(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0012】
以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定して解釈されるものではない。
なお、本明細書において、「〜」とは、特に断りのない限り、その前後に記載される数値を下限値および上限値として含む意味で使用される。
【0013】
[概要]
本発明の熱伝導性ポリカーボネート樹脂組成物は、ポリカーボネート樹脂(A)100質量部に対し、炭素繊維(B)を10〜100質量部および平均繊維径が5.5〜12μmの円形断面ガラス繊維(C)を10〜50質量部含有することを特徴とする。
【0014】
[ポリカーボネート樹脂(A)]
本発明において使用するポリカーボネート樹脂(A)の種類に制限はなく、ポリカーボネート樹脂は、1種類を用いてもよく、2種類以上を任意の組み合わせ及び任意の比率で併用してもよい。
ポリカーボネート樹脂は、式:−[−O−X−O−C(=O)−]−で示される炭酸結合を有する基本構造の重合体である。
式中、Xは一般には炭化水素であるが、種々の特性付与のためヘテロ原子、ヘテロ結合の導入されたXを用いてもよい。
また、ポリカーボネート樹脂は、炭酸結合に直接結合する炭素がそれぞれ芳香族炭素である芳香族ポリカーボネート樹脂、及び脂肪族炭素である脂肪族ポリカーボネート樹脂に分類できるが、いずれを用いることもできる。なかでも、耐熱性、機械的物性、電気的特性等の観点から、芳香族ポリカーボネート樹脂が好ましい。
【0015】
ポリカーボネート樹脂の具体的な種類に制限はないが、例えば、ジヒドロキシ化合物とカーボネート前駆体とを反応させてなるポリカーボネート重合体が挙げられる。この際、ジヒドロキシ化合物及びカーボネート前駆体に加えて、ポリヒドロキシ化合物等を反応させるようにしてもよい。また、二酸化炭素をカーボネート前駆体として、環状エーテルと反応させる方法も用いてもよい。またポリカーボネート重合体は、直鎖状でもよく、分岐鎖状でもよい。さらに、ポリカーボネート重合体は1種の繰り返し単位からなる単重合体であってもよく、2種以上の繰り返し単位を有する共重合体であってもよい。このとき共重合体は、ランダム共重合体、ブロック共重合体等、種々の共重合形態を選択することができる。なお、通常、このようなポリカーボネート重合体は、熱可塑性の樹脂となる。
【0016】
芳香族ポリカーボネート樹脂の原料となるモノマーのうち、芳香族ジヒドロキシ化合物の例を挙げると、
【0017】
1,2−ジヒドロキシベンゼン、1,3−ジヒドロキシベンゼン(即ち、レゾルシノール)、1,4−ジヒドロキシベンゼン等のジヒドロキシベンゼン類;
2,5−ジヒドロキシビフェニル、2,2’−ジヒドロキシビフェニル、4,4’−ジヒドロキシビフェニル等のジヒドロキシビフェニル類;
【0018】
2,2’−ジヒドロキシ−1,1’−ビナフチル、1,2−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン等のジヒドロキシナフタレン類;
【0019】
2,2’−ジヒドロキシジフェニルエーテル、3,3’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエーテル、1,4−ビス(3−ヒドロキシフェノキシ)ベンゼン、1,3−ビス(4−ヒドロキシフェノキシ)ベンゼン等のジヒドロキシジアリールエーテル類;
【0020】
2,2−ビス(4−ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)、
1,1−ビス(4−ヒドロキシフェニル)プロパン、
2,2−ビス(3−メチル−4−ヒドロキシフェニル)プロパン、
2,2−ビス(3−メトキシ−4−ヒドロキシフェニル)プロパン、
2−(4−ヒドロキシフェニル)−2−(3−メトキシ−4−ヒドロキシフェニル)プロパン、
1,1−ビス(3−tert−ブチル−4−ヒドロキシフェニル)プロパン、
2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、
2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、
2−(4−ヒドロキシフェニル)−2−(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、
α,α’−ビス(4−ヒドロキシフェニル)−1,4−ジイソプロピルベンゼン、
1,3−ビス[2−(4−ヒドロキシフェニル)−2−プロピル]ベンゼン、
ビス(4−ヒドロキシフェニル)メタン、
ビス(4−ヒドロキシフェニル)シクロヘキシルメタン、
ビス(4−ヒドロキシフェニル)フェニルメタン、
ビス(4−ヒドロキシフェニル)(4−プロペニルフェニル)メタン、
ビス(4−ヒドロキシフェニル)ジフェニルメタン、
ビス(4−ヒドロキシフェニル)ナフチルメタン、
1,1−ビス(4−ヒドロキシフェニル)エタン、
1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、
1,1−ビス(4−ヒドロキシフェニル)−1−ナフチルエタン、
1,1−ビス(4−ヒドロキシフェニル)ブタン、
2,2−ビス(4−ヒドロキシフェニル)ブタン、
2,2−ビス(4−ヒドロキシフェニル)ペンタン、
1,1−ビス(4−ヒドロキシフェニル)ヘキサン、
2,2−ビス(4−ヒドロキシフェニル)ヘキサン、
1,1−ビス(4−ヒドロキシフェニル)オクタン、
2,2−ビス(4−ヒドロキシフェニル)オクタン、
1,1−ビス(4−ヒドロキシフェニル)ヘキサン、
2,2−ビス(4−ヒドロキシフェニル)ヘキサン、
4,4−ビス(4−ヒドロキシフェニル)ヘプタン、
2,2−ビス(4−ヒドロキシフェニル)ノナン、
1,1−ビス(4−ヒドロキシフェニル)デカン、
1,1−ビス(4−ヒドロキシフェニル)ドデカン、
等のビス(ヒドロキシアリール)アルカン類;
【0021】
1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、
