングは、コーティング材料の層を所望の任意の厚みでもたらしてよい。例えば、表層のコーティングの厚さは、約1〜10ナノメートルの、約400〜500ナノメートルまで、又はそれより大きくてもよい。コーティングは、誘電体(絶縁体)、金属酸化物、金属窒化物又はシリカ系材料(例えば、ガラス)などの無機材料を含んでよい。
【0024】
より好ましい金属酸化物は、Al
2O
3、B
2O
3、Co
2O
3、Cr
2O
3、CuO、Fe
2O
3、Ga
2O
3、HfO
2、In
2O
3、MgO、Nb
2O
5、NiO、SiO
2、SnO
2、Ta
2O
5、TiO
2、ZrO
2、Sc
2O
3、Y
2O
3、GeO
2、La
2O
3、CeO
2、PrO
x(x=適切な整数)、Nd
2O
3、Sm
2O
3、EuO
y(y=適切な整数)、Gd
2O
3、Dy
2O
3、Ho
2O
3、Er
2O
3、Tm
2O
3、Yb
2O
3、Lu
2O
3、SrTiO
3、BaTiO
3、PbTiO
3、PbZrO
3、Bi
mTi
nO(m=適切な整数、n=適切な整数)、Bi
aSi
bO(a=適切な整数、b=適切な整数)、SrTa
2O
6、SrBi
2Ta
2O
9、YScO
3、LaAlO
3、NdAlO
3、GdScO
3、LaScO
3、LaLuO
3、Er
3Ga
5O
13からなる群から選択される。
【0025】
好ましい金属窒化物は、BN、AlN、GaN、InN、Zr
3N
4、Cu
2N、Hf
3N
4、SiN
c(c=適切な整数)、TiN、Ta
3N
5、Ti--Si--N、Ti--Al--N、TaN、NbN、MoN、WN
d(d=適切な整数)、及びWN
eC
f(e=適切な整数、f=適切な整数)からなる群から選択される。
【0026】
無機材料コーティングは、適切な任意の結晶形のシリカを含んでよい。
【0027】
コーティングは、有機材料又は高分子材料と結合した無機材料を組み込んでよい。例えば、好ましい実施形態では、コーティングは、シリカ−アクリレートハイブリッド材料のような無機/ポリマーハイブリッドである。
【0028】
第2の好ましい実施形態では、コーティングは、高分子材料を含んでいる。高分子材料は、飽和又は不飽和炭化水素重合体であってよく、或いは、1又は複数のヘテロ原子(例えば、O、S、N、ハロゲン)、若しくはヘテロ原子含有官能基(例えば、カルボニル基、シアン基、エーテル基、エポキシ基、アミド基等)を組み込んでいてよい。
【0029】
好ましい高分子材料の具体例は、アクリレートポリマー(例えば、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリオクチルメタクリレート、アルキルシアノアクリレート、ポリエチレングリコールジメタクリレート、ポリビニルアセテート等)、エポキシド(例えば、EPOTEK 301 A+B熱硬化エポキシ、EPOTEK OG112―4シングルポットUV硬化エポキシ、又はEX0135A及びB熱硬化エポキシ)、ポリアミド、ポリイミド、ポリエステル、ポリカーボネート、ポリチオエーテル、ポリアクリロニトリル、ポリジエン、ポリスチレンポリブタジエンコポリマー(Kratons)、ピレン、ポリ−パラ−キシリレン(パリレン)、ポリエーテルエーテルケトン(PEEK)、ポリビニリデンフルオリド(PVDF)、ポリジビニルベンゼン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリイソブチレン(ブチルラバー)、ポリイソプレン、及びセルロース誘導体(メチルセルロース、エチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルメチルセルロースフタレート、ニトロセルロース)、並びに、それらの組合せを含む。
【0030】
コーティング405は、当該分野や、薬学分野のような関連分野において公知である任意コーティング方法によって、成形ナノ粒子蛍光体403に付着させることができる。薬学分野では、コーティングは、タブレットや同様のものに、一般的に適用されている。コーティング方法の具体例には、原子層堆積(ALD)は含まれる。他の方法としては、スプレーコーティング、蒸着及びブラシコーティングが含まれる。
【0031】
コーティングされた成形ナノ粒子蛍光体404は、LEDパッケージ406に挿入されて、LEDパッケージは、シリコーンやエポキシのようなLED封入材料で充填される。そして、ナノ粒子ベースの発光デバイス407の作製は、LED業界の一般的な実務に従って完了され得る。
【0032】
