(58)【調査した分野】(Int.Cl.,DB名)
第一計測面上に配置された1または複数の第一計測部が任意の時間区間において任意の空間の物理量を計測して当該各第一計測部が出力した第一計測信号から、前記第一計測面上に設定された第一小領域における特徴量ごとの時間頻度を算出する第一特徴量分布算出部と、
前記第一計測面とは異なる第二計測面上に配置された複数の第二計測部のそれぞれが前記時間区間において前記空間の物理量を計測して当該各第二計測部が出力した第二計測信号から、前記第二計測面上に設定された複数の第二小領域のそれぞれにおける前記特徴量ごとの時間頻度を算出する第二特徴量分布算出部と、
前記第一小領域と前記複数の第二小領域それぞれとの間で、前記特徴量どうしの相違性または類似性を表す対応指標値を求め、前記対応指標値ごとの時間頻度を要素とする対応指標値分布を算出する対応指標値分布算出部と、
前記複数の第二小領域の前記対応指標値分布を用いて、前記複数の第二小領域の中から前記第一小領域と対応する前記空間内の位置の物理量を計測した第二小領域を認識する対応領域認識部と、
を備えたことを特徴とする空間認識装置。
前記対応指標値分布算出部は、前記対応指標値ごとに、前記第一小領域の前記特徴量の時間頻度と前記第二小領域の前記特徴量の時間頻度の組み合わせのうち当該対応指標値が算出された組み合わせごとの時間頻度の積を総和して、当該対応指標値の時間頻度を算出する請求項1に記載の空間認識装置。
前記複数の第一計測部は、前記第一計測面を第一撮像面として該第一撮像面上に配置され、前記空間を撮像してそれぞれが前記第一計測信号としての第一輝度信号を出力する複数の第一光電変換部からなり、
前記複数の第二計測部は、前記第一計測面とは異なる前記第二計測面を第二撮像面として該第二撮像面上に配置され、それぞれが前記空間を撮像して前記第二計測信号としての第二輝度信号を出力する複数の第二光電変換部からなる請求項1〜4の何れか一つに記載の空間認識装置。
【発明を実施するための形態】
【0017】
以下、本発明を実施するための形態について、添付した図面の
図1〜6を参照しながら詳細に説明する。
【0018】
[空間認識装置の構成について]
図1に示すように、本実施の形態の空間認識装置1は、撮像部2、記憶部3、処理部4、出力部5を含んで構成され、互いに異なる方向から共通の空間を計測した複数の計測信号(例えば輝度信号)の中から、対応する位置を計測した計測信号を認識する。
【0019】
撮像部2は、カメラ2aとカメラ2bとを含んで構成される。カメラ2aとカメラ2bは、所定の空間(監視空間)を高速撮像して所定周期で
図2に示すような、特徴量分布の集まりである分布画像を生成し、処理部4に出力する。なお、
図2におけるx方向(水平方向)およびy方向(垂直方向)の一つ一つの矩形部分が画素に対応している。
【0020】
カメラ2aとカメラ2bは、少なくとも視野の一部を共有するものであり、例えば2台のカメラ2a,2bが人の目を模した間隔で設置されたステレオカメラで構成することができる。
【0021】
また、例えば、部屋の壁と天井に設置された2台のカメラ2a,2bや、部屋の天井に数メートル離して設置された2台のカメラ(一般的な視野共有カメラ)2a,2bで構成することもできる。
【0022】
カメラ2aは、
図3に示す複数の光電変換部20a(20a−1,20a−2,…,20a−N)を備える。複数の光電変換部20a−1,20a−2,…,20a−Nのそれぞれは第一計測部(第一撮像部)であり、それぞれ監視空間に存在する物体からの反射光を光電変換して、反射光の輝度に応じた輝度信号を出力する。
【0023】
また、カメラ2aは、
図3に示す特徴量分布算出部21aを備える。特徴量分布算出部21aは、複数の光電変換部20a−1,20a−2,…,20a−Nからの輝度信号を一定時間保持し、保持した所定時間幅の輝度信号から、1または複数の光電変換部20aを単位とする特徴量ごとの時間頻度を第一特徴量分布として算出する。
【0024】
カメラ2bは、カメラ2aと同様に、
図3に示す複数の光電変換部20b(20b−1,20b−2,…,20b−N)を備える。複数の光電変換部20b−1,20b−2,…,20b−Nのそれぞれは第二計測部(第二撮像部)であり、それぞれ監視空間に存在する物体からの反射光を光電変換して、反射光の輝度に応じた輝度信号を出力する。
【0025】
また、カメラ2bは、カメラ2aと同様に、
図3に示す特徴量分布算出部21bを備える。特徴量分布算出部21bは、複数の光電変換部20b−1,20b−2,…,20b−Nからの輝度信号を一定時間保持し、保持した所定時間幅の輝度信号から、1または複数の光電変換部20bを単位とする特徴量ごとの時間頻度を第二特徴量分布として算出する。
