(58)【調査した分野】(Int.Cl.,DB名)
前記モード推定部は、前記モータの負荷の変化が複数回検出されると、前記複数の動作モードのいずれが選択されているかを推定する、請求項1〜3のいずれか1項に記載の作業機。
前記モータ制御部は、前記打撃モードが選択されている場合に設定する第2目標回転数を、前記回転打撃モードが選択されている場合に設定する第2目標回転数よりも高くする、請求項7に記載の作業機。
【発明を実施するための形態】
【0010】
以下、本発明の実施の形態を
図1及び
図2に基づいて詳細に説明する。それぞれの図面においては、共通する部材には同一の符号が付されている。
【0011】
図1に示す作業機10aはハンマドリルとも言われ、先端工具Tが作業機10aに着脱される。作業機10aは、先端工具Tに回転力と打撃力を加えることが可能である。作業機10aは、コンクリートや石材等を対象物として、斫り作業または穴あけ作業を行うことができる。作業機10aは、斫り作業を行うために先端工具Tに打撃力を加える打撃モードと、穴あけ作業を行うために先端工具Tに打撃力及び回転力を加える回転打撃モードと、を切り替えて設定可能である。
【0012】
作業機10aは、シリンダ11を有しており、このシリンダ11の先端部には円筒形状の工具保持具12がピン13により固定されている。工具保持具12はシリンダハウジング14aに軸受15を介して支持され、シリンダ11と工具保持具12は、シリンダハウジング14a内に回転自在に装着されている。工具保持具12に先端工具Tが取り付けられていると、シリンダ11の回転力は先端工具Tに伝達される。
【0013】
工具保持具12内には、ハンマ部材16が軸方向に往復動自在に組み込まれており、ハンマ部材16の一部は、シリンダ11内に配置されている。シリンダ11内には、ハンマ部材16に打撃力を加える打撃子17が軸方向に往復動自在に配置されている。また、シリンダ11内にピストン18が軸方向に往復動自在に配置されている。打撃子17とピストン18との間に空気室19が設けられている。シリンダ11は、空気室19につながる呼吸孔及び排気孔を有する。
【0014】
シリンダハウジング14aには先端カバー21が取り付けられ、シリンダハウジング14aの一部を構成している。工具保持具12の先端にはゴム製の先端キャップ22が取り付けられている。先端キャップ22の外側には、着脱スリーブ23が軸方向に往復動自在に装着され、着脱スリーブ23には、シリンダハウジング14aから離れる方向、つまり前進方向のばね力がコイルばね24により付勢されている。工具保持具12には、先端工具Tに設けられた溝に係合する係合コロ、つまり係合部材25が径方向に移動自在に装着されている。着脱スリーブ23には締結リング26が設けられている。
【0015】
締結リング26が係合部材25を径方向で内方に突出すると、先端工具Tは工具保持具12により保持される。一方、着脱スリーブ23をばね力に抗して後退移動させると、締結リング26と係合部材25との係合が解除される。この状態のもとで、先端工具Tを引っ張ると、係合部材25が径方向外方に退避移動して、先端工具Tを取り外すことができる。また、着脱スリーブ23を後退移動させた状態のもとで、先端工具Tを工具保持具12の先端部内に挿入し、工具保持具12をばね力により前進移動させると、先端工具Tは工具保持具12に装着されて係合部材25により保持される。
【0016】
シリンダハウジング14aの後端部にはギヤハウジング14bが設けられ、このギヤハウジング14bにはモータハウジング14cが設けられている。モータハウジング14cはシリンダハウジング14aに対して直角方向を向いており、シリンダハウジング14a、ギヤハウジング14b、モータハウジング14cにより、作業機10aのハウジング14が形成されている。ハウジング14の後部には、後方に突出して操作用のハンドル28が設けられている。
【0017】
モータハウジング14c内にはブラシレスモータ31が収容されている。このブラシレスモータ31はコイルが巻き付けられた円筒形状のステータ32と、ステータ32の内部に組み込まれるロータ33とを有している。ロータ33には出力軸34が取り付けられ、出力軸34はシリンダ11の往復動方向と直交する方向の軸線を中心として回転する。出力軸34は、軸受35,36により回転自在に支持されている。
【0018】
