【新規性喪失の例外の表示】特許法第30条第2項適用 まちなかキャンパス長岡にて開催された第41土木学会関東支部技術研究会(平成26年3月13日)で発表、第41回土木学会関東支部技術研究発表会講演概要集(CD)(平成26年3月13日)にて発表
(58)【調査した分野】(Int.Cl.,DB名)
前記第1鉄筋と前記第2鉄筋が互いに接触する配置で、前記第1鉄筋が前記第2鉄筋の上側に位置するように配設されていることを特徴とする請求項1又は2に記載の地盤改良杭。
前記条鋼の周面に前記第1鉄筋が溶接された箇所で、その第1鉄筋の上側に接触する配置で前記条鋼の周面に溶接された補強部材が設けられていることを特徴とする請求項3に記載の地盤改良杭。
前記掘削孔の内側であって、前記芯材の周囲および前記掘削孔の底部と前記条鋼の下端部との間に、前記固化改良体が介在されるように前記芯材が設けられていることを特徴とする請求項1〜4の何れか一項に記載の地盤改良杭。
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記特許文献1の発明の場合、条鋼と鉄筋とは点接触しており、その接触面積が小さな箇所を溶接しているだけであるため、芯材を改良体中に埋め込むように挿入する際に溶接箇所が破断し易いという問題がある。
そして、例えば、溶接箇所の接合強度が確保されていなかった場合に、溶接箇所の多くで破断が発生してしまうと、芯材と改良体との付着力が低下して、地盤改良杭の支持力が低下してしまう虞があった。
【0005】
本発明の目的は、より安定した支持力を有する地盤改良杭を提供することである。
【課題を解決するための手段】
【0006】
上記目的を達成するため、この発明は、
地盤に鉛直な向きに形成された掘削孔内に設けられた固化改良体と、前記固化改良体中に埋め込まれた芯材と、を有する地盤改良杭であって、
前記芯材は、
前記固化改良体の軸心に沿って延在する条鋼と、
前記条鋼の延在方向と交差する一の方向に張り出すように前記条鋼の周囲に巻き付けられ、前記条鋼の周面の少なくとも一部に線接触した箇所が溶接されている複数の第1鉄筋と、
前記条鋼の延在方向と交差するとともに前記一の方向と交差する方向に張り出すように前記条鋼の周囲に巻き付けられ、前記条鋼の周面の少なくとも一部に溶接されている複数の第2鉄筋と、
を備え、
前記第1鉄筋と前記第2鉄筋は、それぞれ前記条鋼の延在方向に任意の間隔をおいて配設されて
おり、
前記第1鉄筋が前記条鋼から前記一の方向に沿い外方に張り出した部分と、前記第2鉄筋が前記条鋼から前記一の方向と交差する方向に沿い外方に張り出した部分は、互いに交差した箇所以外、前記条鋼の延在方向に重ならない配置にあるようにした。
【0007】
かかる構成によれば、地盤改良杭の芯材の条鋼には、一の方向に張り出すように溶接された複数の第1鉄筋と、他の方向に張り出すように溶接された複数の第2鉄筋とが設けられ、それら第1鉄筋と第2鉄筋は条鋼の延在方向に任意の間隔をおいて例えば交互に配設されているので、固化改良体中に埋め込まれた芯材は、固化改良体と一体化し易くなっている。
つまり、かかる構成の地盤改良杭であれば、芯材と固化改良体の付着力を向上させて、芯材と固化改良体の一体構造を安定させることができ、より安定した支持力を有する地盤改良杭としての機能を発揮することができる。
特に、互いに交差した配置をとる第1鉄筋と第2鉄筋のうち、第1鉄筋が条鋼の周面の一部に線接触した箇所を溶接して比較的強固に条鋼に固定することで、条鋼に溶接された全ての鉄筋(第1鉄筋、第2鉄筋)が破断してしまうことなく、少なくとも第1鉄筋が条鋼の周面に固定された状態を維持するようにしているので、芯材と固化改良体の一体構造を安定させることができる。
【0008】
また、望ましくは、