【0026】
なお、本例では、2台のカメラ2a,2bを用いているが、これに限定されるものではなく、例えば3台以上のカメラで計測部2を構成してもよい。
【0027】
本例において、特徴量分布算出部21aは、カメラ2aの1または複数の光電変換部20aを単位とする第一特徴量分布を複数算出し、それらの集まりによる画像を第一分布画像としている。同様に、特徴量分布算出部21bは、カメラ2bの1または複数の光電変換部20bを単位とする第二特徴量分布を複数算出し、それらの集まりによる画像を第二分布画像としている。
【0028】
記憶部3は、ROM(Read Only Memory)、RAM(Random Access Memory)等のメモリ装置で構成され、各種プログラムや各種データを記憶する。また、記憶部3は、処理部4と接続されて処理部4との間でこれらの情報を入出力する。
【0029】
処理部4は、CPU(Central Processing Unit )、DSP(Digital Signal Processor)、MCU(Micro Control Unit)等の演算装置で構成される。
【0030】
処理部4は、記憶部3と接続され、記憶部3からプログラムを読み出して実行することにより各種処理・制御手段として動作する。また、処理部4は、各種データを記憶部3に記憶させ、各種データの読み出しを行う。
【0031】
さらに、処理部4は、カメラ2a、カメラ2bおよび出力部5とも接続され、カメラ2aおよびカメラ2bからの分布画像を処理して、互いに異なる方向から共通の空間を撮像した複数の輝度信号の中から、対応する位置を撮像した輝度信号を認識し、この認識結果から生成される距離画像に基づく空間認識情報(例えば通行者数と通行者位置)を出力部5に出力する。
【0032】
出力部5は、処理部4と接続され、処理部4からの空間認識情報を外部出力する。具体的には、出力部5は、通信装置で構成され、所定のネットワークを介して遠隔の警備センターに空間認識情報を伝送する。
【0033】
さらに、
図3の機能ブロック図を参照しながら各部の構成について説明する。
【0034】
複数の光電変換部20a−1,20a−2,…,20a−Nは、それぞれが撮像素子、電子シャッター、増幅器、A/D変換器を含む。同様に、複数の光電変換部20b−1,20b−2,…,20b−Nは、それぞれが撮像素子、電子シャッター、増幅器、A/D変換器を含む。電子シャッター、増幅器およびA/D変換器は2以上の光電変換部20a,20bにより共有させてもよい。
【0035】
撮像素子は、CCD(Charge Coupled Devices)またはC−MOS(Complementary Metal Oxide Semiconductor )などで構成され、監視空間の可視光線の強度を計測して、計測した強度を電圧値とする輝度信号を出力する。
【0036】
例えば、各光電変換部20a,20bは、1/500秒ごとに電子シャッターを作動させて、作動時の各撮像素子の電圧を増幅器で増幅し、A/D変換器でサンプリングすることにより、1/500秒ごとに輝度値を0〜255の256階調に離散化したディジタルの輝度信号を出力する。
【0037】
複数の撮像素子は、所定の撮像面上に配置されて面をなし、当該面に監視空間を投影する。例えば、撮像素子を平面の基板上に、基板のX方向に等間隔で640個、Y方向に等間隔で480個というように、アレー状に配置し、1/500秒ごとに640×480画素の濃淡画像を撮像する。
【0038】
また、複数の撮像素子は、それぞれがR、G、Bの各帯域に適合したカラーフィルタを備えた3つの撮像素子を単位とする撮像素子の組を、平面の基板上に、X方向に等間隔で640組、Y方向に等間隔で480組というように、アレー状に配置し、640×480画素のカラー画像を撮像することもできる。
【0039】
さらに、RGBの輝度信号をHSVなど他の表色系に変換して出力してもよい。
【0040】
光電変換部20a,20bの撮像周期(計測周期)は、検出対象とする変化よりも十分短ければよく、例えば人を主たる認識対象とする場合は、1/100秒、または1/200秒などでもよい。
【0041】
また、階調数、光電変換部20a,20bの個数も上記例に限らず、検出対象や空間の大きさに応じた設定とすることができる。また、光電変換部20aの個数と光電変換部20bの個数は異なっていてもよい。
【0042】