1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,3−ジメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,4−ジメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,5−ジメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)−3,3,5−トリメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−プロピル−5−メチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−tert−ブチル−シクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−4−tert−ブチル−シクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−フェニルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−4−フェニルシクロヘキサン、
等のビス(ヒドロキシアリール)シクロアルカン類;
【0022】
9,9−ビス(4−ヒドロキシフェニル)フルオレン、
9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン等のカルド構造含有ビスフェノール類;
【0023】
4,4’−ジヒドロキシジフェニルスルフィド、
4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類;
【0024】
4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類;
【0025】
4,4’−ジヒドロキシジフェニルスルホン、
4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類;
等が挙げられる。
【0026】
これらの中ではビス(ヒドロキシアリール)アルカン類が好ましく、中でもビス(4−ヒドロキシフェニル)アルカン類が好ましく、特に耐衝撃性、耐熱性の点から2,2−ビス(4−ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)が好ましい。
なお、芳香族ジヒドロキシ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0027】
また、脂肪族ポリカーボネート樹脂の原料となるモノマーの例を挙げると、
エタン−1,2−ジオール、プロパン−1,2−ジオール、プロパン−1,3−ジオール、2,2−ジメチルプロパン−1,3−ジオール、2−メチル−2−プロピルプロパン−1,3−ジオール、ブタン−1,4−ジオール、ペンタン−1,5−ジオール、ヘキサン−1,6−ジオール、デカン−1,10−ジオール等のアルカンジオール類;
【0028】
シクロペンタン−1,2−ジオール、シクロヘキサン−1,2−ジオール、シクロヘキサン−1,4−ジオール、1,4−シクロヘキサンジメタノール、4−(2−ヒドロキシエチル)シクロヘキサノール、2,2,4,4−テトラメチル−シクロブタン−1,3−ジオール等のシクロアルカンジオール類;
【0029】
エチレングリコール、2,2’−オキシジエタノール(即ち、ジエチレングリコール)、トリエチレングリコール、プロピレングリコール、スピログリコール等のグリコール類;
【0030】
1,2−ベンゼンジメタノール、1,3−ベンゼンジメタノール、1,4−ベンゼンジメタノール、1,4−ベンゼンジエタノール、1,3−ビス(2−ヒドロキシエトキシ)ベンゼン、1,4−ビス(2−ヒドロキシエトキシ)ベンゼン、2,3−ビス(ヒドロキシメチル)ナフタレン、1,6−ビス(ヒドロキシエトキシ)ナフタレン、4,4’−ビフェニルジメタノール、4,4’−ビフェニルジエタノール、1,4−ビス(2−ヒドロキシエトキシ)ビフェニル、ビスフェノールAビス(2−ヒドロキシエチル)エーテル、ビスフェノールSビス(2−ヒドロキシエチル)エーテル等のアラルキルジオール類;
【0031】
1,2−エポキシエタン(即ち、エチレンオキシド)、1,2−エポキシプロパン(即ち、プロピレンオキシド)、1,2−エポキシシクロペンタン、1,2−エポキシシクロヘキサン、1,4−エポキシシクロヘキサン、1−メチル−1,2−エポキシシクロヘキサン、2,3−エポキシノルボルナン、1,3−エポキシプロパン等の環状エーテル類;等が挙げられる。
【0032】
ポリカーボネート樹脂の原料となるモノマーのうち、カーボネート前駆体の例を挙げると、カルボニルハライド、カーボネートエステル等が使用される。なお、カーボネート前駆体は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0033】
カルボニルハライドとしては、具体的には例えば、ホスゲン;ジヒドロキシ化合物のビスクロロホルメート体、ジヒドロキシ化合物のモノクロロホルメート体等のハロホルメート等が挙げられる。
【0034】
カーボネートエステルとしては、具体的には例えば、ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類;ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類;ジヒドロキシ化合物のビスカーボネート体、ジヒドロキシ化合物のモノカーボネート体、環状カーボネート等のジヒドロキシ化合物のカーボネート体等が挙げられる。
【0035】
・ポリカーボネート樹脂の製造方法
ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。
以下、これらの方法のうち、特に好適なものについて具体的に説明する。
【0036】
・・界面重合法
まず、ポリカーボネート樹脂を界面重合法で製造する場合について説明する。
