特許第6333161号(P6333161)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ トヨタ自動車株式会社の特許一覧 ▶ 株式会社豊田自動織機の特許一覧

<>
  • 特許6333161-電動車両 図000002
  • 特許6333161-電動車両 図000003
  • 特許6333161-電動車両 図000004
  • 特許6333161-電動車両 図000005
  • 特許6333161-電動車両 図000006
  • 特許6333161-電動車両 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6333161
(24)【登録日】2018年5月11日
(45)【発行日】2018年5月30日
(54)【発明の名称】電動車両
(51)【国際特許分類】
   B60L 11/18 20060101AFI20180521BHJP
   H02J 7/00 20060101ALI20180521BHJP
【FI】
   B60L11/18 C
   H02J7/00 P
【請求項の数】1
【全頁数】15
(21)【出願番号】特願2014-245112(P2014-245112)
(22)【出願日】2014年12月3日
(65)【公開番号】特開2016-111763(P2016-111763A)
(43)【公開日】2016年6月20日
【審査請求日】2017年5月11日
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(73)【特許権者】
【識別番号】000003218
【氏名又は名称】株式会社豊田自動織機
(74)【代理人】
【識別番号】110001195
【氏名又は名称】特許業務法人深見特許事務所
(72)【発明者】
【氏名】丹羽 大和
(72)【発明者】
【氏名】河村 直和
【審査官】 笹岡 友陽
(56)【参考文献】
【文献】 特開平11−275714(JP,A)
【文献】 特開2013−99124(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B60L 11/18
H02J 7/00
(57)【特許請求の範囲】
【請求項1】
再充電可能な主蓄電装置および副蓄電装置と、
車両外部の電源によって前記主蓄電装置を充電する外部充電時に、前記電源からの供給電力を前記主蓄電装置の充電電力に変換する充電器と、
前記主蓄電装置と主電源配線によって接続される電気負荷と、
前記副蓄電装置と接続された電源配線からの補機系電力の供給によって作動する補機負荷と、
前記主電源配線および前記電源配線の間に接続され、前記主蓄電装置から出力される電圧を前記副蓄電装置の出力電圧レベルに変換して前記電源配線へ出力する第1の電圧変換装置と、
前記充電器から出力される電圧を前記副蓄電装置の出力電圧レベルに変換して前記電源配線へ出力する第2の電圧変換装置と、
前記副蓄電装置の入力電力を検出する検出装置と、
前記検出装置によって検出された前記入力電力に基づいて前記第2の電圧変換装置から前記電源配線へ出力される出力電圧を制御する制御装置とを備え、
前記制御装置は、前記外部充電時に、前記入力電力が第1しきい値よりも大きい場合には、前記出力電圧を減少させるように前記第2の電圧変換装置を制御し、前記入力電力が第2しきい値よりも小さい場合には、前記出力電圧を増加させるように前記第2の電圧変換装置を制御し、
前記第1しきい値は、前記第2しきい値よりも大きい値である、電動車両。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両外部の電源を用いた外部充電が可能な電動車両に搭載された補機バッテリの充電制御に関する。
【背景技術】
【0002】
二次電池に代表される車載蓄電装置からの電力を用いて車両駆動用電動機を駆動可能に構成された電動車両として、電気自動車やハイブリッド自動車が知られている。また、電動車両においては、車両外部の電源によって、車載蓄電装置を充電する外部充電についての技術が公知である。
【0003】
たとえば、特許第4993036号公報(特許文献1)は、外部充電を実行する場合において、車両走行時には、主DC/DCコンバータを用いて補機バッテリを充電し、外部充電時においては主DC/DCコンバータよりも出力容量の小さい副DC/DCコンバータを用いて補機バッテリを充電することによって、補機バッテリを効率よく充電する技術が開示される。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特許第4993036号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、外部充電の実行開始時において、補機バッテリのSOC(State Of Charge)が低い場合には、副DC/DCコンバータの出力電圧と補機バッテリの電圧との差が大きくなるため、副DC/DCコンバータから補機バッテリに対して大きな電力が供給され、一時的に補機バッテリへの入力電力が大きくなる場合がある。そのため、副DC/DCコンバータの出力容量を補機バッテリの入力電力のピークを考慮して設定する場合には、副DC/DCコンバータに要求される出力容量が不必要に大きくなる場合がある。
【0006】