なお、本実施の形態において、光電変換部20aの撮像面が第一撮像面であり、第一撮像面に設定される小領域が第一小領域である。また、光電変換部20bの撮像面が第二撮像面であり、第二撮像面に設定される小領域が第二小領域である。また、第一撮像面に投影される空間と第二撮像面に投影される空間は、少なくとも一部が共通である。
【0043】
本実施の形態において、カメラ2a、2bはステレオカメラであり、第一撮像面と第二撮像面は人の目の間隔程度に離れて同一平面上に設定される。
【0044】
別の実施の形態において、カメラ2a、2bは一般的な視野共有カメラとすることもできる。この場合、第一撮像面と第二撮像面は例えば数メートル離れた位置の、異なる平面上に設定される。
【0045】
以上のように、第一撮像面上に配置された複数の光電変換部20a−1,20a−2,…,20a−Nは、任意の時間区間において任意の空間を撮像し、光電変換部20a−1,20a−2,…,20a−Nのそれぞれが輝度信号を出力する。すなわち、第一計測面上に配置された複数の第一計測部は任意の時間区間において任意の空間の物理量を計測してそれぞれが計測信号を出力する。
【0046】
また、第一撮像面とは異なる第二撮像面上に配置された複数の光電変換部20b−1,20b−2,…,20b−Nは、上記時間区間において上記空間を撮像し、光電変換部20b−1,20b−2,…,20b−Nのそれぞれが輝度信号を出力する。すなわち、第一計測面とは異なる第二計測面上に配置された複数の第二計測部は前記時間区間において前記空間の物理量を計測してそれぞれが計測信号を出力する。
【0047】
なお、本実施の形態では、カメラ2aが特徴量分布算出部21aを含んで機能し、カメラ2bが特徴量分布算出部21bを含んで機能し、処理部4が対応指標値分布算出部23、対応領域認識部24、距離画像生成部25、通行者認識部26を含んで機能し、記憶部3がカメラパラメータ記憶部22を含んで機能する。
【0048】
特徴量分布算出部21aは、本発明における第一特徴量分布算出部であり、バッファ、演算回路を含む。バッファは、例えばリングバッファで構成され、複数の光電変換部20a−1,20a−2,…,20a−Nからの輝度信号を一定時間保持し、撮像周期ごとの輝度値を循環記憶する。
【0049】
特徴量分布算出部21bは、本発明における第二特徴量分布算出部であり、特徴量分布算出部21aと同様に、バッファ、演算回路を含む。バッファは、例えばリングバッファで構成され、複数の光電変換部20b−1,20b−2,…,20b−Nからの輝度信号を一定時間保持し、撮像周期ごとの輝度値を循環記憶する。
【0050】
本例では、予め定めた頻度算出時間幅以上のバッファを光電変換部20a,20bの数だけ備える。
【0051】
例えば、撮像周期が1/500秒、頻度算出時間幅が1/5秒間であれば、バッファ長が100以上のバッファを光電変換部20a,20bの数だけ用意する。
【0052】
演算回路は、バッファに保持した頻度算出時間幅の輝度信号から特徴量ごとの時間頻度を頻度算出周期で算出して、特徴量分布を生成し、対応指標値分布算出部23に出力する。
【0053】
例えば演算回路は、撮像部2の撮像面上に予め設定された複数の小領域のそれぞれにおいて特徴量の正規化ヒストグラムを算出する。
【0054】
例えば、小領域を上記濃淡画像の画素、特徴量を上記濃淡画像の輝度値とすることができる。つまり、光電変換部20a,20bと小領域が1対1対応し、特徴量はスカラである。
【0055】
また、例えば、小領域を上記カラー画像の画素、特徴量をR、G、Bの輝度値としてもよい。この場合、光電変換部20a,20bと小領域が3対1対応し、特徴量は3次元ベクトルである。
【0056】
さらに、例えば、上記濃淡画像またはカラー画像における近傍の複数画素(2×2画素、3×3画素など)を小領域としてもよい。この場合、解像度変換を行いつつ、各小領域における時間頻度算出の元データを増やせる。
【0057】
頻度算出周期は、頻度算出時間幅1/5秒間に対して、1/5秒とすることができる。この場合、オーバーラップも間引きもないということになる。
【0058】
なお、頻度算出周期を頻度算出時間幅よりも短く設定してオーバーラップを設けてもよいし、頻度算出周期を頻度算出時間幅よりも長く設定して間引きしてもよい。
【0059】
以上のように、特徴量分布算出部21aは、第一計測面上(カメラ2aの第一撮像面上)に設定された第一小領域における計測信号(輝度信号)から特徴量ごとの時間頻度を算出することによって、特徴量分布(第一特徴量分布)を算出する。
【0060】