本発明は、如何なる特定のタイプの発光ナノ粒子に限定されない。他の好ましい実施形態では、ナノ粒子は、半導体材料である。半導体材料は、周期表の2〜16族の1又は複数からイオンを組み込んでよく、二元材料、三元材料及び四元材料、即ち、それぞれ2、3又は4つの異なるイオンを組み込んだ材料を含んでいてよい。例えば、ナノ粒子は、半導体材料を組み込んでよく、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、InP、InAs、InSb、AlP、AlS、AlAs、AlSb、GaN、GaP、GaAs、GaSb、PbS、PbSe、Si、Ge、及びそれらの組合せなどを組み込んでよいが、これらに限られない。様々な実施形態において、ナノ粒子の直径は、約100ナノメートル未満、約50ナノメートル未満、約20ナノメートル未満、約15ナノメートル未満、及び/又は、約2〜10ナノメートルの範囲であってよい。
【0033】
CdS、CdSe、ZnS、ZnSe、InP、GaN等の単一の半導体材料を含むナノ粒子は、比較的低い粒子効率を有することがある。というのは、ナノ粒子の表面の欠陥及びダンブリング結合にて、非放射型の電子−正孔再結合が起こるからである。少なくとも部分的にはこれらの問題に対処するため、ナノ粒子コアは、コアとは異なる材料、例えば、「コア」とは異なる半導体材料の1又は複数の層(本明細書では「シェル」と称する)で、少なくとも部分的に覆われてよい。各シェルに含まれる材料は、周期表の2〜16族の任意の1又は複数からイオンを組み込んでよい。ナノ粒子が2又は3以上のシェルを有する場合、各シェルは異なる材料で形成されてもよい。典型的なコア/シェル材料では、コアは、上述した材料の1つから形成され、シェルは、バンドギャップエネルギーがより大きく、格子寸法がコア材料と同程度の半導体材料を含んでいる。代表的なシェル材料は、ZnS、ZnO、MgS、MgSe、MgTe、及びGaNを含むが、これらに限定されない。代表的なマルチシェルナノ粒子は、InP/ZnS/ZnOである。コア内に表面状態から離れた電荷キャリアを閉じ込めることで、より安定で、量子収率がより高いナノ粒子がもたらされる。
【0034】
開示された方法は、如何なる特定のナノ粒子材料に限定されないが、カドミウムを含まない材料を含むナノ粒子が特に好まれる。というのは、カドミウムに関連した潜在的な毒性及び環境への影響に対する懸念が増加しているためである。カドミウムを含まないナノ粒子の例としては、ZnS、ZnSe、ZnTe、InP、InAs、InSb、AlP、AlS、AlAs、AlSb、GaN、GaP、GaAs、GaSb、PbS、PbSe、Si、Geなどの半導体材料を含むナノ粒子や、特に、これらの材料の1つの材料のコアと、これらの材料の別の材料の1又は複数のシェルとを備えるナノ粒子がある。
【実施例】
【0035】
<実施例1>
一般的な20mwLEDパッケージのサイズの成形ナノ粒子蛍光体を、モールドとして、実際のLEDパッケージを用いて作製した。トルエンのCFQD溶液(例えば、20mg無機)を、真空下で乾燥して、QD残留物を残した。残留物について、ラウリルメタクリレート(1.85ml、6.6mmol)を、架橋剤トリメチロールプロパントリメタクリレート(1.06ml、3.3mmol)に溶解した光開始剤(イルガキュア 819、9mg)の溶液に加えた。モノマー混合物のアリコート(1.5乃至3ul)を用いて、LEDのカップを満した。次に、充填されたLEDに光を照射した(HamamatsuUV―LEDランプLC―L2、365nm、7500mW/cm
2、3分)。そして、凝固した成形ナノ粒子蛍光体を、単純に叩いてLEDから取り除いて、次に、(例えば、原子層堆積―ALDなどのコーティング方法、又はPVOH等の高遮断材料を用いて)気体遮断フィルムでコーティングした。次に、コーティングされたディスクを、適当な封入用樹脂で満たされた新たなLEDパッケージに装着した。
【0036】
図5は、成形ナノ粒子蛍光体を用いており、カドミウムを含まない量子ドットナノ粒子ベース(CFQD)(InP/Zns)の発光デバイスによって生じた発光スペクトル(曲線a)を示しており、マトリックス材料が同じであって、マイクロビーズに懸濁されたナノ粒子を用いたデバイス(曲線b)と比較している。約630ナノメートルの放出発光のピークは、成形されたナノ粒子蛍光体デバイスを用いると顕著に高くなる。上述したように、発光強度は、複数のマイクロビーズによる散乱によって、マイクロビーズベースのデバイスでは減衰している。
【0037】
図6は、本明細書において開示したような、成形ナノ粒子蛍光体を用いたナノ粒子発光デバイスについて、有効性(人間の目の感度に基づいたLEDの輝度、曲線a)と、QDピークのみの光ルネッセンス強度の割合(曲線b)と、QD/LED強度(曲線c、QDピークのみと、青色チップピークとの間の比)、及びLED強度(曲線d、青色チップピークのみ)を示す。
【0038】
好ましい及び他の実施形態についての上記の説明は、出願人によって考えられた発明概念の範囲又は適用性を制限又は限定することを意図するものではない。開示された主題の任意の実施形態又は態様に従った上述した特徴は、開示された主題の任意の他の実施形態又は態様において、単独で、或いは、他の記載された特徴と組み合わせて用いることが可能であると、本発明の利益と共に理解されるであろう。