本発明は、上述した課題を解決するためになされたものであって、その目的は、補機バッテリの入力電力に応じて外部充電時に用いられるDC/DCコンバータを適切に制御する電動車両を提供することである。
【課題を解決するための手段】
【0007】
この発明のある局面に係る電動車両は、再充電可能な主蓄電装置および副蓄電装置と、車両外部の電源によって主蓄電装置を充電する外部充電時に、電源からの供給電力を主蓄電装置の充電電力に変換する充電器と、主蓄電装置と主電源配線によって接続される電気負荷と、副蓄電装置と接続された電源配線からの補機系電力の供給によって作動する補機負荷と、主電源配線および電源配線の間に接続され、主蓄電装置から出力される電圧を副蓄電装置の出力電圧レベルに変換して電源配線へ出力する第1の電圧変換装置と、充電器から出力される電圧を副蓄電装置の出力電圧レベルに変換して電源配線へ出力する第2の電圧変換装置と、副蓄電装置の入力電力を検出する検出装置と、検出装置によって検出された入力電力に基づいて第2の電圧変換装置から電源配線へ出力される出力電圧を制御する制御装置とを備える。制御装置は、外部充電時に、入力電力が第1しきい値よりも大きい場合には、出力電圧を減少させるように第2の電圧変換装置を制御し、入力電力が第2しきい値よりも小さい場合には、出力電圧を増加させるように第2の電圧変換装置を制御する。第1しきい値は、第2しきい値よりも大きい値である。
【発明の効果】
【0008】
この発明によると、副蓄電装置のSOCが低い(すなわち、副蓄電装置の電圧が低い)ことによって第2の電圧変換装置から副蓄電装置に供給される電力が増加して、副蓄電装置の入力電力が第1しきい値よりも大きくなる場合には、第2の電圧変換装置の出力電圧が減少させられる。また、副蓄電装置のSOCが高い(すなわち、副蓄電装置の電圧が高い)ことによって副蓄電装置の入力電力が第2しきい値よりも小さくなる場合には、第2の電圧変換装置の出力電圧が増加させられる。これにより、第2の電圧変換装置の出力電力を一定の範囲内に収束させることができる。そのため、特に、外部充電の開始時に第2の電圧変換装置の出力電圧と副蓄電装置の電圧との差が大きい場合に、第2の電圧変換装置の出力電力が大きくなることが抑制される。その結果、第2の電圧変換装置に要求される出力容量が不必要に大きくなることが抑制される。したがって、補機バッテリの入力電力に応じて外部充電時に用いられるDC/DCコンバータを適切に制御する電動車両を提供することができる。
【図面の簡単な説明】
【0009】
図1】本実施の形態に係る電動車両の構成を示すブロック図である。
図2】外部充電時の副DC/DCコンバータの出力電力の変化を示すタイミングチャートである。
図3】補機バッテリを充電する電源システムの構成を説明するための図である。
図4】本実施の形態に係る電動車両に搭載されるECUで実行される制御処理を示すフローチャートである。
図5】本実施の形態に係る電動車両に搭載されるECUの動作を説明するためのタイミングチャートである。
図6】変形例に係るECUの動作を説明するためのタイミングチャートである。
【発明を実施するための形態】
【0010】
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号が付されている。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返されない。
【0011】
図1は、本発明の実施の形態による電動車両の構成を示すブロック図である。図1を参照して、電動車両100は、メインバッテリ10と、電力制御ユニット(PCU:Power Control Unit)20と、モータジェネレータ30と、動力伝達ギア40と、駆動輪50と、ECU(Electronic Control Unit)80とを備える。
【0012】
メインバッテリ10は、「蓄電装置」の一例として示され、代表的にはリチウムイオン電池やニッケル水素電池等の二次電池により構成される。たとえば、メインバッテリ10の出力電圧は200V程度である。あるいは、電気二重層キャパシタによって、あるいは二次電池とキャパシタとの組合せによって、蓄電装置を構成してもよい。
【0013】
PCU20は、メインバッテリ10の蓄積電力を、モータジェネレータ30を駆動制御するための電力に変換する。たとえば、モータジェネレータ30は、永久磁石型の三相同期電動機で構成され、かつ、PCU20は、インバータ26を含むように構成される。PCU20と、モータジェネレータ30とによってメインバッテリ10に接続される「電気負荷」が構成されている。なお、電気負荷としては、メインバッテリ10に接続され、メインバッテリ10の電力を用いて作動する電気機器を含むものであればよく、特に、PCU20とモータジェネレータ30とに限定されるものではない。
【0014】
モータジェネレータ30の出力トルクは、減速機や動力分割機構によって構成される動力伝達ギア40を介して駆動輪に伝達されて電動車両100を走行させる。モータジェネレータ30は、電動車両100の回生制動動作時には、駆動輪50の回転力によって発電することができる。そしてその発電電力は、PCU20によってメインバッテリ10の充電電力に変換される。
【0015】