特徴量分布算出部21bは、第一計測面と異なる第二計測面上(カメラ2bの第二撮像面上)に設定された複数の第二小領域のそれぞれにおける計測信号(輝度信号)から特徴量ごとの時間頻度を算出することによって、特徴量分布(第二特徴量分布)を算出する。各特徴量分布においては、非揺らぎ成分である真の特徴量の時間頻度が有意に高い値を示し、これと比較して、揺らぎ成分である偽の特徴量の時間頻度は十分に低いものとなる。例えば、突発的なノイズが発生し、その振幅が大きかったとしてもノイズによる偽の特徴量の時間頻度は十分低いものとなる。そのため、特徴量分布を用いることで真の特徴量と偽の特徴量を区別することが可能となる。
【0061】
ここで、
図4(a)はある画素における輝度信号の時間と輝度値の関係の一例を示す。
図4(a)に示すように、輝度値が0〜255の範囲で時間の経過とともに変化したものとする。頻度算出時間幅Tの輝度値の数が例えば100個である場合、各輝度値の度数を計数し、計数結果のそれぞれを100で除して時間頻度を算出すると、当該画素における輝度値と時間頻度は
図4(b)に示す正規化ヒストグラムのような関係になる。
【0062】
カメラパラメータ記憶部22は、カメラ2a及びカメラ2bにより撮像される空間に予め定めた両カメラ2a,2bに共通のXYZ座標系(世界座標系)における、カメラ2aのカメラパラメータ及びカメラ2bのカメラパラメータを予め記憶する。
【0063】
カメラ2aとカメラ2bの各カメラパラメータは、以下に説明するように、外部パラメータと内部パラメータからなる。
【0064】
カメラ2aの外部パラメータは、世界座標系におけるカメラ2aの位置(視点)、撮影方向、画角を含む。カメラ2bの外部パラメータは、世界座標系におけるカメラ2bの位置、撮影方向、画角を含む。
【0065】
カメラ2aの内部パラメータは、カメラ2aの焦点距離、中心座標、歪係数を含む。カメラ2bの内部パラメータは、カメラ2bの焦点距離、中心座標、歪係数を含む。
【0066】
なお、カメラ2aのカメラパラメータをピンホールカメラモデルに適用することによって、世界座標系の座標とカメラ2aの撮影面の座標系の間で座標変換が可能となる。同様に、カメラ2bのカメラパラメータを用いることによって、世界座標系の座標とカメラ2bの撮影面の座標系の間で座標変換が可能となる。
【0067】
対応指標値分布算出部23は、特徴量分布算出部21aが算出した第一特徴量分布と、特徴量分布算出部21bが算出した第二特徴量分布の間で、小領域間の対応指標値ごとの時間頻度を算出し、対応領域認識部24に出力する。
【0068】
対応指標値は、特徴量どうしの相違性または類似性を表す値であり、対応関係を認識するための指標となる値である。
【0069】
例えば、特徴量を濃淡画像の輝度値、対応指標値を輝度差とすることができる。この場合、対応指標値である輝度差は、特徴量どうしの相違性を表す値となる。したがって、輝度差が小さな小領域どうしほど相違性が低く、対応する可能性が高いこととなり、逆に輝度差が大きな小領域どうしほど相違性が高く、対応する可能性が低いこととなる。
【0070】
小領域間の対応指標値ごとの時間頻度は例えば正規化ヒストグラムの形式で表現される。以下、これを対応指標値分布と称する。対応指標値分布は、第一小領域と対応する第二小領域を認識するための基礎となる情報である。
【0071】
対応指標値分布算出部23は、第一小領域それぞれに対して複数の第二小領域を候補とし、第一小領域それぞれに対する探索範囲を第二分布画像中(つまり第二計測面中)に定めて、当該第一小領域と探索範囲内の第二小領域の間で対応指標値分布を算出する。探索範囲は、例えば第一分布画像中の画素の第二分布画像への射影領域である。
【0072】
具体的に、対応指標値分布算出部23は、第一撮像面の座標系で表された第一特徴量分布中の任意の画素の座標をカメラ2aのカメラパラメータを用いて世界座標系に逆投影してエピポーラ線を導出し、世界座標系で表されたエピポーラ線をカメラ2bのカメラパラメータを用いて第二撮像面の座標系に投影する。そして、エピポーラ線の投影像とその近傍を第一特徴量分布中の任意の画素に対する探索範囲とする。
【0073】
例えば、カメラ2a,2bがステレオカメラである例においては、第二撮像面のx軸方向に沿った探索範囲とすることができ、そのx軸方向に沿った探索範囲の画素数nがエピポーラ線の投影像から決定できる。
【0074】
対応指標値分布算出部23は、対応指標値を輝度差とした場合、第一特徴量分布を構成する任意の画素(x,y)における輝度値iの時間頻度Pa(i)と、第二特徴量分布中の対応画素の候補(x+d,y)における輝度値jの時間頻度Pb(j)を基に輝度差分布Ps(x,y,d,|i−j|)を下記式(1)により算出する。