前記第1鉄筋と前記第2鉄筋は、前記条鋼の下端側ほど狭い間隔で設けられているようにする。
条鋼の下端側により多くの第1鉄筋と第2鉄筋が設けられた芯材を有する地盤改良杭は、強固な先端支持力を有する支持構造体として機能するようになる。
【0009】
また、望ましくは、
前記第1鉄筋と前記第2鉄筋が互いに接触する配置で、前記第1鉄筋が前記第2鉄筋の上側に位置するように配設されているようにする。
この第1鉄筋は、条鋼の周面の少なくとも一部に線接触した箇所が溶接されており、条鋼の周面の少なくとも一部に例えば点接触した箇所が溶接されている第2鉄筋よりも強固に条鋼に固定されているので、第1鉄筋と第2鉄筋とが互いに接触し且つ第1鉄筋が上側に位置する配置をとることによって、芯材を固化改良体中に挿入する際に第1鉄筋が第2鉄筋を支えることが可能になり、第2鉄筋の溶接部分の破断を低減することができる。
【0010】
また、望ましくは、
前記条鋼の周面に前記第1鉄筋が溶接された箇所で、その第1鉄筋の上側に接触する配置で前記条鋼の周面に溶接された補強部材が設けられているようにする。
第1鉄筋に接するように条鋼の周面に溶接された補強部材によって第1鉄筋を補強することができる。そして、この補強部材によって条鋼と第1鉄筋と第2鉄筋との溶接部分の破断をより一層低減することができる。
【0011】
また、望ましくは、
前記掘削孔の内側であって、前記芯材の周囲および前記掘削孔の底部と前記条鋼の下端部との間に、前記固化改良体が介在されるように前記芯材が設けられているようにする。
このように、掘削孔の底部と条鋼の下端部との間に固化改良体が介在されることで、地盤の下層が軟弱な場合であっても、地盤改良杭の芯材が下降してしまうようなことを防ぐことができ、芯材と固化改良体の一体構造が安定したものになる。
【発明の効果】
【0012】
本発明によれば、より安定した支持力を有する地盤改良杭が得られる。
【発明を実施するための形態】
【0014】
以下、図面を参照して、本発明に係る地盤改良杭の実施形態について詳細に説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、本発明の範囲を以下の実施形態及び図示例に限定するものではない。
【0015】
図1(a)は地盤改良杭100を一方から側面視した説明図、
図1(b)はその向きの地盤改良杭100を上面視した説明図である。
図2(a)は地盤改良杭100を他方から側面視した説明図、
図2(b)はその向きの地盤改良杭100を上面視した説明図である。
地盤改良杭100は、
図1、
図2に示すように、地盤Gに鉛直な向きの掘削孔H内に設けられた固化改良体10と、固化改良体10中に埋め込まれた芯材20と、を有している。この地盤改良杭100は、例えば、鉄道線路下に構造物を新設する場合など工事桁を要する施工現場において、その工事桁を下支えするために構築される支持体である。
なお、図中、地盤改良杭100における芯材20の配置を視認しやすくするため、固化改良体10を透視した状態で図示している。
【0016】
固化改良体10は、地盤Gが切削された土砂と、セメントスラリー等の固化材とを地中で混合してそれを固化させた柱状体であり、地盤Gに鉛直な向きに埋設されている。
例えば、固化改良体10は、地盤Gを掘削しつつ掘削孔H内に固化材を注入し、土砂と固化材を混合撹拌する範囲を鉛直方向に広げるようにして形成される。本実施形態では、直径800mmの円柱形状の固化改良体10を形成して用いている。
【0017】
芯材20は、固化改良体10の軸心に沿って延在する条鋼24と、条鋼24の延在方向と直交する一の方向に張り出すように設けられた第1鉄筋21と、条鋼24の延在方向と直交するとともに一の方向と交差する他の方向に張り出すように設けられた第2鉄筋22と、を備えている。