また、モータジェネレータ30の他にエンジン(図示せず)が搭載されたハイブリッド自動車では、このエンジンおよびモータジェネレータ30を協調的に動作させることによって、必要な電動車両100の車両駆動力が発生される。この際には、エンジンの回転による発電電力を用いて、メインバッテリ10を充電することも可能である。
【0016】
すなわち、電動車両100は、車両駆動力発生用の電動機を搭載する車両を示すものであり、エンジンおよび電動機により車両駆動力を発生するハイブリッド自動車、エンジンを搭載しない電気自動車、燃料電池車等を含む。
【0017】
図示された電動車両100の構成から、モータジェネレータ30、動力伝達ギア40および、駆動輪50を除いた部分によって、「電動車両の電源システム」が構成される。以下では、電源システムの構成を詳細に説明する。
【0018】
電力制御ユニット(PCU)20は、コンバータCNVと、平滑コンデンサC0と、インバータ26とを含む。
【0019】
コンバータCNVは、電源配線153pの直流電圧VLと、電源配線154pの直流電圧VHとの間で直流電圧変換を行なうように構成される。
【0020】
電源配線153pおよび接地配線153gは、システムメインリレーSMR1およびSMR2をそれぞれ介して、メインバッテリ10の正極端子および負極端子とそれぞれ電気的に接続される。平滑コンデンサC0は、電源配線154pに接続されて直流電圧を平滑する。同様に平滑コンデンサC1は電源配線153pに接続されて、直流電圧VLを平滑する。
【0021】
コンバータCNVは、図1に示すように、電力用半導体スイッチング素子(以下、単に「スイッチング素子」とも称する)Q1,Q2と、リアクトルL1と平滑コンデンサC1とを含むチョッパ回路として構成される。スイッチング素子Q1,Q2にはそれぞれ逆並列ダイオードが接続されているため、コンバータCNVは、電源配線153pおよび電源配線154pの間で双方向の電圧変換を実行できる。あるいは、上アーム素子であるスイッチング素子Q1をオンに固定する一方で下アーム素子であるスイッチング素子Q2をオフに固定して、電源配線154pおよび153pの電圧を同一(VH=VL)とするように、コンバータCNVを動作させることもできる。
【0022】
インバータ26は、一般的な三相インバータであるので、詳細な回路構成については図示を省略する。たとえば、各相に上アーム素子および下アーム素子を配置するとともに、各相での上下アーム素子の接続点がモータジェネレータ30の対応相の固定子コイル巻線と接続されるように、インバータ26は構成される。
【0023】
電動車両100の走行時には、インバータ26は、各スイッチング素子がECU80によってオンオフ制御されることによって、電源配線154pの直流電圧を三相交流電圧に変換してモータジェネレータ30へ供給する。あるいは、電動車両100の回生制動動作時には、インバータ26は、モータジェネレータ30からの交流電圧を直流電圧に変換して、電源配線154pへ出力するように、各スイッチング素子がECU80によってオンオフ制御される。
【0024】
ECU80は、図示しないCPU(Central Processing Unit)およびメモリを内蔵した電子制御ユニットにより構成され、当該メモリに記憶されたマップおよびプログラムに基づいて、各センサによる検出値を用いた演算処理を行なうように構成される。あるいは、ECU80の少なくとも一部は、電子回路等のハードウェアにより所定の数値・論理演算処理を実行するように構成されてもよい。
【0025】
ECU80は、電動車両100の車両走行時および外部充電時における制御機能を有するブロックとして包括的に表記される。ECU80は、電源配線156pから低電圧系の電源電圧を供給されることによって動作する。なお、本実施の形態において、「車両走行時」には、イグニッションスイッチの操作等により電動車両100が走行可能となっている状態を示しているものとする。すなわち、車速=0の状態についても「車両走行時」に含まれ得る。一方で、メインバッテリ10の外部充電が、車両走行時に行なわれることはない。
【0026】
電動車両100の電源システムは、さらに、低電圧系(補機系)の構成として、主DC/DCコンバータ60と、補機バッテリ70と、電源配線155p,156pと、リレーRL3とを含む。補機バッテリ70は、電源配線155pおよび接地配線155gに接続される。補機バッテリ70も、メインバッテリ10と同様に「蓄電装置」の一例として示される。たとえば、補機バッテリ70は、鉛蓄電池によって構成される。補機バッテリ70の出力電圧は、低電圧系の電源電圧Vsに相当する。この電源電圧Vsの定格は、メインバッテリ10の出力電圧よりも低く、たとえば12V程度である。
【0027】
電源配線155pと接地配線155gとの間には、電圧センサ161が設けられる。電圧センサ161は、補機バッテリ70の電圧(すなわち、電源電圧Vs)を検出して、検出された電圧を示す信号をECU80に出力する。さらに、電源配線155pには、電流センサ162が設けられる。電流センサ162は、補機バッテリ70の電流Isを検出して、検出された電流Isを示す信号をECU80に出力する。
【0028】
主DC/DCコンバータ60は、メインバッテリ10の出力電圧に相当する直流電圧VLを降圧して、低電圧系の電源電圧Vs、すなわち補機バッテリ70の出力電圧レベルの直流電圧に変換するように構成される。主DC/DCコンバータ60は、代表的には、半導体スイッチング素子(図示せず)を含むスイッチングレギュレータであり、公知の任意の回路構成を適用することができる。