【0076】
ただし、dはずらし幅(視差)であり、0≦d≦nである。また、∫j∫ididjは輝度差が|i−j|である輝度値iとjの組み合わせについて時間頻度の積を総和することを意味する。ちなみに、輝度値i,jおよびiとjの輝度差|i−j|の値域はいずれも0〜255である。
【0077】
以下、輝度差分布Psのうち輝度差が0の要素Ps(x,y,d,0)について説明する。
【0078】
第一特徴量分布側の輝度値i=0,1,…,255に対して、輝度差|i−j|が0となる第二特徴量分布側の輝度値jはそれぞれ0,1,…,255であるから、第一特徴量分布側の時間頻度Pa(x,y,0)と第二特徴量分布側の時間頻度Pb(x+d,y,0)の積、第一特徴量分布側の時間頻度Pa(x,y,1)と第二特徴量分布側の時間頻度Pb(x+d,y,1)の積、…、第一特徴量分布側の時間頻度Pa(x,y,255)と第二特徴量分布側の時間頻度Pb(x+d,y,255)の積を総和して要素Ps(x,y,d,0)が求まる。
【0079】
次に、輝度差分布Psのうち輝度差が1の要素Ps(x,y,d,1)について説明する。
【0080】
第一特徴量分布側の輝度値i=0,1,2,…,255に対して、輝度差|i−j|が1となる第二特徴量分布側の輝度値jはそれぞれ1,0と2,1と3,…,254であるから、Pa(x,y,0)とPb(x+d,y,1)の積、Pa(x,y,1)とPb(x+d,y,0)の積とPa(x,y,1)とPb(x+d,y,2)の積の和、Pa(x,y,2)とPb(x+d,y,1)の積とPa(x,y,2)とPb(x+d,y,3)の積の和、…、Pa(x,y,255)とPb(x+d,y,254)の積を総和して要素Ps(x,y,d,1)が求まる。
【0081】
以下、Ps(x,y,d,2)からPs(x,y,d,255)についても同様に求める。
【0082】
つまり、対応指標値分布算出部23は、各第一小領域について、対応指標値ごとに、第一小領域の特徴量の時間頻度と第二小領域の特徴量の時間頻度の組み合わせのうち当該対応指標値が算出された組み合わせごとの時間頻度の積を総和して、当該対応指標値の時間頻度を算出する。
【0083】
図5は輝度差分布の一例を示している。
図5の例では、ずらし幅d=0,1,2,3,4であり、第一分布画像中の1画素(x,y)に対して、第二分布画像中の対応画素が5候補(x,y),(x+1,y),(x+2,y),(x+3,y),(x+4,y)あり、これら5候補それぞれとの輝度差分布はPs(x,y,0,|i−j|),Ps(x,y,1,|i−j|),Ps(x,y,2,|i−j|),Ps(x,y,3,|i−j|),Ps(x,y,4,|i−j|)になる。
【0084】
上記例では、小領域を1画素としたが、監視空間中の平面などにおいては類似する輝度値が連続する場合がある。そこで、近傍画素を含めた複数画素からなる小領域を、オーバーラップさせて設定し、輝度差ごとの時間頻度を複数画素にわたって集計することによって輝度差分布を算出してもよい。そうすることで、画像上で類似する輝度値が連続しても対応する小領域を誤認識しにくくなる。
【0085】
例えば、カメラ2a,2bがステレオカメラである例において、第一小領域および第二小領域をともにw×1画素とした場合、式(1)は下記式(2)のように拡張される。
【0087】
ただし、uは探索点であり、−w/2≦u≦w/2である。
【0088】
以上のように、対応指標値分布算出部23は、各第一小領域について、第一小領域と複数の第二小領域のそれぞれとの間で、特徴量どうしの相違性または類似性を表す対応指標値を求め、対応指標値ごとの時間頻度を要素とする対応指標値分布を算出する。このとき、対応指標値分布算出部23は、式(1)および(2)にて例示したように、対応指標値ごとに、第一小領域の特徴量の時間頻度と第二小領域の特徴量の時間頻度の組み合わせのうち当該対応指標値が算出された組み合わせごとの時間頻度の積を総和して、当該対応指標値の時間頻度を算出する。
【0089】
このように算出した対応指標値分布においても、非揺らぎ成分による真の対応指標値の時間頻度が偽の対応指標値の時間頻度よりも有意に高い関係が維持される。よって、真の対応指標値を偽の対応指標値と区別して利用することが可能となる。
【0090】
対応領域認識部24は、複数の第二小領域の対応指標値分布を用いて、複数の第二小領域の中から第一小領域と対応する監視空間内の位置を認識する。
【0091】