界面重合法では、反応に不活性な有機溶媒及びアルカリ水溶液の存在下で、通常pHを9以上に保ち、ジヒドロキシ化合物とカーボネート前駆体(好ましくは、ホスゲン)とを反応させた後、重合触媒の存在下で界面重合を行うことによってポリカーボネート樹脂を得る。なお、反応系には、必要に応じて分子量調整剤(末端停止剤)を存在させるようにしてもよく、ジヒドロキシ化合物の酸化防止のために酸化防止剤を存在させるようにしてもよい。
【0037】
ジヒドロキシ化合物及びカーボネート前駆体は、前述のとおりである。なお、カーボネート前駆体の中でもホスゲンを用いることが好ましく、ホスゲンを用いた場合の方法は特にホスゲン法と呼ばれる。
【0038】
反応に不活性な有機溶媒としては、例えば、ジクロロメタン、1,2−ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素等;ベンゼン、トルエン、キシレン等の芳香族炭化水素;などが挙げられる。なお、有機溶媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0039】
アルカリ水溶液に含有されるアルカリ化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム等のアルカリ金属化合物やアルカリ土類金属化合物が挙げられるが、中でも水酸化ナトリウム及び水酸化カリウムが好ましい。なお、アルカリ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0040】
アルカリ水溶液中のアルカリ化合物の濃度に制限はないが、通常、反応のアルカリ水溶液中のpHを10〜12にコントロールするために、5〜10質量%で使用される。また、例えばホスゲンを吹き込むに際しては、水相のpHが10〜12、好ましくは10〜11になる様にコントロールするために、ビスフェノール化合物とアルカリ化合物とのモル比を、通常1:1.9以上、中でも1:2.0以上、また、通常1:3.2以下、中でも1:2.5以下とすることが好ましい。
【0041】
重合触媒としては、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン等の脂肪族三級アミン;N,N’−ジメチルシクロヘキシルアミン、N,N’−ジエチルシクロヘキシルアミン等の脂環式三級アミン;N,N’−ジメチルアニリン、N,N’−ジエチルアニリン等の芳香族三級アミン;トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等の第四級アンモニウム塩等;ピリジン;グアニン;グアニジンの塩;等が挙げられる。なお、重合触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0042】
分子量調節剤としては、例えば、一価のフェノール性水酸基を有する芳香族フェノール;メタノール、ブタノールなどの脂肪族アルコール;メルカプタン;フタル酸イミド等が挙げられるが、中でも芳香族フェノールが好ましい。このような芳香族フェノールとしては、具体的に、m−メチルフェノール、p−メチルフェノール、m−プロピルフェノール、p−プロピルフェノール、p−tert−ブチルフェノール、p−長鎖アルキル置換フェノール等のアルキル基置換フェノール;イソプロパニルフェノール等のビニル基含有フェノール;エポキシ基含有フェノール;o−ヒドロキシ安息香酸、2−メチル−6−ヒドロキシフェニル酢酸等のカルボキシル基含有フェノール;等が挙げられる。なお、分子量調整剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0043】
分子量調節剤の使用量は、ジヒドロキシ化合物100モルに対して、通常0.5モル以上、好ましくは1モル以上であり、また、通常50モル以下、好ましくは30モル以下である。分子量調整剤の使用量をこの範囲とすることで、樹脂組成物の熱安定性及び耐加水分解性を向上させることができる。
【0044】
反応の際に、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望のポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。例えば、カーボネート前駆体としてホスゲンを用いた場合には、分子量調節剤はジヒドロキシ化合物とホスゲンとの反応(ホスゲン化)の時から重合反応開始時までの間であれば任意の時期に混合できる。
なお、反応温度は通常0〜40℃であり、反応時間は通常は数分(例えば、10分)〜数時間(例えば、6時間)である。
【0045】
・・溶融エステル交換法
次に、ポリカーボネート樹脂を溶融エステル交換法で製造する場合について説明する。
溶融エステル交換法では、例えば、炭酸ジエステルとジヒドロキシ化合物とのエステル交換反応を行う。
【0046】
ジヒドロキシ化合物は、前述の通りである。
一方、炭酸ジエステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジ−tert−ブチルカーボネート等の炭酸ジアルキル化合物;ジフェニルカーボネート;ジトリルカーボネート等の置換ジフェニルカーボネートなどが挙げられる。中でも、ジフェニルカーボネート及び置換ジフェニルカーボネートが好ましく、特にジフェニルカーボネートがより好ましい。なお、炭酸ジエステルは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0047】
ジヒドロキシ化合物と炭酸ジエステルとの比率は、所望のポリカーボネート樹脂が得られる限り任意であるが、ジヒドロキシ化合物1モルに対して、炭酸ジエステルを等モル量以上用いることが好ましく、中でも1.01モル以上用いることがより好ましい。なお、上限は通常1.30モル以下である。このような範囲にすることで、末端水酸基量を好適な範囲に調整できる。
【0048】
ポリカーボネート樹脂では、その末端水酸基量が熱安定性、加水分解安定性、色調等に大きな影響を及ぼす傾向がある。このため、公知の任意の方法によって末端水酸基量を必要に応じて調整してもよい。エステル交換反応においては、通常、炭酸ジエステルと芳香族ジヒドロキシ化合物との混合比率;エステル交換反応時の減圧度などを調整することにより、末端水酸基量を調整したポリカーボネート樹脂を得ることができる。なお、この操作により、通常は得られるポリカーボネート樹脂の分子量を調整することもできる。