【0029】
主DC/DCコンバータ60の出力側は、電源配線155pと接続される。主DC/DCコンバータ60の入力側は、電源配線153pおよび接地配線153gと接続される。ただし、主DC/DCコンバータ60は、その入力側が、システムメインリレーSMR1,SMR2を介することなく直接メインバッテリ10の正極および負極と接続されても、メインバッテリ10の出力から低電圧系の電源電圧Vsを発生することができる。
【0030】
電源配線155pおよび156pの間には、リレーRL3が電気的に接続される。リレーRL3は、パワートレーン系の構成機器への給電を制御するリレーであり、基本的には、電動車両のシステム起動時(たとえば、IGオン時)にオンされる。すなわち、車両走行時には、リレーRL3はオン状態である。さらに、リレーRL3は、IGスイッチがオフされていても、外部充電時にはオンされる。
【0031】
電源配線155pには、IGオフ時にも作動する低電圧系の補機負荷群95が接続される。補機負荷群95は、たとえば、オーディオ機器、ナビゲーション機器、照明機器(ハザードランプ、室内灯、ヘッドランプ等)等を含む。これらの補機負荷群は、車両運転中および外部充電時のそれぞれにおいて、ユーザ操作に応じて作動することによって電力を消費する。
【0032】
電源配線156pには、ECU80に加えて、IGオン時に作動する低電圧系の補機負荷群90が接続される。補機負荷群90の一部は、外部充電時にも作動して電力を消費する。なお、図1では別要素として記載しているが、充電器110、主DC/DCコンバータ60および副DC/DCコンバータ115についても、電源供給系統上の分類では補機負荷群90に含まれ得る。
【0033】
また、電源配線153pおよび接地配線153gには、メインバッテリ10の出力電圧を電源として作動する高圧補機98が接続される。高圧補機98は、たとえば、エアコン用インバータ(A/Cインバータ)を含む。
【0034】
さらに、電動車両100の電源システムは、メインバッテリ10の外部充電のための構成として、充電コネクタ105と、充電器110と、副DC/DCコンバータ115と、リレーRL1,RL2とを含む。
【0035】
充電コネクタ105は、外部電源400と接続された状態である充電ケーブルの充電プラグ410と接続されることによって、外部電源400と電気的に接続される。なお、充電ケーブルには、外部電源400の充電経路を遮断するためのリレー405が内蔵されているものとする。一般的には、外部電源400は商用交流電源で構成される。
【0036】
なお、図1に示す構成に代えて、外部電源400と電動車両100とを非接触のまま電磁的に結合して電力を供給する構成、具体的には外部電源側に一次コイルを設けるとともに、車両側に二次コイルを設け、一次コイルと二次コイルとの間の相互インダクタンスを利用して、外部電源400から電動車両100へ電力を供給してもよい。このような外部充電を行なう場合でも、外部電源400からの供給電力を変換する充電器110以降の構成は共通化できる。
【0037】
電源配線151は、充電コネクタ105および充電器110の間を電気的に接続する。充電器110は、電源配線151に伝達された、外部電源400からの交流電圧を、メインバッテリ10を充電するための直流電圧に変換する。変換された直流電圧は、電源配線152pおよび接地配線152gの間へ出力される。充電器110は、出力電圧および/または出力電流のフィードバック制御により、外部充電時の充電指令に従って、メインバッテリ10を充電する。当該充電指令は、メインバッテリ10の状態、たとえば、SOC(State Of Charge)や温度に応じて設定される。
【0038】
リレーRL1は、電源配線152pおよびメインバッテリ10の正極の間に電気的に接続される。リレーRL2は、接地配線152gおよびメインバッテリ10の負極の間に電気的に接続される。
【0039】
副DC/DCコンバータ115は、充電器110によって変換された直流電圧(メインバッテリ10の充電電圧)を、低電圧系(補機系)の電源電圧Vs、すなわち補機バッテリ70の出力電圧レベルの直流電圧に変換する。副DC/DCコンバータ115の出力は、電源配線155pへ供給される。副DC/DCコンバータ115は、充電器110と一体的に構成されてもよい。
【0040】
副DC/DCコンバータ115は、主DC/DCコンバータ60と同様に、半導体スイッチング素子(図示せず)を含むスイッチングレギュレータで構成され、公知の任意の回路構成を適用することができる。
【0041】
リレーRL1〜RL3およびシステムメインリレーSMR1,SMR2の各々は、代表的には、図示しない励磁回路による励磁電流の供給時に閉成(オン)する一方で、励磁電流の非供給時には開放(オフ)される電磁リレーにより構成される。但し、通電経路の導通(オン)/遮断(オフ)を制御可能な開閉器であれば、任意の回路要素を当該リレーもしくはシステムメインリレーとして使用することができる。また、外部充電構成に対応して設けられるリレーRL1,RL2については、「外部充電リレー」とも称する。
【0042】
ECU80は、システムメインリレーSMR1,SMR2およびリレーRL1〜RL3のオンオフを制御するための、制御指令SM1,SM2およびSR1〜SR3を生成する。制御指令SM1,SM2およびSR1〜SR3の各々に応答して、補機バッテリ70を電源として、対応するシステムメインリレーまたはリレーの励磁電流が発生される。
