(58)【調査した分野】(Int.Cl.,DB名)
植付部に、リンクを介して高さ変更可能、かつ、ピッチング方向に回動可能に支持されるフロートを備え、前記フロートの回動角が所定の目標角になるように、植付部高さを制御する田植機であって、
ピッチング方向に回動自在に支持されるとともに、田面の表面位置を検出する表面検出センサを備え、
前記表面検出センサの回動角に基づいて、前記フロートの沈下量を測定し、
前記フロートの沈下量が一定となるように、前記フロートの目標角を補正し、
前記フロートの回動角及びフロートの沈下量に基づいて、前記フロートの前方の沈下量を算出し、
前記フロート前方の沈下量が第一のしきい値よりも大きい場合は、前記フロートの目標角が所定の値よりも大きくならないように制御し、かつ、前記植付部の上昇速度を増加させる
ことを特徴とする田植機。
【発明を実施するための形態】
【0010】
図1に示すように、田植機1は、エンジン2、動力伝達部3、植付部4及び昇降部5を備える。植付部4は、昇降部5を介して機体に連結されており、昇降部5の作動を制御することによって上下方向に自動昇降可能である。植付部4には、動力伝達部3を介してエンジン2からの動力が伝達される。田植機1は、エンジン2の駆動によって走行しながら、植付部4によって圃場に苗を植え付ける。本実施形態では、圃場に田面水が張られた状態で、圃場の表面から所定の植え付け深さでの苗の植え付け作業が行われる場合について説明する。なお、圃場に田面水が張られていない状態での植え付け作業についても同様の技術思想を適用できる。
【0011】
エンジン2からの駆動力は、動力伝達部3においてトランスミッション6を介して、PTO軸7に伝達される。PTO軸7はトランスミッション6から後方に突出して設けられる。PTO軸7からユニバーサルジョイントを介して植付伝動ケース8に動力が伝達されて、植付部4が駆動される。また、トランスミッション6から後方に向けて駆動軸9が設けられ、駆動軸9からリアアクスルケース10に駆動力が伝達される。
【0012】
植付部4は、植付アーム11、植付爪12、苗載台13、フロート14等を備える。植付爪12は、植付アーム11に取り付けられている。植付アーム11は、植付伝動ケース8から伝達される動力によって回転する。植付爪12には、苗載台13から苗が供給される。植付アーム11の回転運動に伴って、植付爪12が圃場内に挿入され、所定の植深さ(植付爪12の爪出量)となるように苗が植え付けられる。なお、本実施形態では、ロータリ式の植付爪を採用しているが、クランク式のものを用いても良い。
【0013】
[フロート]
図2に示すように、植付部4は、左右方向に配置される複数のフロート(本実施形態ではセンターフロート14A及び二つのサイドフロート14B)を備える。各フロートは、植付部4を構成する植付フレーム15に取り付けられる。より具体的には、各フロートの前端は植付フレーム15に対して上下方向に揺動可能に支持され、各フロートの後端は植付フレーム15に設けられる回動支軸16にリンク機構17を介して昇降可能に取り付けられる。
図3に示すように、回動支軸16又はリンク機構17には、ポテンショメータ等の適宜のセンサが取り付けられており、該センサによりリンク高さh0が検出される。このリンク高さh0は、植付爪12の爪出量(植付爪12の先端部とフロート底面との距離)として検出される。そして、後述のようにセンターフロート14Aの沈下量dを用いて、実植付深さh(h=h0+d)として検出される。
【0014】
中央に配置されるセンターフロート14Aは、田面検知用のフロート検知体として利用される。具体的には、田面の凹凸に応じて変化するセンターフロート14Aの揺動角(フロート前面で受ける抵抗に応じたピッチング方向の回動角度:フロート角α)に基づいてフロートの目標角βを決定し、フロート角αが目標角βに近付くように植付部高さ(植深さ)が制御されている。
【0015】
[表面検出センサ]
図2及び
図3に示すように、センターフロート14Aにおいて、植付部4の植え付け位置Pの直前方には、表面検出センサ20が設けられる。表面検出センサ20は、前方から後方に向けて延出される。表面検出センサ20は、植付フレーム15にピッチング方向に回動自在に支持され、その回動支点を中心として重力によって垂れ下がるため、先端部が圃場の表面に接触した状態が維持される。つまり、表面検出センサ20の先端部が常に圃場の表面をなぞるように田植機1が進行する。表面検出センサ20の回動角度θを計測することによって、表面検出センサ20と圃場の位置関係を検出することができ、圃場の実高さ(苗を植え付ける田面高さ)を検出することができる。このように、表面検出センサ20によって圃場の実高さを検出することによって、センターフロート14Aの沈下量d(泥状の圃場への沈み込み量)を計測できる。
【0016】