ブラシレスモータ31の出力軸34の回転力を、ピストン18の往復動作力に変換するために、ギヤハウジング14bにはクランク軸41が回転自在に装着されている。クランク軸41は出力軸34と平行となって、工具保持具側に配置されており、クランク軸41に設けられた大径のピニオンギヤ42が、出力軸34の先端部に設けられたギヤ部に噛み合っている。クランク軸41の先端部にはクランクウエイトとしての機能を有する偏心部材43が取り付けられている。
【0019】
偏心部材43にはクランク軸41の回転中心から偏心した位置にクランクピン44が取り付けられている。クランクピン44には、コネクティングロッド45の一端部が回転自在に嵌合されている。コネクティングロッド45の他端部は、ピストン18に取り付けられたピストンピン46に揺動自在に嵌合されている。クランク軸41の回転力は、偏心部材43、およびコネクティングロッド45を有する運動変換機構47により、ピストン18の往復動作力に変換される。
【0020】
出力軸34の回転力をシリンダ11に伝達するために、ギヤハウジング14b内に回転伝達軸51が回転自在に支持されている。回転伝達軸51に大径のピニオンギヤ53が設けられている。ピニオンギヤ53は、クランク軸41に設けられた小径のピニオンギヤ52に噛み合う。運動変換機構47は、出力軸34の回転力を回転伝達軸51に伝達する。シリンダ11の外側には従動スリーブ54が軸方向に移動自在に嵌合されており、この従動スリーブ54の基端部には、回転伝達軸51の先端部に設けられた駆動側のベベルギヤ55が噛み合う従動側のベベルギヤ56が設けられている。従動スリーブ54とシリンダ11との間には、図示しないキー部材が設けられている。従動スリーブ54に対して後退方向のばね力を付勢するために、シリンダハウジング14a内にはコイルばね57が装着されている。
【0021】
また、図示しない動作モード切替レバーがハウジング14に設けられている。作業者が動作モード切替レバーを操作すると、先端工具Tに打撃力を加え、かつ、回転力を加えない打撃モードと、先端工具Tに打撃力及び回転力を加える回転打撃モードと、を選択することができる。
【0022】
回転打撃モードが選択されると、従動側のベベルギヤ56が駆動側のベベルギヤ55にかみ合う位置に、従動スリーブ54が後退移動され、従動スリーブ54はキー部材によりシリンダ11に係合する。これにより、出力軸34の回転力をシリンダ11に伝達することが可能な状態となる。一方、打撃モードが選択されると、従動スリーブ54が前進移動されて、従動スリーブ54とシリンダ11との係合が解除される。したがって、シリンダ11に回転力が伝達されない。
【0023】
ブラシレスモータ31は交流電源66を動力源としており、ハンドル28には給電ケーブル58が取り付けられている。給電ケーブル58の先端には図示しないコンセントが設けられている。ブラシレスモータ31を回転させる状態と、停止させる状態とに切り換えるために、トリガ59が設けられている。トリガ59は、ハンドル28に設けられており、トリガ59の操作により、トリガスイッチ59aがオン・オフされる。
【0024】
ハウジング14には、ブラシレスモータ31の回転数を作業者が設定するための回転数設定ダイヤル62が設けられている。この回転数設定ダイヤル62を操作することにより、モータ31の目標回転数Nmを、複数段階に設定可能である。ハウジング14には表示部63が設けられている。表示部63は、設定された目標回転数Nmを表示可能である。
【0025】
ブラシレスモータ31の回転数を制御するモータ制御回路を、
図2を参照して説明する。ブラシレスモータ31のステータ32は、U相,V相,W相に対応する3本の巻線U1,V1,W1を有する。ロータ33には円周方向に間隔をおいて4つの永久磁石が設けられている。ロータ33の回転位置を検出するために、モータ制御回路は、回転位置検出センサとして、3相の巻線U1,V1,W1に対応する3つのホール素子H1〜H3を有する。3つのホール素子H1〜H3は、センサ基板64に設けられている。3つのホール素子H1〜H3は、ロータ33に設けた永久磁石が形成する磁界の強度を検出し、かつ、検出信号を出力する。
【0026】
モータ制御回路は、3本の巻線U1,V1,W1に対する駆動電流を制御するインバータ回路65を有する。インバータ回路65には、交流電源66の交流を直流に整流するための整流回路67と、整流された直流電圧を昇圧してインバータ回路65に供給するための力率改善回路68と、を介して電力が供給される。力率改善回路68は、トランジスタTrに制御信号を出力するIC69を有する。なお、交流電源66と整流回路67との間には、インバータ回路65で生じたノイズを電源側に伝えないようにするために、雑音対策回路70が設けられている。
【0027】