【0043】
次に、車両走行時および外部充電時の各々における電源システムの動作を説明する。
車両走行時には、システムメインリレーSMR1,SMR2がオンされる一方で、外部充電リレーRL1,RL2はオフされる。また、リレーRL3は、イグニッションスイッチのオン(IGオン)に応答してオンされる。
【0044】
これにより、メインバッテリ10からの出力電圧が、オン状態のシステムメインリレーSMR1,SMR2を経由して電源配線153pおよび接地配線153gに伝達される。すなわち、メインバッテリ10と電気的に接続された電源配線153p上の電力が、PCU20によってモータジェネレータ30の駆動制御に用いられる。さらに、オフ状態の外部充電リレーRL1,RL2によって、充電器110を始めとする外部充電構成が、メインバッテリ10ならびに電源配線153pおよび接地配線153gから電気的に切離される。この結果、メインバッテリ10の電力を用いて電動車両100を走行させる一方で、充電器110を始めとする外部充電のための回路群の保護を図ることができる。
【0045】
低電圧系(補機系)では、車両走行時には、副DC/DCコンバータ115が停止される一方で主DC/DCコンバータ60が作動して、メインバッテリ10の出力電圧から低電圧系の電源電圧Vsが発生される。リレーRL3をオンすることによって、ECU80および補機負荷群90へも電源電圧Vsが供給される。また、主DC/DCコンバータ60の電力容量(出力定格)は、車両走行時での補機負荷群90,95の消費電力をカバーできるように設計される。
【0046】
これに対して、外部充電時には、外部充電リレーRL1,RL2がオンされる一方で、システムメインリレーSMR1,SMR2がオフされる。これにより、オン状態の外部充電リレーRL1,RL2を経由して、外部電源400からの交流電力を充電器110によって変換した直流電圧によって、メインバッテリ10が充電される。
【0047】
また、オフ状態のシステムメインリレーSMR1,SMR2によって、電源配線153pおよび接地配線153gは、充電器110およびメインバッテリ10から電気的に切離される。したがって、PCU20を始めとする高圧系機器にメインバッテリ10の出力電圧(直流電圧VL)が印加されないので、高圧系機器の構成部品の耐久寿命が外部充電によって低下することを防止できる。
【0048】
低電圧系(補機系)では、外部充電時には、副DC/DCコンバータ115が作動する一方で、基本的には、主DC/DCコンバータ60は停止される。すなわち、主DC/DCコンバータ60ではスイッチング素子がオフ固定されることにより、電力変換に伴う電力損失が発生しない状態となる。
【0049】
外部充電時には、イグニッションスイッチの操作とは独立にリレーRL3がオンされる。これにより、外部充電時にも、補機バッテリ70および/または副DC/DCコンバータ115により、ECU80および補機負荷群90,95へ電源電圧Vsを供給することができる。
【0050】
副DC/DCコンバータ115の電力容量(出力定格)は、外部充電時における補機系(低電圧系)の通常の消費電力をカバーできるように設計される。すなわち、外部充電時に用いられる副DC/DCコンバータ115の出力容量(たとえば、定格電流が10〜100mAオーダー)は、車両走行時におけるECU80および補機負荷群90,95の消費電力を賄う必要がある主DC/DCコンバータ60の出力容量(たとえば、定格電流が100Aオーダー)と比較して、低く抑えることができる。
【0051】
すなわち、副DC/DCコンバータ115の消費電力は、主DC/DCコンバータ60の消費電力よりも大幅に低い。したがって、外部充電時には、主DC/DCコンバータ60を停止する一方で、副DC/DCコンバータ115によって低電圧系の電源電圧Vsを発生することによって、外部充電の効率向上が図られる。
【0052】
しかしながら、外部充電を実行開始時において、補機バッテリ70のSOCが低い場合には、副DC/DCコンバータ115の出力電力が大きくなる場合がある。
【0053】
以下、図2を参照しつつ、外部充電時における副DC/DCコンバータ115の出力電力の変化について説明する。
【0054】
たとえば、時間T(0)の充電開始時点において補機バッテリ70のSOCが低い場合には、補機バッテリ70の電圧が低いため、副DC/DCコンバータ115の出力電圧と補機バッテリ70の電圧との差が大きくなる。そのため、外部充電の開始時においては、副DC/DCコンバータ115から補機バッテリ70に対して大きな電力が供給されることによって、補機バッテリ70への入力電力が一時的に大きくなり、副DC/DCコンバータ115の出力電力がピーク値まで増加する場合がある。
【0055】
一方、時間T(1)の外部充電の終了時において補機バッテリ70のSOCが高い場合には、補機バッテリ70の電圧が高いため、副DC/DCコンバータ115の出力電圧と補機バッテリ70の電圧との差が小さくなる。そのため、副DC/DCコンバータ115から補機バッテリ70に対して供給される電力は、外部充電の開始時よりも小さい定常値付近に収束する。
【0056】