表面検出センサ20の先端部には、検知部21として、小径の棒体が複数平行に延出されている。また、検知部21の先端は、上方側に折り曲げられている。このように、検知部21を細長く構成することによって、圃場及び田面水との接触面積を小さくして水流による揚力を低減し、検知部21が圃場から離れ難くなるようにしている。これとともに、検知部21を複数の棒体で構成して熊手形状に形成することによって、検知部21に夾雑物が噛み込むことを防いでいる。検知部21を構成する材料としては針金等、所望の長さに対して形状を保持できる程度の強度を有するものが適している。検知部21の長さは、例えば表面検出センサ20が圃場に接触した状態で、田面水よりも上方に延出される程度が適している。
【0017】
以上のように、田面検知用に用いられるセンターフロート14Aとは別に表面検出センサ20を設けて、表面検出センサ20によって植え付け位置Pの近傍で田面位置を検知している。このように、表面検出センサ20によって苗の植え付け直前でのセンシングを実現することで、センシング精度の向上を図ることができる。本実施形態において、植え付け位置Pは、リンク機構17を介して回動するフロートの後端部の側方である。また、植え付け位置Pの直前方位置とは、苗を植え付けるためにフロートで整地された後の圃場であり、そのような安定した状態の圃場をセンシングするため、圃場の表面に現れる凹凸形状が表面検出センサ20に与える影響及びフロートによって生じる泥水流が表面検出センサ20に与える影響を低減できる。
【0018】
図2に示すように、表面検出センサ20は、検知部21がセンターフロート14Aの最外幅よりも内側に位置するように配置されている。つまり、走行中にセンターフロート14Aが起こす水流の発生源の端部よりも内側に検知部21を配置することで、フロートの泥流の影響を受けないようにしている。また、センターフロート14Aによって圃場を整地することで、夾雑物の影響が検知部21に及ばないようにしている。すなわち、センターフロート14Aの先端には、両側方に突出する傘部22が設けられる。傘部22の後方に表面検出センサ20が配置される。これにより、検知部21が受けるセンターフロート14Aの引き波の影響を最小限に留めることができる。
【0019】
[整地装置]
図2に示すように、植付部4の前部であって、フロート14(14A・14B)の前方には、枕地整地用の整地装置30が設けられている。整地装置30は、植付フレーム15に対して高さ変更可能に支持される。なお、整地装置30の高さ(ロータ高さH)は、適宜のセンサによって検出されている。駆動軸9からの動力の一部がリアアクスルケース10を介して整地伝動軸31に分岐され、整地伝動軸31からユニバーサルジョイント32、入力軸33及び整地伝動ケース34を介して、両側方に向けて延出される駆動軸35に伝達される。各駆動軸35には、複数のロータ36が固定され、駆動軸35の回転駆動によってロータ36が回転して圃場が整地される。
【0020】
整地装置30は、中央が前方に配置され、中央から両側方に向かうに従ってそれぞれ前方から後方に向けて傾斜するように配置される。つまり、中央部が他の部位よりも前方に位置するように設けられている。上面視では、整地装置30はハの字状に配置される。整地装置30の中央には整地伝動ケース34が配置され、中央から両側方に動力が伝達される。
【0021】
図4に示すように、整地伝動ケース34内には、入力軸33、アイドラ軸40及び駆動軸35が配置される。入力軸33の端部には、傘歯車41が固定される。この傘歯車41は、アイドラ軸40の中途部に固定される傘歯車42と噛み合う。アイドラ軸40の両端部には、テーパ歯車43が配置される。テーパ歯車43は、駆動軸35の端部に設けられる平歯車44と噛み合う。なお、平歯車44はテーパ歯車でも良い。このように、整地装置30の駆動系においては、整地伝動ケース34を中央に配置して、それを基点に左右両側方の駆動軸35を後方に傾斜させている。そこで、整地伝動ケース34では、入力軸33を中心として側方に駆動軸35が配置され、入力軸33と駆動軸35の間にアイドラ軸40を配置することによって、両側方に駆動軸35の回転方向を同一方向にしている。
【0022】
アイドラ軸40は、入力軸33の後方に配置され、アイドラ軸40は駆動軸35に対して後方側から噛み合っている。このように、アイドラ軸40を配置することにより、入力軸33の位置を後方に寄せることができる。これにより、整地伝動ケース34をコンパクトに構成でき、不整地区間を小さくできる。すなわち、