インバータ回路65は、3相フルブリッジインバータ回路であり、それぞれ直列に接続された2つのスイッチング素子Tr1、Tr2と、2つのスイッチング素子Tr3、Tr4と、2つのスイッチング素子Tr5、Tr6とを有し、それぞれは、力率改善回路68の正極と負極の出力端子に接続される。正極側に接続される3つのスイッチング素子Tr1、Tr3、Tr5は、ハイサイド側となっており、負極側に接続される3つのスイッチング素子Tr2、Tr4、Tr6は、ローサイド側となっている。2つのスイッチング素子Tr1、Tr2の間には、U相の巻線U1の一方の接続端子が接続される。2つのスイッチング素子Tr3、Tr4の間には、V相の巻線V1の一方の接続端子が接続される。2つのスイッチング素子Tr5、Tr6の間には、W相の巻線W1の一方の接続端子が接続される。3本の巻線U1,V1,W1の他方の接続端子は、相互に接続されており、各巻線U1,V1,W1はスター結線となっている。例えば、ハイサイド側のスイッチング素子Tr1と、ローサイド側のスイッチング素子Tr4のゲートに制御信号が通電されると、U相とV相の巻線U1,V1に電流が供給される。それぞれのスイッチング素子に供給される制御信号のタイミングを調整することにより、各巻線U1,V1,W1に対する転流動作が制御される。
【0028】
インバータ回路65に制御信号を演算して出力するモータ制御部71は、コントローラ72を有している。コントローラ72からは制御信号出力回路73を介してインバータ回路65に制御信号が送られる。ホール素子H1〜H3の検出信号は、回転子位置検出回路74に送られる。回転子位置検出回路74から出力された信号は、コントローラ72及びモータ回転数検出回路75に1送られる。モータ回転数検出回路75は、ブラシレスモータ31の出力軸34の回転数、つまり、実際の回転数を算出する。モータ回転数検出回路75から出力された信号は、コントローラ72に送られる。ブラシレスモータ31に流れる電流を検出するモータ電流検出回路76が設けられ、モータ電流検出回路76から出力された信号は、コントローラ72に入力される。
【0029】
コントローラ72は、制御信号出力回路73へ出力する制御信号を演算するマイクロプロセッサと、ブラシレスモータ31の回転数の制御に用いるプログラム、演算式、データが格納されたメモリと、を有する。ブラシレスモータ31の無負荷用の目標回転数Nt、回転数設定ダイヤル62の操作で選択される目標回転数Nmに応じたプログラム、演算式、データが記憶されている。なお、目標回転数Ntは、先端工具Tが対象物に押し付けられていない状態で、ブラシレスモータ31の回転数を制御する場合に用いる。
【0030】
トリガ59に操作力が加えられるとトリガスイッチ59aがオンされ、トリガ59に加わった操作力が解除されると、トリガスイッチ59aがオフされる。トリガスイッチ検出回路77は、トリガスイッチ59aのオン・オフを検出し、検出結果に応じた信号をコントローラ72へ入力する。コントローラ72には、回転数設定ダイヤル62から出力された信号が入力され、回転数設定ダイヤル62の操作により設定された目標回転数Nmに基づいて、ブラシレスモータ31の実際の回転数が制御される。ブラシレスモータ31の回転数は、3本の巻線U1,V1,W1に供給される電圧を調整することにより制御される。3本の巻線U1,V1,W1に対する電圧制御は、スイッチング素子Tr1〜Tr6をPWM(Pulse Width Modulation)制御して行われる。
【0031】
つまり、インバータ回路65のスイッチング素子Tr1〜Tr6のゲートに印加されるオン信号のデューティ比を調整することにより行われる。例えば、デューティ比を20%に設定すると、力率改善回路68からの出力電圧の20%の電圧が3本の巻線U1,V1,W1に供給される。これに対して、デューティ比を100%に設定すると、力率改善回路68からの出力電圧の100%の電圧が3本の巻線U1,V1,W1に供給される。ブラシレスモータ31の実際の回転数は、デューティ比が高いほど、高回転数になる。インバータ回路65、整流回路67,力率改善回路68およびモータ制御部71は、制御基板78に設けられている。
【0032】
次に、作業機10aの使用例を説明する。打撃モードが選択されている場合に、トリガ59が操作されると、ブラシレスモータ31の出力軸34が回転し、出力軸34の回転力は、運動変換機構47によりピストン18の往復動力に変換される。ブラシレスモータ31の出力軸34の回転中に、先端工具Tが対象物に押し付けられると、打撃子17が排気孔を塞ぐ。排気孔が塞がれた状態で、ピストン18が打撃子17に近づく向きで移動すると、空気室19の圧力が上昇する。空気室19の圧力が上昇すると、打撃子17がハンマ部材16を打撃し、その打撃力は先端工具Tに伝達される。