【0049】
炭酸ジエステルとジヒドロキシ化合物との混合比率を調整して末端水酸基量を調整する場合、その混合比率は前記の通りである。
また、より積極的な調整方法としては、反応時に別途、末端停止剤を混合する方法が挙げられる。この際の末端停止剤としては、例えば、一価フェノール類、一価カルボン酸類、炭酸ジエステル類などが挙げられる。なお、末端停止剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0050】
溶融エステル交換法によりポリカーボネート樹脂を製造する際には、通常、エステル交換触媒が使用される。エステル交換触媒は任意のものを使用できる。なかでも、例えばアルカリ金属化合物及び/又はアルカリ土類金属化合物を用いることが好ましい。また補助的に、例えば塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物などの塩基性化合物を併用してもよい。なお、エステル交換触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0051】
溶融エステル交換法において、反応温度は通常100〜320℃である。また、反応時の圧力は通常2mmHg以下の減圧条件である。具体的操作としては、前記の条件で、芳香族ヒドロキシ化合物等の副生成物を除去しながら、溶融重縮合反応を行えばよい。
【0052】
溶融重縮合反応は、バッチ式、連続式の何れの方法でも行うことができる。バッチ式で行う場合、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望の芳香族ポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。ただし中でも、ポリカーボネート樹脂の安定性等を考慮すると、溶融重縮合反応は連続式で行うことが好ましい。
【0053】
溶融エステル交換法においては、必要に応じて、触媒失活剤を用いてもよい。触媒失活剤としてはエステル交換触媒を中和する化合物を任意に用いることができる。その例を挙げると、イオウ含有酸性化合物及びその誘導体などが挙げられる。なお、触媒失活剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0054】
触媒失活剤の使用量は、前記のエステル交換触媒が含有するアルカリ金属又はアルカリ土類金属に対して、通常0.5当量以上、好ましくは1当量以上であり、また、通常10当量以下、好ましくは5当量以下である。更には、ポリカーボネート樹脂に対して、通常1ppm以上であり、また、通常100ppm以下、好ましくは20ppm以下である。
【0055】
・ポリカーボネート樹脂(A)に関するその他の事項
ポリカーボネート樹脂(A)の分子量は、適宜選択して決定すればよいが、粘度平均分子量[Mv]で通常10000以上、好ましくは16000以上、より好ましくは17000以上、より好ましくは18000以上であり、また、通常40000以下、好ましくは30000以下である。
【0056】
なお、粘度平均分子量[Mv]とは、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度20℃での極限粘度[η](単位dl/g)を求め、Schnellの粘度式、すなわち、η=1.23×10
−4Mv
0.83 から算出される値を意味する。また、極限粘度[η]とは、各溶液濃度[C](g/dl)での比粘度[η
sp]を測定し、下記式により算出した値である。
【0058】
ポリカーボネート樹脂(A)の末端水酸基濃度は任意であり、適宜選択して決定すればよいが、通常1000ppm以下、好ましくは800ppm以下、より好ましくは600ppm以下である。これによりポリカーボネート樹脂の滞留熱安定性及び色調をより向上させることができる。また、その下限は、特に溶融エステル交換法で製造されたポリカーボネート樹脂では、通常10ppm以上、好ましくは30ppm以上、より好ましくは40ppm以上である。これにより、分子量の低下を抑制し、樹脂組成物の機械的特性をより向上させることができる。
【0059】
なお、末端水酸基濃度の単位は、ポリカーボネート樹脂の質量に対する、末端水酸基の質量をppmで表示したものである。その測定方法は、四塩化チタン/酢酸法による比色定量(Macromol.Chem.88 215(1965)に記載の方法)である。
【0060】
ポリカーボネート樹脂は、ポリカーボネート樹脂単独(ポリカーボネート樹脂単独とは、ポリカーボネート樹脂の1種のみを含む態様に限定されず、例えば、モノマー組成や分子量が互いに異なる複数種のポリカーボネート樹脂を含む態様を含む意味で用いる。)で用いてもよく、ポリカーボネート樹脂と他の熱可塑性樹脂とのアロイ(混合物)とを組み合わせて用いてもよい。さらに、例えば、難燃性や耐衝撃性をさらに高める目的で、ポリカーボネート樹脂を、シロキサン構造を有するオリゴマーまたはポリマーとの共重合体;熱酸化安定性や難燃性をさらに向上させる目的でリン原子を有するモノマー、オリゴマーまたはポリマーとの共重合体;熱酸化安定性を向上させる目的で、ジヒドロキシアントラキノン構造を有するモノマー、オリゴマーまたはポリマーとの共重合体;光学的性質を改良するためにポリスチレン等のオレフィン系構造を有するオリゴマーまたはポリマーとの共重合体;耐薬品性を向上させる目的でポリエステル樹脂オリゴマーまたはポリマーとの共重合体;等の、ポリカーボネート樹脂を主体とする共重合体として構成してもよい。
【0061】
また、成形品の外観の向上や流動性の向上を図るため、ポリカーボネート樹脂(A)は、ポリカーボネートオリゴマーを含有していてもよい。このポリカーボネートオリゴマーの粘度平均分子量[Mv]は、通常1500以上、好ましくは2000以上であり、また、通常9500以下、好ましくは9000以下である。さらに、含有されるポリカーボネートリゴマーは、ポリカーボネート樹脂(A)(ポリカーボネートオリゴマーを含む)の30質量%以下とすることが好ましい。