具体的には、対応領域認識部24は、各第一小領域について、当該第一小領域に対して算出した対応指標値分布ごとに対応指標値分布のノルムを算出し、各ノルムを予め定めた閾値と比較してノルムが閾値以下である第二小領域の中から最も低いノルムが算出された第二小領域を当該第一小領域に対応する第二小領域と決定する。
【0092】
なお、対応領域認識部24は、閾値以下のノルムが算出されなかった第一小領域については、対応する第二小領域がないと決定する。また、ノルムが閾値以下である第二小領域が複数存在する場合、対応領域認識部24は、各第二小領域とそれに隣接する第二小領域のノルムの和が最小の第二小領域を第一小領域に対応する第二小領域と決定することで、偶発的な誤対応づけを防止してもよい。
【0093】
ここで、輝度値分布Ps(x,y,d,|i−j|)における輝度差|i−j|についてのノルムは、輝度差と時間頻度との積を総和した積和値Σ|i−j|・Ps(x,y,d,|i−j|)によって定義できる。この定義の場合、輝度差分布の左側(輝度差|i−j|が低い側)に偏った分布ほど低いノルムが算出されやすくなるため、低い輝度差が高頻度で現れた第二小領域ほど対応する第二小領域として認識されやすくなる。
【0094】
図5の例ではd=0の第二小領域が、対応する第二小領域として認識される。
【0095】
また、例えば、各第一小領域について、当該第一小領域に対して算出した対応指標値分布ごとに(つまり第一小領域と第二小領域の組み合わせごとに)対応指標値の最頻値を検出し、最も低い最頻値が検出された第二小領域を当該第一小領域に対応する第二小領域と認識する。
【0096】
上述したように、対応指標値分布においては非揺らぎ成分による真の対応指標値の時間頻度が揺らぎ成分による偽の対応指標値の時間頻度よりも有意に高い値となっている。よって、対応領域認識部24は、時間頻度の高い対応指標値を選択的に用いて小領域の対応関係を認識することで、揺らぎ成分による誤認識を効果的に減じて、高精度に対応関係を認識することができる。
【0097】
距離画像生成部25は、各第一小領域について、対応する第二小領域のずらし量(視差)dminとカメラパラメータから当該小領域に投影された監視空間中の点までの距離を算出することによって、距離画像を生成する。
【0098】
例えば、第一特徴量分布中の画素(x,y)と、x軸方向にdminだけずれた第二特徴量分布中の画素(x+dmin,y)が対応する場合は、カメラ2aから第一特徴量分布中の画素(x,y)に投影されている監視空間中の点までの距離Dはカメラパラメータを用いて次式により求まる。
【0099】
D=f・h/|dmin| …式(3)
ただし、fはカメラ2aの焦点距離、hはカメラ2aとカメラ2bの間の距離である。
【0100】
通行者認識部26は、距離画像から監視空間に存在する通行者数や通行者位置を認識し、認識結果を出力部6に出力する。
【0101】
例えば、監視空間に人が存在しないときに生成された距離画像を記憶部3に記憶させておき、新たに生成された距離画像と記憶部3の距離画像との差分領域を抽出するとともに、差分領域のうち人の幅以上の距離差があるエッジを含んだ差分領域を当該エッジを境に分離する。そして、差分領域のうち人の大きさ範囲である差分領域の数を通行者数として計数するとともに、当該差分領域それぞれの位置を通行者位置として検出する。
【0102】
[空間認識装置の動作について]
次に、上記のように構成される空間認識装置におけるカメラ2a及びカメラ2bと処理部4の動作について
図6のフローチャートを参照しながら説明する。
【0103】
カメラ2aにおいて、各光電変換部20aは定期的に電子シャッターが作動するたびに、撮像素子の電圧をA/D変換して輝度値をサンプリングし、サンプリングされた各輝度値を特徴量分布算出部21aがバッファに書き込むことで輝度信号をバッファリングする(S1)。
【0104】
同様に、カメラ2bにおいて、各光電変換部20bは定期的に撮像素子が計測した輝度値をサンプリングし、特徴量分布算出部21bが輝度信号をバッファリングする(同じくS1)。
【0105】
特徴量分布算出部21aおよび特徴量分布算出部21bは、それぞれ、バッファへの書き込み回数あるいはバッファにおける最新の書き込み位置などを基に頻度算出周期が到来したか否かを判定する(S2)。
【0106】
例えば、撮像周期を1/500秒、頻度算出周期を1/5秒とすれば、100個の輝度値を書き込むたびに頻度算出周期が到来する。
【0107】