【0033】
一方、ブラシレスモータ31の出力軸34の回転中に、先端工具Tが対象物から離されると、打撃子17は自重でピストン18から離れた待機位置で停止する。打撃子17が待機位置で停止すると、排気孔が開かれる。排気孔が開かれた状態で、ピストン18が打撃子17に近づく向きで移動しても、空気室19の圧力が上昇せず、先端工具Tは打撃されない。
【0034】
なお、打撃モードが選択されている場合、従動スリーブ54が前進移動されており、従動スリーブ54とシリンダ11との係合が解除される。したがって、先端工具Tが対象物に押し付けられているか否かに関わりなく、出力軸34の回転力は、シリンダ11に伝達されない。
【0035】
これに対して、回転打撃モードが選択されている場合に、ブラシレスモータ31の出力軸34が回転し、かつ、先端工具Tが対象物に押し付けられると、打撃モードが選択されている場合と同様に打撃子17がハンマ部材16を打撃し、その打撃力は先端工具Tに伝達される。
【0036】
さらに、回転打撃モードが選択されている場合、従動スリーブ54が後退移動されており、従動スリーブ54とシリンダ11とが係合される。したがって、出力軸34の回転力はシリンダ11に伝達される。つまり、先端工具Tには、打撃力及び回転力が伝達される。なお、回転打撃モードが選択され、かつ、先端工具Tが対象物から離されていると、打撃モードが選択されている場合と同様に、先端工具Tは打撃されない。
【0037】
次に、作業機10aで実行可能な制御例を順次説明する。
【0038】
(制御例1)
図3は、制御例1を示すフローチャートである。まず、モータ制御部71は、ステップS1でトリガスイッチ59aがオンされると、ステップS2で「ハンマフラグ・オン」であるか否かを判断する。モータ制御部71は、トリガ59に操作力が加えられている間に、モータ電流検出回路76で検出される負荷電流値Iが、閾値Ih未満から閾値Ih以上に変化したことを検出する回数が、2回以上であると「ハンマフラグ・オン」と処理し、1回以下であると「ハンマフラグ・オフ」と処理する。
【0039】
モータ制御部71は、ステップS2の判断時点において、モータ電流検出回路76が検出する負荷電流値Iが、閾値Ih未満から閾値Ih以上に変化したこと検出した回数が1回以下であるため、ステップS2でNOと判断する。モータ制御部71は、ステップS2でNOと判断すると、ステップS3に進み、デューティ比の変化率dDSとし、ブラシレスモータ31の回転数を上昇させる処理を行う。ステップS3の処理が行われると、ブラシレスモータ31の負荷電流値Iは、デューティ比の変化率dDSに応じて増加する。
【0040】
モータ制御部71は、ブラシレスモータ31の回転数が上昇中に、ステップS4において、トリガスイッチ59aがオンされてから2秒経過したか否かを判断する。モータ制御部71は、ステップS4でYESと判断すると、先端工具Tが対象物から離されていると、ステップS5において、ブラシレスモータ31の回転数を、無負荷用の目標回転数Ntに維持する「第1定速度制御」を実行する。目標回転数Ntは、回転数設定ダイヤル62の操作で選択される目標回転数Nmよりも低い。
【0041】
さらに、モータ制御部71は、ステップS5Aでトリガスイッチ59aがオンされているか否かを判断し、ステップS5AでYESと判断すると、ステップS6でブラシレスモータ31の負荷電流値Iが閾値Ih以上であるか否かを判断する。ブラシレスモータ31の負荷電流値Iは、ブラシレスモータ31の実際の回転数が目標回転数Ntに制御されていれば、閾値Ih未満に維持される。一方、先端工具Tが対象物に押し付けられると、先端工具Tの動作抵抗により、ブラシレスモータ31の実際の回転数が低下し、目標回転数Nt未満となる。
【0042】
モータ制御部71は、第1定速度制御を実行しているため、モータ制御部71は、負荷によってブラシレスモータ31の実際の回転数が低下すると、ブラシレスモータ31の実際の回転数を目標回転数Ntに戻すために電流値を上昇させる。すると、ブラシレスモータ31の回転数が目標回転数Ntに至るまでの過程で、負荷電流Iが閾値Ihを超える。モータ制御部71は、ブラシレスモータ31の負荷電流値Iが、閾値Ih未満から閾値Ih以上へと変化した時点で負荷有りと判断し、ステップS6でYESと判断する。
【0043】