【0062】
さらにポリカーボネート樹脂(A)は、バージン原料だけでなく、使用済みの製品から再生されたポリカーボネート樹脂(いわゆるマテリアルリサイクルされたポリカーボネート樹脂)であってもよい。前記の使用済みの製品としては、例えば、光学ディスク等の光記録媒体;導光板;自動車窓ガラス、自動車ヘッドランプレンズ、風防等の車両透明部材;水ボトル等の容器;メガネレンズ;防音壁、ガラス窓、波板等の建築部材などが挙げられる。また、製品の不適合品、スプルー、ランナー等から得られた粉砕品またはそれらを溶融して得たペレット等も使用可能である。
ただし、再生されたポリカーボネート樹脂は、ポリカーボネート樹脂(A)のうち、80質量%以下であることが好ましく、中でも50質量%以下であることがより好ましい。再生されたポリカーボネート樹脂は、熱劣化や経年劣化等の劣化を受けている可能性が高いため、このようなポリカーボネート樹脂を前記の範囲よりも多く用いた場合、色相や機械的物性を低下させる可能性があるためである。
【0063】
[炭素繊維(B)]
本発明の熱伝導性ポリカーボネート樹脂組成物は、炭素繊維(B)を含有する。炭素繊維(B)としては、ピッチ系、PAN系(ポリアクリロニトリル系)、レーヨン系等のいずれをも使用できるが、ピッチ系の炭素繊維が、耐衝撃性と熱伝導性の点から好ましい。
炭素繊維(B)の平均繊維径は20μm以下が好ましく、流動性、耐衝撃性、寸法安定性、外観のバランスから、5〜8μmの範囲が最も好ましい。平均繊維径が20μmを超えると寸法安定性、耐衝撃性のバランスが低下するため、好ましくない。
また、ポリカーボネート樹脂組成物中での、平均繊維長が0.1〜2mmの範囲にあることが、耐衝撃性、寸法安定性、熱伝導性、外観のバランスの点から好ましい。
【0064】
炭素繊維(B)は、表面処理が施されたものが好ましく、樹脂組成物としての引張り強度、曲げ強度が向上する。表面処理剤は通常用いられる任意のものが使用でき、例えばエポキシ系サイジング剤、ウレタン系サイジング剤、エポキシ−ウレンタン系サイジング剤、ポリアミド系サイジング剤、オレフィン系サイジング剤などが挙げられる。これらの中では、エポキシ系、ポリアミド系、ウレタン系のものが、ポリカーボネート樹脂に対しての分散性が良好であるため、好ましい。
表面処理剤の量は、炭素繊維(B)100質量部に対して、0.5〜15質量部の範囲であることが好ましく、1〜10質量部の範囲内であることがさらに好ましい。
【0065】
本発明の熱伝導性ポリカーボネート樹脂組成物における炭素繊維(B)の含有量は、ポリカーボネート樹脂(A)100質量部に対して、10〜100質量部である。炭素繊維(B)の含有量が10質量部未満では熱伝導性が不十分であり、逆に100質量部を超えると耐衝撃性や流動性が不十分となる。炭素繊維(B)の含有量は、好ましくは20質量部以上、より好ましくは25質量部以上であり、また好ましくは80質量部以下、より好ましくは65質量部以下である。
【0066】
[円形断面ガラス繊維(C)]
本発明の熱伝導性ポリカーボネート樹脂組成物は、平均繊維径が5.5〜12μmという繊維径の細い円形断面のガラス繊維(C)を含有することを特徴とする。このような細いガラス繊維を用いることで、機械的強度、特に弾性率と耐衝撃性を極めて高いレベルに向上させることが可能となる。
円形断面ガラス繊維(C)の平均繊維径は、好ましくは5.7μm以上であり、好ましくは11μm以下であり、10.5μm以下であることがより好ましい。
【0067】
また、円形断面ガラス繊維の「円形断面」とは、ガラス繊維の長さ方向に直角な断面が略円形であることをいい、具体的には長さ方向に直角な断面の長径と短径との比(扁平率ともいう。)の平均値が、1〜1.5:1、好ましくは1〜1.4:1、より好ましくは1〜1.3:1、さらに好ましくは1〜1.2:1、特に好ましくは1〜1.1:1であることをいう。
【0068】
円形断面ガラス繊維(C)としては、通常熱可塑性樹脂に使用されているものであれば、Aガラス、Eガラス、ジルコニア成分含有の耐アルカリガラス組成も使用可能である。なかでも本発明に用いるガラス繊維(C)としては、本発明の熱伝導性ポリカーボネート樹脂組成物の熱安定性を向上させる目的から無アルカリガラス(Eガラス)が好ましい。
【0069】
円形断面ガラス繊維(C)の数平均繊維長は、1〜10mmであることが好ましく、1.5〜6mmであることがより好ましく、2〜5mmであることがさらに好ましい。
数平均繊維長が10mmを超えると成形品表面からのガラス繊維の脱落が発生しやすく、生産性が低下しやすい。数平均繊維長が1mm未満では、ガラス繊維のアスペクト比が小さいため、機械的強度の改良が不十分となりやすい。
【0070】
本発明で使用するガラス繊維(C)は、ポリカーボネート樹脂との密着性を向上させる目的で、アミノシラン、エポキシシラン等のシランカップリング剤などにより表面処理を行うことができる。
【0071】
また、ガラス繊維(C)は、通常はこれらの繊維を多数本集束したものを、所定の長さに切断したチョップドストランド(チョップドガラス繊維)として用いることが好ましく、このときガラス繊維は収束剤を配合することが好ましい。収束剤を配合することで、本発明の熱伝導性ポリカーボネート樹脂組成物の生産安定性が高まる利点に加え、良好な機械物性を得ることができる。
収束剤としては、特に制限はないが、例えばウレタン系、エポキシ系、アクリル系等の収束剤が挙げられる。なかでも本発明に使用するガラス繊維の収束剤としては、ウレタン系、エポキシ系収束剤がより好ましく、エポキシ系収束剤がさらに好ましい。
【0072】
本発明の熱伝導性ポリカーボネート樹脂組成物における円形断面ガラス繊維(C)の含有量は、ポリカーボネート樹脂(A)100質量部に対して、10〜50質量部である。ガラス繊維(C)の含有量が10質量部未満では弾性率や強度が不十分であり、逆に50質量部を超えると耐衝撃性や流動性が不十分となる。ガラス繊維(C)の含有量は、好ましくは11質量部以上、より好ましくは12質量部以上であり、また好ましくは80質量部以下、より好ましくは60質量部以下、さらに好ましくは50質量部以下、特に好ましくは40質量部以下である。