頻度算出周期が到来していなければ(S2にてNO)、特徴量分布算出部21aおよび特徴量分布算出部21bは、それぞれ、処理をステップS1へ戻し、バッファリングを続ける。
【0108】
他方、頻度算出周期が到来すると(S2にてYES)、特徴量分布算出部21aおよび特徴量分布算出部21bは、それぞれ、処理をステップS3へ進める。
【0109】
特徴量分布算出部21aは、カメラ2aのバッファから最新の書き込み位置を終端とする頻度算出時間幅の輝度信号を第一小領域ごとに読み出し、第一小領域ごとに特徴量の時間頻度を算出して第一特徴量分布を算出する(S3)。
【0110】
例えば、撮像周期を1/500秒、頻度算出時間幅を1/5秒間、特徴量としての輝度値を0〜255の整数、第一小領域を画素とすれば、画素ごとに、100個の輝度値から輝度値0,1,…,255の度数を計数して、計数結果のそれぞれを100で除した正規化ヒストグラムを算出する。
【0111】
同様に、特徴量分布算出部21bは、カメラ2bのバッファから最新の書き込み位置を終端とする頻度算出時間幅の輝度信号を第二小領域ごとに読み出し、第二小領域ごとに特徴量の時間頻度を算出して第二特徴量分布を算出する(S4)。
【0112】
ステップS3とS4は説明上、順序を付けて記載したが、各カメラにおいて同時並行で処理される。
【0113】
カメラ2aは、算出した第一特徴量分布の集まりである第一分布画像を処理部4に出力する。同様に、カメラ2bは、算出した第二特徴量分布の集まりである第二分布画像を処理部4に出力する。
【0114】
なお、
図6のフローチャートではカメラ2a及びカメラ2bと処理部4の処理を一連の処理として表現しているが、特徴量分布を出力したカメラ2a及びカメラ2bは処理部4によるステップS5〜S12の処理終了を待たずに、ステップS1へ処理を戻してもよい。
【0115】
処理部4の対応指標値分布算出部23は、入力された第一分布画像に設定されている第一小領域のそれぞれを順次、注目小領域に設定して(S5)、ステップS5〜S9のループ処理を行う。
【0116】
ループ処理において、対応指標値分布算出部23は、まず、カメラパラメータ記憶部22からカメラパラメータを読み出し、カメラパラメータを用いて注目小領域を第二分布画像上に射影することによって探索範囲を算出し、探索範囲内の第二小領域を注目小領域と対応する第二小領域の候補に設定する(S6)。
【0117】
続いて、対応指標値分布算出部23は、注目小領域と、ステップS6にて設定した各候補との間で対応指標値分布を算出する(S7)。
【0118】
例えば、対応指標値分布算出部23は、注目小領域である第一分布画像の画素と、当該画素に対応する画素の候補として設定された第二特徴量分布中の複数の画素ごとに式(1)を適用して輝度差分布を算出する。第一分布画像の画素ごとに、0〜255の輝度差それぞれの時間頻度からなる正規化ヒストグラム(輝度差分布)が候補の数だけ算出される。
【0119】
続いて、処理部4の対応領域認識部24は、ステップS7で算出した対応指標値分布を基に、複数の候補の中から、注目小領域に対応する第二小領域を検出する(S8)。
【0120】
例えば、ステップS7で算出した輝度差分布それぞれのノルムを算出して閾値と比較し、閾値以下のノルムのうち最小のノルムが算出された第二小領域を検出する。
【0121】
そして、対応指標値分布算出部23は、全ての第一小領域を処理し終えたか確認する(S9)。
【0122】
未処理の第一小領域があれば(ステップS9にてNO)、対応指標値分布算出部23は、処理をステップS5へ戻し、次の第一小領域を処理する。
【0123】
他方、全ての第一小領域を処理し終えていれば(ステップS9にてYES)、処理部4の距離画像生成部25が距離画像の生成を行う(S10)。
【0124】
すなわち、距離画像生成部25は、カメラパラメータ記憶部22からカメラパラメータを読み出し、カメラパラメータを代入した式(3)に従い、第一分布画像の各第一小領域について、ステップS8にて当該第一小領域との対応関係が検出された第二小領域の、当該第一小領域に対するずらし量(視差)dminをカメラ2aからの距離Dに変換することによって距離画像を生成する。
【0125】
続いて、処理部4の通行者認識部26は、ステップS10にて生成された距離画像から通行者による差分領域を検出して、通行者数の計数と通行者位置の検出を行い(S11)、計数した通行者数と検出した通行者位置(空間認識情報)を出力部5に出力する(S12)。
【0126】
以上の処理を終えると処理はステップS1へ戻され、カメラ2a及びカメラ2bは次の特徴量分布の算出を行い、処理部4はカメラ2a及びカメラ2bからの特徴量分布の入力を待つ。