モータ制御部71は、ステップS6でYESと判断するとステップS7に進み、ブラシレスモータ31の負荷電流値Iが、閾値Ih以上から閾値Ih未満へと変化したか否かを判断する。モータ制御部71は、ステップS7でNOと判断すると、ステップS8において、トリガスイッチ59aがオフされたか否かを判断する。モータ制御部71は、ステップS8でNOと判断するとステップS9に進み、ブラシレスモータ31の回転数を、目標回転数Nmに維持する「第2定速度制御」を実行し、ステップS7に戻る。
【0044】
モータ制御部71が、ステップS7〜ステップS9の制御を実行中に、先端工具Tを対象物に押し付ける力が解除されると、先端工具Tの動作抵抗がなくなるのでブラシレスモータ31の実際の回転数が上昇し、目標回転数Nmを超える。このときモータ制御部71は「第2定速度制御」を実行中であるため、ブラシレスモータ31の実際の回転数を目標回転数Nmに戻すため、ブラシレスモータ31に流す電流値を減少させる。すると、負荷電流Iの値が閾値Ih未満へと変化し、モータ制御部71は、ステップS7でYESと判断し、ステップS10でカウント「1」をインクリメントする処理を行う。このカウントは、モータ制御部71がハンマフラグのオン・オフを判断する場合に用いる変数である。
【0045】
モータ制御部71は、ステップS10に次ぐステップS11において、カウントが「2」以上であるか否かを判断し、ステップS11でNOと判断すると、負荷電流Iの値が閾値Ih未満になったことにより負荷無しと判断してステップS5に戻り、「第1定速度制御」を実行する。そして、モータ制御部71は、先端工具Tを、前述と同様に対象物に押し付け、かつ、対象物から離す操作が行われ、ステップS10を経てステップS11に進むと、そのステップS11でYESと判断し、ステップS12で「ハンマフラグ・オン」の処理を実行する。
【0046】
モータ制御部71は、ステップS12に次ぐステップS13において、トリガスイッチ59aがオフされたか否かを判断し、ステップS13でYESと判断すると、ステップS14に進み、ブラシレスモータ31を停止する。モータ制御部71は、ステップS15において、ブラシレスモータ31を停止した時点から10秒経過したか否かを判断する。モータ制御部71は、ステップS15でNOと判断すると、ステップS16において、トリガスイッチ59aがオフされているか否かを判断する。
【0047】
モータ制御部71は、ステップS16でNOと判断すると、ステップS2の判断を行う。モータ制御部71は、ステップS12で「ハンマフラグ・オン」と処理しているため、ステップS2でYESと判断する。モータ制御部71は、ステップS2でYESと判断すると、ステップS17に進み、デューティ比を変化率dDfで増加させ、かつ、ブラシレスモータ31の実際の回転数を、目標回転数Ntまで上昇させる処理を実行する。デューティ比の変化率dDfは、デューティ比の変化率dDsよりも大きい。
【0048】
モータ制御部71は、ステップS17に次ぐステップS18において、ブラシレスモータ31の実際の回転数が、目標回転数Ntに到達したか否かを判断する。モータ制御部71は、ステップS18でYESと判断するとステップS5に進む。モータ制御部71は、ステップS18でYESと判断すると、ステップS5に進み、ステップS18でNOと判断すると、ステップS19でトリガスイッチ59aがオフされたか否かを判断する。モータ制御部71は、ステップS19でNOと判断すると、ステップS17に進み、ステップS19でYESと判断すると、ステップS14に進む。
【0049】
さらに、モータ制御部71は、ステップS15でYESと判断すると、ステップS20で「ハンマフラグ・オフ」とし、かつ、「カウント=0」とする処理を行い、
図3のフローチャートを終了する。さらに、モータ制御部71は、ステップS13でNOと判断すると、ステップS5に戻り、ステップS6でNOと判断するとステップS11に進む。さらに、モータ制御部71は、ステップS16でYESと判断すると、ステップS15に戻る。
【0050】
さらに、モータ制御部71は、ステップS4でNOと判断すると、ステップS21でトリガスイッチ59aがオフされたか否かを判断する。モータ制御部71は、ステップS21でNOと判断すると、ステップS3に戻り、ステップS21でYESと判断すると、ステップS14に進む。さらに、モータ制御部71は、ステップS5AでNOと判断した場合、または、ステップS8でYESした場合も、ステップS14に進む。
【0051】
図4のタイムチャートは、