図4に示すように、整地伝動ケース34内において、左右に配置される駆動軸35の中心軸の交点Qが入力軸33の中途部に位置する。このため、交点Qよりも後ろ側で入力軸33の傘歯車41とアイドラ軸40の傘歯車42とが噛み合うこととなり、整地伝動ケース34の前後方向の大きさをコンパクトにできる。また、アイドラ軸40を入力軸33及び駆動軸35・35の後方にオフセットさせて配置することで、整地伝動ケース34の左右方向の幅が大きくなることを防いでいる。このように、整地伝動ケース34は、前後方向の幅を小さくしつつ、左右方向の幅も小さくなるように構成されている。
【0023】
以上のように、整地装置30をハの字状に配置することで、ロータ36によって発生する水流の流れを内側に向けることができ、田植機1の側方(隣接苗)への泥流の流れ出しを抑制することができる。これにより、すでに植え付けた隣接苗の横を通過する際に泥流で倒してしまう不具合を抑制できる。また、整地装置30を傾斜状に配置することにより、進行方向と整地装置30の回転方向に傾斜を持たせることができ、夾雑物等のロータ36への噛み込みを抑制できる。さらに、田植機1の進行方向に対して傾斜した方向に整地することとなり、進行方向から見ると隣接するロータ36が一部重なった状態で整地作業が行われるため、不整地区間を少なくできる。なお、整地伝動ケース34の後方に整地用のレーキを別体として取り付けることで不整地区間が生じないようにすることも可能である。
【0024】
整地装置30を上面視ハの字状に配置することで、センターフロート14Aの前方にスペースを確保することができる。このスペースを利用して、センターフロート14Aの形状は、整地装置30を備える田植機で、センターフロート14Aの均平部と植付苗の間に表面検出センサ20を配置し、センターフロート14Aの回動支軸16の位置をサイドフロート14Bと同一側面位置に配置しても、センターフロート14Aを極力長くすることができる。
【0025】
若しくは、整地装置30によって形成されるスペースを利用して、センターフロート14Aの後端面の位置はそのままで前端面を前方に延出することも可能であり、係る場合も同様にフロートによるセンシング精度の向上を図ることができる。また、センターフロート14Aの面積を長くすることで、センシング能力が上がり、植付部4の昇降を最適に制御できる。さらに、センターフロート14Aのフロート形状を変更する際に、泥流の流れ及び形状バランス等を最適に設計することができ、植付部4の昇降制御の精度をより向上できる。
【0026】
[昇降制御のアルゴリズム]
次に、
図5を用いて、植付部4の昇降制御に関するアルゴリズムについて説明する。本実施形態では、フロート角α、表面検出センサ20の回動角θ、及び、リンク高さh0を入力値として、フロート目標角β、昇降速度、及び、植深さを出力値としてそれぞれ扱う。
【0027】
ステップS01において、フロート角α、表面検出センサ20の回動角θ、及び、リンク高さh0がそれぞれ検出される。ステップS02において、回動角θをフィルタリングすることで、検出値のノイズを除去する。表面検出センサ20による検出値θをフィルターにかけることで植付部高さ制御におけるハンチングを抑制している。ステップS03において、表面検出センサ20の回動角θに基づいて、センターフロート14Aの沈下量dを計測する。
【0028】
ステップS10において、フロート沈下量dからセンターフロート14Aの目標角βを決定し、フロート角αが目標角βとなるようにフィードバックしつつ植付部高さを修正する。具体的には、下記のステップS11〜S16に基づいて昇降制御が行われる。このとき、フロート沈下量dがゼロより大きく、かつ、一定値となるように、フロート目標角βが補正され、該目標角βに基づいてフロートを介して植付部4の昇降制御が行われる。フロート沈下量dがゼロより大きくなるように設定することで、フロートによる均し効果を維持しつつ、フロート後方の回動支点側を接地させて安定させている。
【0029】
ステップS11において、フロート沈下量dを用いてフロート目標角βを決定する際、フロート沈下量dが一定値となるように、フロート目標角βを随時補正してフロートの高さ、つまり植付部高さを補正することで、一定の植深さで植付作業を継続することが可能である。このように、本実施形態の昇降制御アルゴリズムでは、フロート目標角βを補正する際に、フロート沈下量dを基準として感度設定を行うことで、田面の状況及び走行状況に応じて良好な植付作業を実現することが可能である。
【0030】
ステップS12において、フロート角α、回動角θ、及び、リンク高さh0に基づいてフロート前方の沈下量d1を算出する。つまり、回動角θから計測されるフロート後方の沈下量dに対して、フロートの揺動角α及びリンク高さh0とを用いて、フロート前方のフロート後方に対する傾斜角度等からフロート前方での沈下量d1を算出する。このように算出される前方沈下量d1は、これ以降のステップで田面の表面硬度と水深に関する変数として利用される。言い換えれば、フロート前方の沈下量d1を算出して、感度設定及び植深さ設定に用いることで、表面硬度と水深を考慮することが可能となる。