【0073】
本発明の熱伝導性ポリカーボネート樹脂組成物における炭素繊維(B)及び円形断面ガラス繊維(C)の含有量の質量比は、炭素繊維(B)/ガラス繊維(C)で、1.0以上であることが好ましく、より好ましくは1.1以上、さらに好ましくは1.2以上、特に好ましくは1.25以上であり、好ましくは10以下、より好ましくは8以下、さらには5以下、とりわけ4以下が好ましく、特に好ましくは3以下である。炭素繊維(B)及びガラス繊維(C)の含有量の質量比を上記範囲とすることで、熱伝導率、強度、弾性率、耐衝撃性、成形時流動性等の特性をバランスよく向上させることが可能となる。
また、炭素繊維(B)及びガラス繊維(C)の含有量の合計は、ポリカーボネート樹脂(A)100質量部に対して、30質量部以上が好ましく、より好ましくは35質量部以上、さらに好ましくは40質量部以上であり、好ましくは125質量部以下、より好ましくは100質量部以下、さらに好ましくは80質量部以下、特に好ましくは70質量部以下である。
【0074】
[カーボンブラック(D)]
本発明の熱伝導性ポリカーボネート樹脂組成物は、カーボンブラック(D)を含有することが好ましい。カーボンブラック(D)としては、その種類、原料種、製造方法に制限はなく、ファーネスブラック、チャンネルブラック、アセチレンブラック、ケッチェンブラック等のいずれをも使用することができる。その数平均粒径には特に制限はないが、5〜60nm程度であることが好ましい。数平均粒子径がこのような範囲にあるカーボンブラックを含有することにより、高温下でブリスターが発生し難い組成物を得ることが容易となる。
【0075】
カーボンブラック(D)の窒素吸着比表面積(単位:m
2/g)は、通常1000m
2/g未満が好ましく、なかでも50〜400m
2/gであることが好ましい。窒素吸着比表面積を1000m
2/g未満にすることで、本発明の熱伝導性ポリカーボネート樹脂組成物の流動性や成形品の外観が向上する傾向にあり好ましい。なお、窒素吸着比表面積は、JIS K6217に準拠して測定することができる。
【0076】
またカーボンブラック(D)のDBP(ジブチルフタレート)吸収量は、300cm
3/100g未満であることが好ましく、なかでも30〜200cm
3/100gであることが好ましい。DBP吸収量を300cm
3/100g未満にすることで、本発明の熱伝導性ポリカーボネート樹脂組成物の流動性や成形品の外観が向上する傾向にあり好ましい。
なお、DBP吸収量(単位:cm
3/100g)はJIS K6217に準拠して測定することができる。また本発明で使用するカーボンブラックは、そのpHについても特に制限はないが、通常、2〜10であり、3〜9であることが好ましく、4〜8であることがさらに好ましい。
【0077】
カーボンブラック(D)は、単独でまたは2種以上併用して使用することができる。更にカーボンブラック(D)は、バインダーを用いて顆粒化することも可能であり、他の樹脂中に高濃度で溶融混練したマスターバッチでの使用も可能である。溶融混練したマスターバッチを使用することによって、押出時のハンドリング性改良、樹脂組成物中への分散性改良が達成できる。上記樹脂としては、ポリスチレン系樹脂、ポリカーボネート系樹脂、アクリル系樹脂等が挙げられる。
【0078】
カーボンブラック(D)の好ましい含有量は、ポリカーボネート樹脂(A)100質量部に対して、0.5〜5質量部であり、より好ましくは0.8質量部以上、さらに好ましくは1質量部以上であり、また、より好ましくは4質量部以下、さらに好ましくは3質量部以下である。
【0079】
[離型剤]
また、本発明の熱伝導性ポリカーボネート樹脂組成物は、離型剤を含有することが好ましい。離型剤としては、例えば、脂肪族カルボン酸、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200〜15000の脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイルなどが好ましく挙げられる。
【0080】
脂肪族カルボン酸としては、例えば、飽和または不飽和の脂肪族一価、二価または三価カルボン酸を挙げることができる。ここで脂肪族カルボン酸とは、脂環式のカルボン酸も包含する。これらの中で好ましい脂肪族カルボン酸は、炭素数6〜36の一価または二価カルボン酸であり、炭素数6〜36の脂肪族飽和一価カルボン酸がさらに好ましい。かかる脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラリアコンタン酸、モンタン酸、アジピン酸、アゼライン酸などが挙げられる。
【0081】
脂肪族カルボン酸とアルコールとのエステルにおける脂肪族カルボン酸としては、例えば、前記脂肪族カルボン酸と同じものが使用できる。一方、アルコールとしては、例えば、飽和または不飽和の一価または多価アルコールが挙げられる。これらのアルコールは、フッ素原子、アリール基などの置換基を有していてもよい。これらの中では、炭素数30以下の一価または多価の飽和アルコールが好ましく、炭素数30以下の脂肪族飽和一価アルコールまたは脂肪族飽和多価アルコールがさらに好ましい。なお、ここで脂肪族とは、脂環式化合物も包含する用語として使用される。
【0082】
かかるアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2−ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等が挙げられる。
【0083】
なお、上記のエステルは、不純物として脂肪族カルボン酸及び/またはアルコールを含有していてもよい。また、上記のエステルは、純物質であってもよいが、複数の化合物の混合物であってもよい。さらに、結合して一つのエステルを構成する脂肪族カルボン酸及びアルコールは、それぞれ、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0084】