【0127】
[変形例]
上述した実施の形態においては、特徴量どうしの相違性を表す対応指標値として輝度差、すなわち特徴量どうしの差を用いる例を示した。別の実施形態においては、特徴量どうしの相違性を表す対応指標値として特徴量間の距離値を用いることもできる。この場合も、対応指標値分布算出部23は、距離値ごとに、第一小領域の特徴量の時間頻度と第二小領域の特徴量の時間頻度の組み合わせのうち当該距離値が算出された組み合わせごとの時間頻度の積を総和して、当該距離値の時間頻度を算出することで距離値ごとの時間頻度を要素とする距離値分布を求める。また、対応領域認識部24は、距離値分布のそれぞれについて距離値と時間頻度の積和値(ノルム)を算出し、複数の第二小領域うち積和値が所定値以下である第二小領域の中から第一小領域と対応する空間内の位置を計測した第二小領域を決定する。
【0128】
また別の実施の形態においては、特徴量どうしの類似性を表す対応指標値を用いることができる。この場合、対応指標値は類似度または相関値などとすることができる。例えば、上述した輝度差を255から減じた値は類似度の例である。この場合も、対応指標値分布算出部23は、類似度(または相関値)ごとに、第一小領域の特徴量の時間頻度と第二小領域の特徴量の時間頻度の組み合わせのうち当該類似度(または相関値)が算出された組み合わせごとの時間頻度の積を総和して、当該類似度(または相関値)の時間頻度を算出することで類似度(または相関値)ごとの時間頻度を要素とする類似度分布(または相関値分布)を求める。また、対応領域認識部24は、類似度分布(または相関値分布)のそれぞれについて類似度(または相関値)と時間頻度の積和値を算出し、複数の第二小領域うち積和値が所定値以上である第二小領域の中から第一小領域と対応する空間内の位置を計測した第二小領域を決定する。
【0129】
さらに、上述した実施の形態においては、予めカメラパラメータが設定されているカメラを用いて対応する小領域を認識する例を示したが、カメラパラメータを算出するために対応する小領域を認識する処理(いわゆるキャリブレーション)に適用することも可能である。その場合、例えば、特徴量分布算出部21a、21bは上記と同様に第一特徴量分布、第二特徴量分布を算出し、処理部4は利用者からの設定入力を受け付ける或いは特徴点の自動検出処理などによって第一小領域と第二小領域の対応関係を複数通り初期設定する。対応指標値分布算出部23は、初期値が設定された第一小領域ごとに、当該第一小領域との対応関係の初期設定された第二小領域とその近傍の第二小領域を候補として対応指標値分布を算出し、対応領域認識部24は、複数の候補の中から各第一小領域と対応する第二小領域を認識する。そして、処理部4は、対応領域認識部24が対応関係を認識した第一小領域と第二小領域の座標にホモグラフィ行列を用いた方法など公知のキャリブレーション法を適用してカメラパラメータを算出する。
【0130】
ところで、上述した実施形態および各変形例において、特徴量分布算出部21は、処理部4内で実現してもよい。その場合、撮像部2は、撮像周期ごとに輝度値を並べた撮像画像を処理部4に出力する。処理部4は、特徴量分布算出部21として動作し、撮像部2からの撮像画像を記憶部3にバッファリングして頻度算出周期ごとに特徴量分布を生成する。
【0131】
上述した実施の形態および各変形例では、計測部が監視空間の可視光線の強度に応じた振幅を有する輝度信号を出力する構成としているが、これに限定されるものではない。
【0132】
例えば、計測部が監視空間の近赤外線の強度に応じた振幅を有する輝度信号を出力する構成、計測部が監視空間の赤外線の強度に応じた振幅を有する輝度信号を出力する構成、計測部が監視空間の紫外線の強度に応じた振幅を有する輝度信号を出力する構成、計測部が監視空間のX線の強度に応じた振幅を有する輝度信号を出力する構成、計測部としての距離センサが当該計測部から監視空間に存在する物体までの距離に応じた振幅を有する距離信号を出力する構成など、計測部が空間の所定物理量を計測して計測信号を出力する構成であってもよい。なお、上記距離センサは、例えば、レーザー光を投受光する方式、マイクロ波またはミリ波などの電磁波を送受信する方式、超音波を送受信する方式などが考えられる。
【0133】
以上、本発明に係る空間認識装置の最良の形態について説明したが、この形態による記述及び図面により本発明が限定されることはない。すなわち、この形態に基づいて当業者等によりなされる他の形態、実施例及び運用技術などはすべて本発明の範疇に含まれることは勿論である。