副DC/DCコンバータ115の出力容量を補機バッテリ70の入力電力(外部充電開始時の出力電力)のピーク値を考慮して設定する場合、副DC/DCコンバータ115に要求される出力容量が不必要に大きくなる場合がある。
【0057】
そこで、本実施の形態においては、ECU80は、補機バッテリ70への入力電力が第1しきい値αよりも大きい場合には、副DC/DCコンバータ115の出力電圧を減少させるように副DC/DCコンバータ115を制御し、補機バッテリ70への入力電力が第2しきい値βよりも小さい場合には、出力電圧を増加させるように副DC/DCコンバータ115を制御する点を特徴とする。なお、第1しきい値αは、第2しきい値βよりも大きい値である。
【0058】
このようにすると、外部充電開始時において副DC/DCコンバータ115の出力電力が増加することを抑制することができるため、副DC/DCコンバータ115に対して要求される出力容量が不必要に大きくなることを抑制することができる。
【0059】
図3は、本実施の形態による電動車両における外部充電時の補機系(低電圧系)の電力供給制御を説明するブロック図である。
【0060】
図3を参照して、ECU80は、上述のとおり、車両走行時においては、主DC/DCコンバータ60の出力電圧を制御するための出力電圧指令値を生成して、主DC/DCコンバータ60に出力する。そのため、車両の走行時においては、主DC/DCコンバータ60の作動によって補機バッテリ70が充電されるとともに、主DC/DCコンバータ60または補機バッテリ70の電力が補機負荷群90,95に供給される。
【0061】
また、ECU80は、外部充電時においては、副DC/DCコンバータ115の出力電圧を制御するための出力電圧指令値を生成して、副DC/DCコンバータ115に出力する。そのため、外部充電時においては、副DC/DCコンバータ115の作動によって補機バッテリ70が充電されるとともに、副DC/DCコンバータ115または補機バッテリ70の電力が補機負荷群90,95に供給される。
【0062】
本実施の形態において、ECU80は、電圧センサ161および電流センサ162の検出結果に基づいて補機バッテリ70の入力電力(充電電力)を算出する。ECU80は、たとえば、補機バッテリ70の電流と電圧とを乗算して入力電力を算出する。ECU80は、補機バッテリ70の入力電力が第1しきい値αよりも大きい場合には、副DC/DCコンバータ115に対する出力電圧指令値を低下させる。本実施の形態において、ECU80は、たとえば、補機バッテリ70の入力電力が第1しきい値αよりも大きい場合には、前回の出力電圧指令値から予め定められた値(たとえば、0.1V)を減算した値を今回の出力電圧指令値として、副DC/DCコンバータ115に出力する。第1しきい値αは、予め定められた値であって、たとえば、副DC/DCコンバータ115に対して予め定められた出力容量から定められるようにしてもよい。
【0063】
また、ECU80は、補機バッテリ70の入力電力が第2しきい値βよりも小さい場合には、副DC/DCコンバータ115に対する出力電圧指令値を増加させる。本実施の形態において、ECU80は、たとえば、補機バッテリ70の入力電力が第2しきい値βよりも小さい場合には、前回の出力電圧指令値に予め定められた値(たとえば、0.1V)を加算した値を今回の出力電圧指令値として、副DC/DCコンバータ115に出力する。第2しきい値βは、予め定められた値であって、補機バッテリ70の入力電力の下限値である。
【0064】
さらに、ECU80は、補機バッテリ70の入力電力が第1しきい値α以下であって、かつ、第2しきい値β以上である場合には、前回の出力電圧指令値を今回の出力電圧指令値として、副DC/DCコンバータ115に出力する。
【0065】
図4を参照して、本実施の形態に係る電動車両に搭載されたECU80で実行される制御処理について説明する。ECU80は、所定の時間間隔毎に以下の制御処理を実行する。
【0066】
ステップ(以下、ステップをSと記載する)100にて、ECU80は、外部充電が開始されるか否かを判定する。ECU80は、たとえば、充電コネクタ105に充電プラグ410が接続された場合に、外部充電が開始されると判定してもよいし、あるいは、充電器110を作動させる場合に外部充電が開始されると判定してもよい。外部充電が開始されると判定される場合(S100にてYES)、処理はS102に移される。もしそうでない場合(S100にてNO)、この処理は終了する。
【0067】
S102にて、ECU80は、副DC/DCコンバータ115の出力電圧指令値として初期値を設定する。本実施の形態において、初期値は、予め定められた値であって、たとえば、補機バッテリ70のSOCが高い場合(たとえば、補機バッテリ70が満充電状態である場合)に補機バッテリ70から電力が持ち出されない程度の値が設定される。
【0068】
S104にて、ECU80は、補機バッテリ70の入力電力が第1しきい値αよりも大きいか否かを判定する。補機バッテリ70の入力電力が第1しきい値αよりも大きいと判定される場合(S104にてYES)、処理はS108に移される。もしそうでない場合(S104にてNO)、処理はS106に移される。
【0069】
S106にて、ECU80は、補機バッテリ70の入力電力が第2しきい値βよりも小さいか否かを判定する。補機バッテリ70の入力電力が第2しきい値βよりも小さいと判定される場合(S106にてYES)、処理はS110に移される。もしそうでない場合(S106にてNO)、処理はS112に移される。