図3のフローチャートに対応する。時刻t1でトリガスイッチがオンされると、負荷電流値Iが上昇し、かつ、ブラシレスモータの回転数が上昇する。負荷電流値Iが上昇する時刻t1から時刻t2まで間、デューティ比の変化率dDsに設定される。時刻t2から、ブラシレスモータの回転数を目標回転数Ntに維持する第1定速度制御が実行されており、負荷電流値Iは、閾値Ih未満の一定値に維持されている。
【0052】
時刻t3で先端工具が対象物に押し付けられると、ブラシレスモータの回転数が低下し始める。このとき、ブラシレスモータの実際の回転数を、目標回転数Ntに維持する処理が継続されているので、ブラシレスモータの回転数をNtにするために負荷電流値Iは上昇している。負荷電流値Iは、時刻t4で閾値Ih以上になり、ブラシレスモータの回転数を目標回転数Nmに維持する第2定速度制御を実行する。ブラシレスモータの実際の回転数が目標回転数Nmよりも低いと、ブラシレスモータの実際の回転数を目標回転数Nmに維持するため、電流値が増加されてブラシレスモータの実際の回転数が上昇している。ブラシレスモータの回転数が時刻t5で目標回転数Nmに到達すると、時刻t5以降、ブラシレスモータの回転数を目標回転数Nmに維持するために負荷電流値Iは閾値Ih以上で一定に維持される。
【0053】
時刻t6で先端工具が対象物から離されて、ブラシレスモータの負荷が低下すると、ブラシレスモータの実際の回転数が目標回転数Nmを超える。このとき第2定速度制御を実行しているため、ブラシレスモータの実際の回転数を目標回転数Nmま低下させるため負荷電流値を減少させる。すると、時刻t7において、負荷電流値Iが閾値Ih以上から閾値Ih未満に変化したことが検知され、カウント「1」がインクリメントされると同時に、負荷電流Iが閾値Ih未満になったことで、時刻t8以降、ブラシレスモータの実際の回転数を目標回転数Ntに維持する第1定速度制御が実行される。
【0054】
時刻t9で先端工具が対象物に押し付けられると、ブラシレスモータの実際の回転数が低下し始める。すると、ブラシレスモータの実際の回転数を、目標回転数Ntに維持する第1定速度制御が実行されているので、ブラシレスモータの実際の回転数を目標回転数Ntに戻すため、負荷電流値Iは上昇している。負荷電流値Iは、時刻t10で閾値Ih以上になり、第2定速度制御が実行され、ブラシレスモータの実際の回転数が時刻t11で目標回転数Nmに到達すると、時刻t11以降、ブラシレスモータの実際の回転数を目標回転数Nm維持するため、負荷電流値Iは閾値Ih以上で一定に維持される。
【0055】
時刻t12でトリガスイッチがオフされると、ブラシレスモータの実際の回転数が低下し、かつ、負荷電流値Iが低下する。時刻t13において、負荷電流値Iが閾値Ih以上から閾値Ih未満に変化したことが検知され、カウント「1」がインクリメントされると、合計のカウントが2以上となり、「ハンマフラグ・オン」と処理される。時刻t14でブラシレスモータが停止し、かつ、負荷電流値Iは0アンペアとなる。
【0056】
時刻t15でトリガスイッチがオンされると、負荷電流が上昇し、かつ、ブラシレスモータの回転数が上昇する。負荷電流値Iが上昇する時刻t15から時刻t16まで間、デューティ比は変化率dDfに制御される。時刻t16から、ブラシレスモータの回転数を目標回転数Ntに維持する処理が実行され、負荷電流値Iは、閾値Ih未満の一定値に維持される。
【0057】
時刻t17で先端工具が対象物に押し付けられると、ブラシレスモータの回転数が低下する。すると、ブラシレスモータの実際の回転数を、目標回転数Ntに維持しようとして、負荷電流値Iは上昇する。負荷電流値Iは、時刻t18で閾値Ih以上になり、第2定速度制御が実行され、目標回転数Nmを維持するためにブラシレスモータの実際の回転数を上昇させ、時刻t19で目標回転数Nmに到達すると、時刻t19以降、ブラシレスモータの実際の回転数は目標回転数Nmに維持され、かつ、負荷電流値Iは閾値Ih以上で一定に維持される。
【0058】
作業者が打撃モードを選択して、作業機10aを使用して斫り作業を行う場合は、ブラシレスモータ31の回転を開始してから停止するまでの間に、先端工具Tを対象物から離し、その後に先端工具Tを対象物に押し付ける操作が、1回以上繰り返される。このため、モータ制御部71は、
図3のフローチャートのステップS6,S7,S10の処理を2回以上繰り返し、ステップS12に進んで「ハンマフラグ・オン」と処理され、モータ制御部71は打撃モードが選択されているものと推定する。したがって、一旦、トリガスイッチ59aオフされた後に、トリガスイッチ59aが再度オンされると、ブラシレスモータ31の回転数を上昇させる場合は、デューティ比は変化率dDfで制御される。