脂肪族カルボン酸とアルコールとのエステルの具体例としては、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸ステアリル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート等が挙げられる。
【0085】
数平均分子量200〜15000の脂肪族炭化水素としては、例えば、流動パラフィン、パラフィンワックス、マイクロワックス、ポリエチレンワックス、フィッシャ−トロプシュワックス、炭素数3〜12のα−オレフィンオリゴマー等が挙げられる。なお、ここで脂肪族炭化水素としては、脂環式炭化水素も含まれる。また、これらの炭化水素は部分酸化されていてもよい。
【0086】
これらの中では、パラフィンワックス、ポリエチレンワックスまたはポリエチレンワックスの部分酸化物が好ましく、パラフィンワックス、ポリエチレンワックスがさらに好ましい。
また、前記の脂肪族炭化水素の数平均分子量は、好ましくは5000以下である。
なお、脂肪族炭化水素は、単一物質であってもよいが、構成成分や分子量が様々なものの混合物であっても、主成分が上記の範囲内であれば使用できる。
【0087】
ポリシロキサン系シリコーンオイルとしては、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、ジフェニルシリコーンオイル、フッ素化アルキルシリコーン等が挙げられる。
【0088】
なお、上述した離型剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
【0089】
離型剤の含有量は、ポリカーボネート樹脂(A)100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常2質量部以下、好ましくは1質量部以下である。離型剤の含有量が前記範囲の下限値未満の場合は、離型性の効果が十分でない場合があり、離型剤の含有量が前記範囲の上限値を超える場合は、耐加水分解性の低下、射出成形時の金型汚染などが生じる可能性がある。
【0090】
[難燃剤]
また、本発明の熱伝導性ポリカーボネート樹脂組成物は、難燃剤を含有することも好ましい。難燃剤としては、例えば、ハロゲン系、リン系、シリコーン系、窒素系、金属塩系難燃剤等が挙げられ、公知のものを任意に必要量配合することができ、例えば、縮合リン酸エステル、ホスファゼン、シリコーン化合物、スルホン酸金属塩、ポリテトラフルオロエチレンなどが好ましく使用される。これらを単独又は複数種組み合わせて用いることで、所望の難燃性を有する熱伝導性ポリカーボネート樹脂組成物を得ることができる。
【0091】
難燃剤の含有量は、難燃剤がスルホン酸金属塩、シリコーン化合物、ポリテトラフルオロエチレンである場合は、ポリカーボネート樹脂(A)100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.03質量部以上であり、また、その上限は好ましくは5質量部以下、より好ましくは2質量部以下である。難燃剤が縮合リン酸エステル、ホスファゼンの場合は、ポリカーボネート樹脂(A)100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上であり、また、その上限は好ましくは30質量部以下、より好ましくは15質量部以下である。難燃剤の含有量が前記範囲の下限値未満の場合は、難燃性の改良効果が得難く、上限値を超える場合は、機械的強度、耐湿熱性、熱安定性などが低下する可能性がある。難燃剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
【0092】
[その他の成分]
本発明の熱伝導性ポリカーボネート樹脂組成物は、所望の諸物性を著しく損なわない限り、必要に応じて、上記以外のその他成分を含有していてもよい。その他の成分の例を挙げると、ポリカーボネート樹脂以外の樹脂、上記した以外の各種樹脂添加剤などが挙げられる。なお、その他の成分は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
【0093】
・その他の樹脂
その他の樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート樹脂などの熱可塑性ポリエステル樹脂;
ポリスチレン樹脂、高衝撃ポリスチレン樹脂(HIPS)、アクリロニトリル−スチレン−アクリルゴム共重合体(ASA樹脂)、アクリロニトリル−エチレンプロピレン系ゴム−スチレン共重合体(AES樹脂)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)などのスチレン系樹脂;ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリエーテルイミド樹脂;ポリウレタン樹脂;ポリフェニレンエーテル樹脂;ポリフェニレンサルファイド樹脂;ポリスルホン樹脂等が挙げられる。
なお、その他の樹脂は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
その他の樹脂を含有する場合は、ポリカーボネート樹脂及びその他の樹脂の合計100質量部中の、40質量部以下であることが好ましく、30質量部以下であることがより好ましく、20質量部以下であることがさらに好ましい。
【0094】
・樹脂添加剤
樹脂添加剤としては、例えば、熱安定剤、酸化防止剤、紫外線吸収剤、染顔料、帯電防止剤、防曇剤、滑剤、アンチブロッキング剤、可塑剤、分散剤、抗菌剤などが挙げられる。なお、樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
【0095】
[熱伝導性ポリカーボネート樹脂組成物の製造方法]
本発明の熱伝導性ポリカーボネート樹脂組成物の製造方法に制限はなく、公知のポリカーボネート樹脂組成物の製造方法を広く採用でき、ポリカーボネート樹脂(A)、炭素繊維(B)、ガラス繊維(C)、並びに、必要に応じて配合されるその他の成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。二軸混練押出機を使用する場合は、炭素繊維(B)及び/又はガラス繊維(C)はサイドフィードすることが好ましい。