この芯材20には、複数の第1鉄筋21と複数の第2鉄筋22が設けられており、第1鉄筋21と第2鉄筋22は、条鋼24の延在方向に交互に配設されている。また、第1鉄筋21と第2鉄筋22は、互いに直交する向きに条鋼24から張り出して配設されている。
これら第1鉄筋21と第2鉄筋22は、条鋼24の下端側ほど狭い間隔で高密度に設けられている。
【0018】
条鋼24は、例えばH形鋼であり、本実施形態では「H−350×350×12×19」のH形鋼を用いている。この条鋼24は、地盤改良杭100の上端側で固化改良体10から突出し、露出した状態に設けられている。
なお、条鋼24は、継手T(
図4参照)を介して複数のH形鋼を繋いで所望する長さに形成することができる。
【0019】
第1鉄筋21と第2鉄筋22は、例えば鉄筋「D13」を折り曲げて両端を溶接してなる略長方形の枠状部材である。
第1鉄筋21は、
図3に示すように、条鋼24の延在方向(上下方向)をZ軸方向としたとき、条鋼24から第1鉄筋21の両側がX軸方向(一の方向)に張り出すように、条鋼24の周囲に鉄筋「D13」が巻き付けられて形成されている。そして、第1鉄筋21が条鋼24の周面の少なくとも一部に線接触した箇所、ここではH形鋼のフランジの外面に線接触した箇所が溶接されて、第1鉄筋21が条鋼24に固定されている。
第2鉄筋22は、
図3に示すように、条鋼24の延在方向(上下方向)をZ軸方向としたとき、条鋼24から第2鉄筋22の両側がY軸方向(他の方向)に張り出すように、条鋼24の周囲に鉄筋「D13」が巻き付けられて形成されている。そして、第2鉄筋22が条鋼24の周面の少なくとも一部に接触した箇所、ここではH形鋼のフランジの端部に点接触した箇所が溶接されて、第2鉄筋22が条鋼24に固定されている。
【0020】
特に、第1鉄筋21と第2鉄筋22は互いに接触する配置で、第1鉄筋21が第2鉄筋22の上側に位置するように配設されている。
ここで、第1鉄筋21は、条鋼24であるH形鋼のフランジの外面に線接触した箇所が溶接されており、H形鋼のフランジの端部に点接触した箇所が溶接されている第2鉄筋22よりも強固に条鋼24に固定されているので、第1鉄筋21と第2鉄筋22とが互いに接触する配置をとることによって、第1鉄筋21が第2鉄筋22を支えることを可能にする。
本実施形態では、第1鉄筋21が第2鉄筋22の上側に配設されているので、例えば、芯材20を固化改良体10に埋め込む際に、第1鉄筋21によって第2鉄筋22が上にずれることを防止し、第2鉄筋22の溶接部分の破断を低減することができる。
【0021】
さらに、条鋼24の周面に第1鉄筋21が溶接された箇所で、その第1鉄筋21の上側に接触する配置で条鋼24の周面(H形鋼のフランジの外面)に溶接された補強部材23が設けられている。補強部材23は、例えば鉄板や鋼板が所定の大きさに形成されたプレート状の部材である。
例えば、左右一対の補強部材23を条鋼24の周面に溶接することで、条鋼24の周面に溶接された第1鉄筋21を補強することができる。この補強によって第1鉄筋21及び第2鉄筋22の溶接部分の破断をより一層低減することができる。
【0022】
そして、本実施形態の地盤改良杭100では、条鋼24に溶接された第1鉄筋21と第2鉄筋22と補強部材23とで構成される補強鉄筋組体30を一構造体として捉えることができる。
図1、
図2に示した地盤改良杭100の芯材20には、条鋼24の下端側に5段(5組)の補強鉄筋組体30が設けられ、条鋼24の中央側に2段(2組)の補強鉄筋組体30が設けられている。
なお、地盤改良杭100の長さや補強鉄筋組体30の段数は任意であり、例えば、