【0070】
S108にて、ECU80は、前回の出力電圧指令値から0.1Vだけ減算した値を今回の出力電圧指令値として設定して、設定された出力電圧指令値を副DC/DCコンバータ115に出力する。ECU80は、たとえば、前回の出力電圧指令値が出力されてから予め定められた時間が経過した後に今回の出力電圧指令値を副DC/DCコンバータ115に出力する。
【0071】
S110にて、ECU80は、前回の出力電圧指令値に0.1Vだけ加算した値を今回の出力電圧指令値として設定して、設定された出力電圧指令値を副DC/DCコンバータ115に出力する。
【0072】
S112にて、ECU80は、外部充電が終了したか否かを判定する。ECU80は、たとえば、充電コネクタ105から充電プラグ410が取り外された場合に、外部充電が終了したと判定してもよいし、あるいは、充電器110の作動を停止させる場合に外部充電が終了したと判定してもよい。外部充電が終了したと判定される場合(S112にてYES)、この処理は終了する。もしそうでない場合(S112にてNO)、処理はS104に戻される。
【0073】
以上のような構造およびフローチャートに基づく本実施の形態に係る電動車両に搭載されたECU80の動作について図5を参照しつつ説明する。
【0074】
たとえば、時間T(2)にて、充電コネクタ105に充電プラグ410が接続されたことによって外部充電が開始される場合を想定する(S100にてYES)。この場合、出力電圧指令値として初期値V(0)が設定され(S102)、設定された出力電圧指令値が副DC/DCコンバータ115に出力される。
【0075】
時間T(3)にて、補機バッテリ70の入力電力が第1しきい値αよりも大きいため(S104にてYES)、初期値から0.1Vが減算された値が今回の出力電圧指令値V(1)として設定され(S108)、設定された今回の出力電圧指令値V(1)が副DC/DCコンバータ115に出力される。
【0076】
時間T(3)にて、出力電圧指令値が低下したことによって、補機バッテリ70の入力電力が低下する。時間T(4)〜時間T(7)の各々においても同様に補機バッテリ70の入力電力が第1しきい値αよりも大きいため(S104にてYES)、前回の出力電圧指令値から0.1Vが減算された値が今回の出力電圧指令値として設定される。その結果、時間T(4)〜時間T(7)のそれぞれにおいて設定される出力電圧指令値V(2)〜V(5)は、時間T(2)以降、予め定められた時間が経過する毎に0.1Vずつ低い値になる。
【0077】
また、時間T(4)〜時間T(7)において、出力電圧指令値が低下したことによって、補機バッテリ70の入力電力が低下する。
【0078】
時間T(7)にて出力電圧指令値が低下したことにより補機バッテリ70の入力電力が第1しきい値α以下であって(S104にてNO)、第2しきい値β以上となるため(S106にてNO)、時間T(7)以降において副DC/DCコンバータ115の出力電圧指令値は維持されることとなる。
【0079】
一方、補機バッテリ70は、副DC/DCコンバータ115の出力電力の供給によって充電されるため、補機バッテリ70のSOCが増加する。その結果、補機バッテリ70の電圧が上昇する。これにより、補機バッテリ70の電圧と副DC/DCコンバータ115の出力電圧との差が縮小していく。そのため、補機バッテリ70の入力電力が時間が経過するとともに低下していく。
【0080】
時間T(8)にて、補機バッテリ70の入力電力が第2しきい値βよりも小さいため(S106にてYES)、前回の出力電圧指令値V(5)に0.1Vが加算された値V(4)が今回の出力電圧指令値として設定され(S110)、設定された今回の出力電圧指令値V(4)が副DC/DCコンバータ115に出力される。
【0081】
時間T(8)にて、出力電圧指令値が増加したことによって、補機バッテリ70の入力電力が上昇する。時間T(9)においても同様に補機バッテリ70の入力電力が第2しきい値βよりも小さいため(S106にてYES)、前回の出力電圧指令値V(4)に0.1Vが加算された値V(3)が今回の出力電圧指令値として設定される。時間T(9)において、出力電圧指令値が増加したことによって、補機バッテリ70の入力電力が上昇する。
【0082】
以上のようにして、本実施の形態に係る電動車両によると、外部充電開始時に、補機バッテリ70のSOCが低いことによって副DC/DCコンバータ115から補機バッテリ70に供給される電力が増加して、補機バッテリ70の入力電力が第1しきい値αよりも大きくなる場合には、副DC/DCコンバータ115の出力電圧が減少させられる。また、補機バッテリ70のSOCが高いことによって副DC/DCコンバータ115から補機バッテリ70に供給される電力が減少して、補機バッテリ70の入力電力が第2しきい値βよりも小さくなる場合には、副DC/DCコンバータ115の出力電圧が増加させられる。これにより、副DC/DCコンバータ115の出力電力を一定の範囲内に収束させることができる。そのため、特に、外部充電の開始時に副DC/DCコンバータ115の出力電圧と補機バッテリ70の電圧との差が大きい場合に、副DC/DCコンバータ115の出力電力が大きくなることが抑制される。その結果、副DC/DCコンバータ115に要求される出力容量が不必要に大きくなることが抑制される。したがって、補機バッテリの入力電力に応じて外部充電時に用いられるDC/DCコンバータを適切に制御する電動車両を提供することができる。