【0059】
一方、作業者が回転打撃モードを選択し、作業機10aを使用して穴あけ作業を行う場合は、ブラシレスモータ31の回転を開始してから停止するまでの間に、先端工具Tを対象物から離し、その後に先端工具Tを対象物に押し付ける操作は行わない。このため、モータ制御部71は、
図3のフローチャートのステップS10の処理を2回行うことはなく、回転打撃モードが選択されているものと推定し、「ハンマフラグ・オン」と処理することはない。したがって、一旦、トリガスイッチ59aオフされた後に、トリガスイッチ59aが再度オンされると、ブラシレスモータ31の回転数を上昇させる場合は、デューティ比は変化率dDsで制御される。
【0060】
そして、デューティ比の変化率dDfは、デューティ比の変化率dDsよりも大きい。つまり、打撃モードが選択され、かつ、ブラシレスモータ31が回転中にトリガスイッチ59aがオフされた後、再度、トリガスイッチ59aがオンされて、停止しているブラシレスモータ31回転数を目標回転数まで上昇させるまでに要する時間tmax1は、回転打撃モードが選択され、かつ、ブラシレスモータ31が回転中にトリガスイッチ59aがオフされた後、再度、トリガスイッチ59aがオンされて、停止しているブラシレスモータ31回転数を目標回転数まで上昇させるまでに要する時間tmax2よりも短くなり、作業機10aを使用した作業性が向上する。
【0061】
(制御例2)
図5は、制御例2を示すフローチャートである。まず、モータ制御部71は、ステップS31でトリガスイッチオンを検知し、ステップS32でハンマフラグ・オンであるか否かを判断する。モータ制御部71は、ステップS32でNOと判断すると、ブラシレスモータ31の回転数を上昇させるために用いるデューティ比の変化率dDsを設定する。モータ制御部71は、ステップS34に進み、所定のデューティ比の変化率を用いて、ブラシレスモータ31の回転数を上昇する処理を行う。ステップS33からステップS34に進んだ場合は、ステップS34でデューティ比の変化率dDsを用いる。
【0062】
モータ制御部71は、ステップS35において、ブラシレスモータ31の実際の回転数が、目標回転数Nt以上になったか否かを判断する。モータ制御部71は、ステップS35でYESと判断すると、ステップS36に進み、ブラシレスモータ31の実際の回転数が、目標回転数になるまでの間、設定されたデューティ比の変化率で、ブラシレスモータ31の実際の回転数を調整する。ステップS35からステップS36に進んだ場合、目標回転数Ntを用いて、ブラシレスモータ31の実際の回転数を上昇する。
【0063】
モータ制御部71は、ステップS37において、ブラシレスモータ31の実際の回転数を、目標回転数に維持する定速度制御を実行する。ステップS37で用いる目標回転数は、ステップS36で用いた目標回転数と同じである。モータ制御部71は、ステップS37に次いでステップS38の判断を行う。ステップS38の判断は、ステップS6の判断と同じである。モータ制御部71は、先端工具Tが対象物に押し付けられるとステップS38でYESと判断し、ステップS39の処理を実行する。ステップS39の処理は、ステップS10の処理と同じである。
【0064】
モータ制御部71は、ステップS39に次いでステップS40の判断を行う。ステップS40の判断は、ステップS11の判断と同じである。モータ制御部71は、ステップS40でNOと判断すると、ステップS41の判断を行う。ステップS41の判断は、ステップS7の判断と同じである。モータ制御部71は、ステップS41でNOと判断すると、ステップS42に進み、トリガスイッチ59aがオフされているか否かを判断する。
【0065】
モータ制御部71は、ステップS42でNOと判断すると、ステップS43に進み、ブラシレスモータ31の実際の回転数を、所定のデューティ比の変化率で目標回転数まで上昇させる。モータ制御部71は、ステップS40でNOと判断し、ステップS41,42を経てステップS43に進んだ場合、ステップS43の処理ではデューティ比の変化率dDsを用い、かつ、目標回転数Ntを用いる。モータ制御部71は、ステップS43に次ぐステップS44で、ブラシレスモータ31の実際の回転数を、目標回転数に維持する定速度制御を実行し、ステップS41に進む。モータ制御部71は、ステップS40でNOと判断し、かつ、ステップS41,S42を経てステップS44に進んだ場合に、ステップS44で用いる目標回転数は、ステップS43で用いた目標回転数と同じである。