図4に示すように、条鋼24の下端側に200mm間隔で5段の補強鉄筋組体30を設け、その条鋼24の上方1000mm毎に500mm間隔で2段の補強鉄筋組体30を設けるように芯材20を組み立てることで、所望する長さの地盤改良杭100を造成することができる。
【0023】
また、本実施形態の地盤改良杭100は、芯材20の周囲を覆うように固化改良体10が設けられており、特に、掘削孔Hの底部と条鋼24の下端部との間に、固化改良体10を介在させた状態で芯材20が配設されている。
掘削孔Hの底部と条鋼24の下端部との間に固化改良体10を介在させることで、地盤改良杭100の芯材20のみが下降してしまうようなことを防ぐことができ、芯材20と固化改良体10の付着力を向上させ、芯材20と固化改良体10の一体構造が安定したものになる。
例えば、固化改良体10の下面から条鋼24の下端部が露出したり突出したりしているような場合では、地盤改良杭100の上端側の条鋼24で支持した工事桁の重量などの負荷が比較的細い条鋼24に集中し、条鋼24が地盤Gに入り込むように移動しやすくなっている。条鋼24が地盤Gに入り込むように移動してしまうと、芯材20と固化改良体10の一体構造が崩れ、地盤改良杭100の強度が低下してしまう不具合が生じることがある。そのため、掘削孔Hの底部と条鋼24の下端部との間に固化改良体10を介在させて、芯材20のみが移動することを規制し、条鋼24に作用した負荷を比較的広い固化改良体10の下面で地盤Gに伝達させるようにしている。
【0024】
次に、地盤改良杭100の造成方法を
図5に基づいて説明する。
【0025】
まず、周知の機械撹拌・高圧噴射併用工法(メカジェット工法)などによって、地中に柱状の固化改良体10を形成する。
具体的に、地盤G上に設置した固化材圧送機(図示省略)の注入管1を回転させ、注入管1の先端部に設けられた掘削ビット2で地盤Gを切削しながら、注入管1を地中に鉛直に挿入する。なお、固化材圧送機は周知のものと同様であるので、ここでは詳述しない。
掘削ビット2が所定の深度に達し、地盤Gに鉛直な向きの掘削孔Hを形成した後、
図5(a)に示すように、注入管1を逆回転させつつ徐々に引き上げる。その際に、注入管1を通じて固化材を供給することによって、掘削ビット2の噴射口から固化材を放出し、注入管1や掘削ビット2に設けられた撹拌羽根で固化材と土砂を掘削孔H内で混合撹拌する。こうして固化改良体10を下方から上方へ向かって鉛直に形成する。なお、注入管1を地中から引き上げる時に固化材を放出するのではなく、注入管1を地中に挿入する際に固化材を放出するようにしてもよい。
【0026】
次いで、
図5(b)に示すように、掘削孔H内に形成された固化改良体10が流動性を有しているうちに、条鋼24に第1鉄筋21と第2鉄筋22と補強部材23を溶接して組み上げた芯材20を、その固化改良体10中に鉛直向きに埋め込む。
【0027】
次いで、
図5(c)に示すように、掘削孔Hの底部と芯材20の条鋼24の下端部との間に固化改良体10を介在させた状態で所定時間放置するように養生して、固化材と土砂の混合体である固化改良体10を固化(硬化)させる。この養生によって硬化した固化改良体10は剛性を有するようになって、地中に鉛直向きに埋設された地盤改良杭100が造成される。
なお、掘削孔Hの底部と芯材20の条鋼24の下端部との間に介在させる固化改良体10の厚みは任意であって、地盤改良杭100の長さや地盤Gの強度などに応じて適宜調整すればよい。
【0028】
次に、本実施形態の地盤改良杭100における芯材20と固化改良体10との付着力を確認するために行った試験について説明する。
【0029】
図6に示すように、試験架台に載置した厚さ30mm、900mm四方の鉄製プレートPの上に、地盤改良杭100の試験体を設置して、付着力確認試験を行った。なお、鉄製プレートPには、試験体のH形鋼が挿通可能な略H形の貫通孔Qが形成されている。