なお、溶融混練の温度は特に制限されないが、通常240〜320℃の範囲である。
【0096】
[成形品]
上記したポリカーボネート樹脂組成物をペレタイズしたペレットは、各種の成形法で成形して成形品とされる。またペレットを経由せずに、押出機で溶融混練された樹脂を直接、成形して成形品にすることもできる。
成形品の形状としては、特に制限はなく、成形品の用途、目的に応じて適宜選択することができ、例えば、板状、プレート状、ロッド状、シート状、フィルム状、円筒状、環状、円形状、楕円形状、多角形形状、異形品、中空品、枠状、箱状、パネル状のもの等が挙げられる。
【0097】
成形体を成形する方法としては、特に制限されず、従来公知の成形法を採用でき、例えば、射出成形法、射出圧縮成形法、押出成形法、異形押出法、トランスファー成形法、中空成形法、ガスアシスト中空成形法、ブロー成形法、押出ブロー成形、IMC(インモールドコ−ティング成形)成形法、回転成形法、多層成形法、2色成形法、インサート成形法、サンドイッチ成形法、発泡成形法、加圧成形法等が挙げられる。
【0098】
本発明の熱伝導性ポリカーボネート樹脂組成物は、高い熱伝導性と耐衝撃性、引張特性及び曲げ特性等の機械特性に優れ、さらに高度の流動性と高い寸法精度並びにセルフタップ強度に優れた樹脂材料であるので、これを成形した成形品は、各種電子電気機器、パーソナルコンピューター、カメラ、各種精密機器、各種携帯端末の部品や筺体等に好適である。特にカメラ用部品として、レンズ鏡筒、カメラの筺体、また、例えばデジタルカメラやデジタルビデオカメラ用の各種部品、中でも例えば固体撮像素子、フォトセンサー、A/D変換素子、イメージャー等といった素子や部品を保持する部品(枠体、筺体)として有用であり、高速で膨大な光信号処理を実行する際に発生する発熱を効率的に逃がすことにより、素子や部品の変形を防止し、高いS/N比での鮮明な画像を実現することが可能となるので好ましい。
【実施例】
【0099】
以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。
以下の実施例及び比較例に使用した各原料成分は、以下の表1のとおりである。
【0100】
【表1】
【0101】
(実施例1〜2、比較例1〜3)
二軸押出機(日本製鋼所社製「TEX30HSST」)を用いて、シリンダー温度280℃、スクリュー回転数200rpm、吐出量20kg/hrにて、上記表1に記載した各成分を用い、出来上がり組成が下記の表2に示す割合(全て質量部にて表示)になるように調整し、ポリカーボネート樹脂組成物のペレットを得た。
【0102】
[ISO多目的試験片の製造]
上記で得られたペレットを100℃、5時間乾燥した後、射出成形機(日本製鋼所社製「J55−60H」)を用い、シリンダー設定温度270〜290℃、金型温度100℃、射出時間2秒、成形サイクル40秒の条件で射出成形を行い、ISO多目的試験片(4mm厚)を射出成形した。
【0103】
[引張特性の評価]
上記ISO多目的試験片(4mm厚)を用い、ISO規格527−1及びISO527−2に準拠して、引張弾性率(単位:MPa)、破壊点強度(単位:MPa)、破壊点呼び歪(単位:%)を測定した。
【0104】
[曲げ特性の評価]
ISO178に準拠して、上記ISO多目的試験片(4mm厚)を用い、23℃において、曲げ弾性率(単位:MPa)と曲げ応力(単位:MPa)を測定した。
【0105】
[耐衝撃性の評価:シャルピー衝撃値(単位:kJ/m
2)]
得られたISO多目的試験片(4mm厚)を使用し、切削加工にてノッチ有の試験片も準備した。得られた試験片を用い、ISO179に準拠し、23℃の条件で、ノッチ有とノッチ無シャルピー耐衝撃強度(単位:kJ/m
2)をそれぞれ測定した。
【0106】
[耐熱性の評価:荷重たわみ温度(DTUL、単位:℃)]
上記で得られたISO多目的試験片(4mm厚)を用い、ISO75−1&2に従い、荷重1.80MPaの条件(A法)にて、荷重たわみ温度(DTUL、単位:℃)の測定を行った。
【0107】
[熱伝導率の測定(単位:W/m・K)]
上記で得られたISO多目的試験片(4mm)を0.15〜0.5mm厚のスライス状に切削し、これを試料として、(株)アイフェイズ製温度波熱分析装置「ai−Phase Mobile1」を使用し、MD方向について、測定した。
【0108】
[セルフタップ破壊トルク(単位:N・m)]
上記で得られたペレットを100℃、5時間乾燥した後、射出成形機(日本製鋼所社製「J55−60H」)を用い、シリンダー設定温度290〜310℃、金型温度100℃にて、70mm×45mm×3mmの板状部に、外径7.63mm×内径2.61mm×高さ10mmと、外径7.33mm×内径2.44mm×高さ10mmのボス穴が形成されたセルフタッピング試験用ボス穴試験片を射出成形した。
得られた試験片の2つのボス穴に、引掛り率が34%となるネジ(M3×6 Pタイプ、ネジ山径3.02mm、ネジ谷径2.17mm)をトルクドライバーにてねじ込み、ボス穴の割れによる破壊に至るトルクを測定し、セルフタップ破壊トルクとした。
【0109】
[流動性の評価:スパイラルフロー流動長(単位:mm)]
流動性の評価として、樹脂組成物のスパイラルフロー流動長(単位:mm)を、射出成形機(日本製鋼所社製「J55−60H」)を用いて評価した。すなわち、上記で得られたペレットを120℃で4時間以上乾燥した後、射出圧力150MPa、射出速度60mm/sec、シリンダー温度を280℃、300℃及び320℃の3条件にて、射出時間2sec、冷却7sec、金型温度100℃、サックバック2mmの条件とした。
また評価した樹脂成形品の形状は、断面が肉厚1mm、幅1.5mmの、長尺状樹脂成形品であり、渦巻き状となったものである。この渦巻き状長尺樹脂成形品を
図1に示す。
図1中、中央の部材はゲート1を表し、この渦巻き状長尺樹脂成形品の大きさは、長尺状樹脂成形品の中心間距離として、(長軸方向の寸法h1)×(短軸方向の寸法h2)=90mm×105mmである。
このスパイラルフロー長さは、数値が大きいほど、流動性に優れることを表している。
【0110】
以上の評価結果を、以下の表2に示した。
【0111】
【表2】