【0031】
ステップS13において、フロート前方の沈下量d1と第一のしきい値dt1とを比較し、d1の方が大きい場合は(d1>dt1)、目標角βが所定値β1よりも大きくならないように設定するとともに、植付部4の上昇速度を増加させる(ステップS14)。さらに、植深さをやや深くする。ここでの第一のしきい値dt1は、フロートが沈没し始める条件となる値であり、第一のしきい値dt1を超えた状態が続くとフロートが沈没してしまう値である。つまり、フロート前方の沈下量d1が所定値よりも大きく、フロートが前下がりとなった場合は、田面の表面硬度が非常に柔らかいと判断し、フロートの潜りを防止するために、目標角βを小さめに設定し(β<β1)、かつ、上昇速度を大きくして、昇降制御の感度を敏感側にするとともに、植深さをやや深めに変更する。
【0032】
ステップS13において、前方沈下量d1が第一のしきい値dt1以下の場合は、ステップS15に進む。ステップS15では、フロート沈下量dとフロート前方の沈下量d1との差(d−d1)が第二のしきい値dt2より大きいかどうかを判定する。つまり、フロート前方の沈下量d1と後方の沈下量dを比較することで、フロートの前後方向の傾斜を把握して前上がりの状態を検出している。ステップS15において、フロートが前上がりと判断された場合は(d−d1>dt2)、目標角βを規定値よりも大きい値に設定し、かつ、植付部4の下降速度を増加させる(ステップS16)。さらに、植深さを深くする。ここでの第二のしきい値dt2は、田面水の水深が深く、かつ、田植機1が高速走行していると認識される程度の値である。つまり、フロートが所定以上の前上がりとなった場合は、田面水の水深が深く、かつ、高速走行であると判断し、浮き苗を防止するために、目標角βを前上がり気味(規定値よりもやや大きい値)に設定し、かつ、下降速度を大きくして、昇降制御の感度を敏感側にするとともに、植深さを深めに変更する。
【0033】
ステップS15において、フロート沈下量dとフロート前方の沈下量d1との差が第二のしきい値以下の場合は、ステップを進めて再度ステップS01に返し、上述のステップを繰り返す。
【0034】
図6に示すように、ステップS01において、整地装置30のロータ高さHを検出し、そのロータ高さHを入力値として、さらに、ロータの目標深さを出力値として利用することで、感度設定及び植深さ設定に加えて、ロータ深さ設定を自動化しても良い。つまり、ステップS17において、ロータ高さHを検出し、そのロータ高さHに基づいて、目標角βの補正、昇降速度の変更、及び、植深さの修正に連動するようにロータ目標深さを修正しても良い。例えば、深水の高速走行時はロータ目標深さを深めに修正する(ステップS16に連動)、田面が柔らかい場合はロータ目標深さを深くする(ステップS14に連動)という制御が可能である。若しくは、ロータ高さHに基づいてロータ目標深さを変更する際に、その変更に連動して、目標角βの補正、昇降速度の変更、及び、植深さの修正を行う制御を行うことも可能である。また、
図5に示すように、ステップS15をステップS13の前に実行しても良い。
【0035】
さらに、田植機1のヘッドアップ情報(本機ピッチング)、田面水の水深情報、夾雑物情報等を入力値として、より厳密な昇降制御を実現することも可能である。
【0036】
図7に示すように、フロート14の表面(特に田面水と接触する機会が多い側面)に細かい突起50を多数設けることで、フロート14表面をサメの肌状に形成しても良い。「サメの肌状に形成する」とは、前方から後方に向けて滑らかな鱗状の突起50群を形成することを意味する。
図7(a)には、各突起50を後方に向けたV状の尖端を有する薄板によって構成して、多数の突起50が重ね合わさるようにしてフロート14の表面に固定した実施形態を示す。この場合、後方に位置する突起50の前端を、その前方に位置する突起50の後端の下側(内側)に差し込むようにフロート14の表面にそれぞれ固定することで、フロート14の表面をサメのうろこ状に形成している。なお、予めシート上に突起50を重ね合わせてフロート14の所望位置に取り付けても良い。
図7(b)には、フロート14の表面に加工をすることにより多数の突起50を設けた実施形態を示す。例えば、フロート14の所望位置における表面に後方から前方に向けて順に切れ込みを設けることで、フロート14の表面に前方から後方に向けては滑らかに流れ、逆に後方から前方に向けては抵抗を与えるようなうろこ状の表面を形成している。このように、田面水に接触するフロート14の表面をサメ肌状にすることで、フロート14回りの水の流れを整流することができるとともに、水流が突起50と衝突する際に突起50の背面側に空気層が形成されることで、フロート14からの水離れを良くすることができる。