図6(a)は、試験「CASE−I」の試験体を示している。「CASE−I」の試験体は、直径800mm、高さ1000mmの固化改良体10中に、長さ1400mmの条鋼24が埋設されてなる比較試験用の試験体である。
図6(b)は、試験「CASE−II」の試験体を示している。「CASE−II」の試験体は、直径800mm、高さ1000mmの固化改良体10中に、長さ1400mmの条鋼24の下部に5段の補強鉄筋組体30が設けられた芯材20が埋設されてなる試験体である。
図6(c)は、試験「CASE−III」の試験体を示している。「CASE−III」の試験体は、直径800mm、高さ1000mmの固化改良体10中に、長さ1400mmの条鋼24の下部に3段の補強鉄筋組体30が設けられた芯材20が埋設されてなる試験体である。
なお、この試験体の固化改良体10は、洗い砂に固化材「Mjet−2号」を添加量600[kg/m
3]、水セメント比(W/C)80[%]で混合して調整している。また、条鋼24は「H−350×350×12×19」のH形鋼を用い、補強鉄筋組体30の第1鉄筋21と第2鉄筋22は「D13」の鉄筋材を用いた。
【0030】
上記のような試験体の芯材20(条鋼24)の上端部にジャッキJ(ここでは7000kNジャッキ)を押し当て、鉛直方向に段階的に連続に載荷する試験を行い、芯材20(条鋼24)の変位と、ジャッキJの荷重との相関を求めた。その試験結果を
図7に示し、CASE−Iの測定結果を
図7の折れ線L1、CASE−IIの測定結果を
図7の折れ線L2、CASE−IIIの測定結果を
図7の折れ線L3に示す。
図7に示すように、CASE−Iの試験体(補強鉄筋組体30の無い、無補強の条鋼24)での最大荷重が1207[kN]であるのに対し、CASE−IIの試験体(補強鉄筋組体30;5段/m)の最大荷重が6506[kN]、CASE−IIIの試験体(補強鉄筋組体30;3段/m)の最大荷重が2874[kN]であった。なお、CASE−IIの試験体に対する測定は、載荷可能な最大荷重に達した時点で試験終了とした。
このように、CASE−Iに比べ、CASE−II、CASE−IIIの最大荷重が大きいことから、補強鉄筋組体30によって芯材20と固化改良体10との付着力が増大されていることが分かる。また、CASE−IIIよりもCASE−IIの値が大きいことより、補強鉄筋組体30の段数が付着力の増大に寄与していることが分かる。
【0031】
次に、本実施形態の地盤改良杭100に対して行った鉛直載荷試験について説明する。
ここでは、根入れ長の異なる試験杭No.1と試験杭No.2を用意して鉛直載荷試験を行った。
試験杭No.1は、長さ9mの条鋼24の下端側に5段の補強鉄筋組体30が設けられた芯材20と直径800mmの固化改良体10を有する「CASE−II」タイプの地盤改良杭100であり、その補強鉄筋組体30部分が地中の砂質土層に達している。
試験杭No.2は、長さ11.5mの条鋼24の下端側に5段の補強鉄筋組体30が設けられた芯材20と直径800mmの固化改良体10を有する「CASE−II」タイプの地盤改良杭100であり、その補強鉄筋組体30部分が地中の砂礫層に達している。
なお、この試験は、地表(0m)から地中7.45mまでが粘性土層、7.45mから10.15mまでが砂質土層、10.15mから12.45mまでが砂礫層となるように造成された試験用地盤において行った。
また、地盤改良杭100の条鋼24は「H−350×350×12×19」のH形鋼を用い、補強鉄筋組体30の第1鉄筋21と第2鉄筋22は「D13」の鉄筋材を用いた。
【0032】
上記のような地盤に埋設された試験杭(No.1、No.2)を、鉛直方向へ断続的に荷重をかける試験を行い、試験杭の杭頭変位量と荷重の関係と、試験杭の杭先端変位量と荷重の関係を求めた。