【0083】
以下に変形例について説明する。本実施の形態において、図4に示すようにECU80は、副DC/DCコンバータ115の出力電圧指令値を段階的に変更することによって補機バッテリ70の入力電力を段階的に低下させるものとして説明したが、出力電圧指令値の変更方法としては、段階的な変更に特に限定されるものではない。
【0084】
たとえば、図6に示すようにECU80は、入力電力が実質的に線形に変化するように出力電圧指令値を変更するようにしてもよい。図6の横軸は、経過時間を示し、図6の縦軸は、補機バッテリ70の入力電力を示す。
【0085】
本実施の形態において、補機バッテリ70の入力電力が第1しきい値αよりも大きくなる場合には、前回の出力電圧指令値から0.1Vを減算した値を今回の出力電圧指令値として設定し、補機バッテリ70の入力電力が第2しきい値βよりも小さくなる場合には、前回の出力電圧指令値に0.1Vを加算した値を今回の出力電圧指令値として設定するものとして説明したが、たとえば、補機バッテリ70の入力電力が第1しきい値αよりも大きくなる場合、あるいは、補機バッテリ70の入力電力が第2しきい値βよりも小さくなる場合、電圧センサ161によって検出される補機バッテリ70の電圧に予め定められた値γを加算した値を今回の出力電圧指令値として設定してもよい。このようにしても、副DC/DCコンバータ115の出力電力の増加を抑制することができるため、副DC/DCコンバータ115に要求される出力容量が不必要に大きくなることを抑制することができる。
【0086】
あるいは、補機バッテリ70の入力電力と補機バッテリ70の電圧とが比例関係にあることに着目して、電圧センサ161によって検出される補機バッテリ70の電圧がしきい値Aよりも大きくなる場合、出力電圧指令値を低下させ、補機バッテリ70の電圧がしきい値B(<A)よりも小さくなる場合、出力電圧指令値を増加させるようにしてもよい。このようにすると、電流センサ162が不要となるため、システム構成の簡易化が図れる。
【0087】
あるいは、ECU80は、以下のように副DC/DCコンバータ115の出力電圧を変化させるようにしてもよい。
【0088】
すなわち、ECU80は、外部充電開始時に補機バッテリ70から電流が持ち出される程度に低い値を出力電圧指令値として設定してもよい。また、ECU80は、その後に、補機バッテリ70の入力電流が負値から正値に変化するまで、副DC/DCコンバータ115の出力電圧指令値を増加させてもよい。さらに、ECU80は、補機バッテリ70の入力電流が正値を維持する場合、副DC/DCコンバータ115の出力電圧指令値を維持してもよい。さらに、ECU80は、補機バッテリ70の入力電流が再度正値から負値に変化した場合、副DC/DCコンバータ115の出力電圧指令値を再度増加させてもよい。
【0089】
なお、入力電流が正値とは、補機バッテリ70を充電する方向に電流が流れることを意味し、入力電流が負値とは、補機バッテリ70を放電する方向に電流が流れることを意味するものとする。
【0090】
あるいは、ECU80は、外部充電開始時に補機バッテリ70の入力電力において所定のピークが発生する程度に高い値を出力電圧指令値として設定してもよい。また、ECU80は、その後に、補機バッテリ70の入力電流が正値から負値に変化するまで、副DC/DCコンバータ115の出力電圧指令値を減少させてもよい。さらに、ECU80は、補機バッテリ70の入力電流が負値を維持する場合、副DC/DCコンバータ115の出力電圧指令値を維持してもよい。さらに、ECU80は、補機バッテリ70の入力電流が再度負値から正値に変化した場合、副DC/DCコンバータ115の出力電圧指令値を減少させてもよい。
【0091】
本実施の形態において、副DC/DCコンバータ115の出力電圧指令値の初期値は、予め定められた値であるものとして説明したが、任意の値に設定してもよい。この場合、ECU80は、副DC/DCコンバータ115の出力電力を検出し、検出された出力電力が予め定められた値以上となる場合に、副DC/DCコンバータ115の出力電圧が低下するように出力電圧指令値を設定してもよい。
【0092】
あるいは、外部充電開始時に、副DC/DCコンバータ115の出力電圧指令値の初期値を補機バッテリ70から電流が持ち出される程度の低い値を設定しておくとともに、補機バッテリ70のSOCを検出し、検出されたSOCが予め定められた値よりも低下する場合には、副DC/DCコンバータ115の出力電圧が上昇するように出力電圧指令値を設定してもよい。なお、上記した変形例は、その全部または一部を組み合わせて実施してもよい。
【0093】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0094】
10 メインバッテリ、26 インバータ、30 モータジェネレータ、40 動力伝達ギア、50 駆動輪、60 主DC/DCコンバータ、115 副DC/DCコンバータ、CNV コンバータ、70 補機バッテリ、90,95 補機負荷群、98 高圧補機、100 電動車両、105 充電コネクタ、110 充電器、161 電圧センサ、162 電流センサ、400 外部電源、410 充電プラグ。
図1
図2
図3
図4
図5
図6