その試験結果を
図8に示す。試験杭No.1の杭頭変位量と荷重の相関を
図8(a)の折れ線Lt、試験杭No.1の杭先端変位量と荷重の相関を
図8(a)の折れ線Ldに示した。また、試験杭No.2の杭頭変位量と荷重の相関を
図8(b)の折れ線Lt、試験杭No.2の杭先端変位量と荷重の相関を
図8(b)の折れ線Ldに示した。
【0033】
図8(a)に示すように、直径800mm(=D)の固化改良体10を有する試験杭No.1の第2限界抵抗力は、変位量が0.1D(=80mm)のポイントで2837[kN]であった。一方、所定の計算式である鉄道標準式による試験杭No.1の極限鉛直支持力Lは1462[kN]であった。このように、試験杭No.1の第2限界抵抗力(2837[kN])が、鉄道標準式による極限鉛直支持力(1462[kN])よりも大きいことから、固化改良体10の周面支持力(周面摩擦力)が試験杭No.1の支持力として好適に寄与していることが分かる。
また、
図8(b)に示すように、直径800mm(=D)の固化改良体10を有する試験杭No.2の第2限界抵抗力は、変位量が0.1D(=80mm)のポイントで5500[kN]であった。一方、所定の計算式である鉄道標準式による試験杭No.2の極限鉛直支持力Lは3008[kN]であった。このように、試験杭No.2の第2限界抵抗力(5500[kN])が、鉄道標準式による極限鉛直支持力(3008[kN])よりも大きいことから、固化改良体10の周面支持力(周面摩擦力)が試験杭No.2の支持力として好適に寄与していることが分かる。
つまり、補強鉄筋組体30によって芯材20と固化改良体10との付着力が増大したことにより、固化改良体10の周面支持力が地盤改良杭100の支持力として好適に寄与するようになっており、地盤改良杭100は、条鋼24を含む固化改良体10の断面サイズに応じた支持力を確保することが可能になっている。
【0034】
以上のように、本実施形態の地盤改良杭100は、互いに接触した配置で条鋼24に溶接された第1鉄筋21と第2鉄筋22を備えている芯材20を有しており、その第1鉄筋21は条鋼24に線接触した箇所が溶接されているので、条鋼24に強固に固定されている第1鉄筋21は第2鉄筋22を補強するように支えることができる。
つまり、互いに接触した配置で条鋼24に溶接されている第1鉄筋21と第2鉄筋22のうち、第1鉄筋21が条鋼24に線接触した箇所で溶接されて強固に固定されていることで、条鋼24と第1鉄筋21と第2鉄筋22との溶接部分の破断を低減することができる。
さらに、第1鉄筋21に接するように条鋼24の周面に溶接された補強部材23によって第1鉄筋21を補強することができ、この補強部材23によって条鋼24と第1鉄筋21と第2鉄筋22との溶接部分の破断をより一層低減することができる。
【0035】
このように、第1鉄筋21と第2鉄筋22が条鋼24から破断し難い芯材20を有する地盤改良杭100であれば、芯材20と固化改良体10との付着力が強力な状態を維持することができるので、その耐久性を向上させた地盤改良杭100をより安定した支持力を有する支持体として機能させて好適に使用することができる。
【0036】
そして、第1鉄筋21と第2鉄筋22(あるいは第1鉄筋21と第2鉄筋22を含む補強鉄筋組体30)によって芯材20と固化改良体10との付着力が増大したことにより、固化改良体10の周面支持力が地盤改良杭100の支持力として好適に寄与するようになっており、地盤改良杭100は、条鋼24を含む固化改良体10の断面サイズに応じた支持力を確保することが可能になっている。
また、地盤改良杭100は、条鋼24の下端側により多くの第1鉄筋21と第2鉄筋22(あるいは第1鉄筋21と第2鉄筋22を含む補強鉄筋組体30)を備えているので、強固な先端支持力を有する支持体として機能することができる。
つまり、強力な付着力で一体となっている芯材20と固化改良体10を備えた地盤改良杭100は、周面支持力と先端支持力を兼ね備え、良好に増大した支持力を有する支持体として機能するので、例えば、鋼管杭を用いて工事桁を支える支持体を構築する場合に比べて、杭長(根入れ長)を短縮することが可能になる。
【0037】
なお、本発明は上記実施形態に限られるものではない。
上記実施形態の地盤改良杭100では、第1鉄筋21と第2鉄筋22は互いに接触した配置で条鋼24に溶接されていたが、例えば、
図9に示すように、第1鉄筋21と第2鉄筋22が離間し、条鋼24の延在方向に任意の間隔をあけた配置で条鋼24に溶接されている芯材20を用いた地盤改良杭100であってもよい。
【0038】
そして、
図9に示すように、条鋼24からX軸方向に張り出している第1鉄筋21が条鋼24の周面に線接触して溶接された箇所で、その第1鉄筋21の上側に接触する配置でH形鋼のフランジの幅とほぼ同じサイズの補強部材25を条鋼24の周面に溶接して、第1鉄筋21の溶接箇所を補強するようにしてもよい。
【0039】
また、
図9に示すように、条鋼24からY軸方向に張り出している第2鉄筋22が条鋼24に点接触して溶接された箇所で、その第2鉄筋22の上側に接触する配置でH形鋼のフランジの端部を挟み込みH形鋼のフランジに線接触させて取り付けたU字形状を呈する補強部材26を条鋼24に溶接して、第2鉄筋22の溶接箇所を補強するようにしてもよい。
同様に、
図9に示すように、条鋼24からY軸方向に張り出している第2鉄筋22が条鋼24に点接触して溶接された箇所で、その第2鉄筋22を挟み込みH形鋼のフランジの外面に線接触させて取り付けたU字形状を呈する補強部材27を条鋼24に溶接して、第2鉄筋22の溶接箇所を補強するようにしてもよい。
このU字形状を呈する補強部材26と補強部材27は、鉄筋「D13」をU字状に折り曲げて形成することができる。
【0040】
また、
図9に示すように、H形鋼のフランジの端部を挟み込みH形鋼のフランジに線接触する補強部材26を用いて、第1鉄筋21の溶接箇所を補強するようにしてもよい。
【0041】
なお、以上の実施の形態においては、第1鉄筋21と第2鉄筋22は、略長方形状を呈する枠状の部材であるとしたが、本発明はこれに限定されるものではなく、例えば、半円と直線とで構成される略オーバル形状を呈する第1鉄筋21や第2鉄筋22であってもよく、第1鉄筋21や第2鉄筋22が条鋼24から張り出す部分の形状は任意である。
【0042】
また、以上の実施の形態においては、第1鉄筋21と第2鉄筋22が互いに接触した配置で、第1鉄筋21が第2鉄筋22の上側に位置するように配設したが、本発明はこれに限定されるものではなく、第1鉄筋21と第2鉄筋22が互いに接触した配置で、第2鉄筋22が第1鉄筋21の上側に位置するように配設してもよい。
また、第1鉄筋21の上側に接触する配置で条鋼24の周面に補強部材23を溶接して固定することに限らず、第1鉄筋21の下側に接触する配置に補強部材23を固定するようにしてもよい。
これら第1鉄筋21、第2鉄筋22、補強部材23の上下の位置関係は、互いを補強し合う効果や目的、また第1鉄筋21や第2鉄筋22に作用する負荷の向きなどに応じて適宜変更すればよい。
【0043】
また、以上の実施の形態においては、H形鋼を条鋼24として用いたが、本発明はこれに限定されるものではなく、例えば、断面T字形の条鋼や、断面L字形の条鋼や、断面コ字形の条鋼など、第1鉄筋21を線接触させて溶接することが可能な条鋼であれば、任意の条鋼を用いることができる。
【0044】
また、その他、具体的な細部構造等についても適宜に変更可能であることは勿論である。