【0066】
モータ制御部71は、ステップS41でYESと判断すると、ステップS45でトリガスイッチ59aがオフされたか否かを判断する。モータ制御部71は、ステップS45でNOと判断すると、ステップS36に進む。モータ制御部71は、ステップS45でNOと判断した後、ステップS36〜S39を経てステップS40に進むと、ステップS40でYESと判断する。モータ制御部71は、ステップS40でYESと判断すると、ステップS46でハンマフラグ・オンと処理する。つまり、モータ制御部71は、トリガスイッチ59aがオンされている間に、負荷電流値Iが、閾値Ih未満から閾値Ih以上へと変化したことを2回以上検出すると、「ハンマフラグ・オン」と処理する。
【0067】
モータ制御部71は、ステップS46に次ぐステップS47で、ブラシレスモータ31の実際の回転数を上昇させるために用いるデューティ比の変化率をdDfに設定し、ステップS41に進む。モータ制御部71は、ステップS46,S47を経てステップS41に進み、ステップS41でNOと判断してステップS43,S44に進んだ場合、ステップS43では、デューティ比の変化率dDfを用い、かつ、目標回転数Nmを用いてブラシレスモータ31の実際の回転数を上昇する処理を行う。また、モータ制御部71は、ステップS44において、ブラシレスモータ31の実際の回転数を目標回転数Nmに維持する定速度制御を実行する。
【0068】
モータ制御部71は、ステップS45でYESと判断すると、ステップS48に進みブラシレスモータ31を停止する。モータ制御部71は、ステップS49において、ステップS48でブラシレスモータ31を停止した時点から、所定時間Dt2秒が経過したか否かを判断する。モータ制御部71は、ステップS49でNOと判断すると、ステップS50でトリガスイッチ59aがオフされているか否かを判断し、ステップS50でYESと判断すると、ステップS49に戻る。モータ制御部71は、ステップS49でYESと判断すると、ステップS51で「ハンマフラグ・オフ」と処理し、かつ、「カウント=0」とする処理を行い、
図5のフローチャートを終了する。
【0069】
モータ制御部71は、ステップS50でNOと判断すると、ステップS32に進む。モータ制御部71は、ステップS40でYESと判断し、その後に、ステップS45でYESと判断し、さらに、ステップS50でNOと判断してステップS32に進むと、ステップS32でYESと判断する。
【0070】
さらに、モータ制御部71は、ステップS32でYESと判断すると、ステップS52へ進んでデューティ比を変化率dDfに設定し、ステップS34に進む。このように、モータ制御部71は、ブラシレスモータ31を回転させている間に、「ハンマフラグ・オン」と処理しステップS52を経てステップS34に進むと、ブラシレスモータ31の実際の回転数を、デューティ比の変化率dDfで上昇させる処理を実行する。
【0071】
モータ制御部71は、ステップS42でYESと判断すると、ステップS48に進む。また、モータ制御部71は、ステップS35でNOと判断すると、ステップS53でトリガスイッチ59aがオフされたか否かを判断する。モータ制御部71は、ステップS53でYESと判断するとステップS48へ進み、ステップS53でNOと判断すると、ステップS34へ進む。
【0072】
図6は、
図5のフローチャートに対応するタイムチャート例である。
図6のタイムチャートでは、トリガスイッチがオンされてから、トリガスイッチがオフされるまでの間の時刻t4及び時刻t10の2回において、負荷電流値Iが閾値Ih未満から閾値Ih以上へと変化して、時刻t10でハンマフラグ・オンと処理されている。このため、時刻t10からブラシレスモータの回転数を上昇する場合のデューティ比の変化率dDfは、デューティ比の変化率dDsよりも大きい。
図6のタイムチャートに示すパラメータのその他の経時変化は、
図5の経時変化と同じである。
【0073】
このように、制御例2を実行しても、制御例1を実行した場合と同じ効果を得られる。また、制御例2では、トリガスイッチがオンされてから、トリガスイッチがオフされるまでの間にハンマフラグ・オンと処理されている。このため、トリガスイッチをオフすることなく、先端工具を対象物に押し付けてブラシレスモータの回転ステップSを目標回転数Nmまで上昇する場合のデューティ比の変化率dDfは、デューティ比の変化率dDsよりも大きい。そして、デューティ比の変化率dDfを用いた場合におけるブラシレスモータ31の回転数の上昇率は、デューティ比の変化率dDsを用いた場合におけるブラシレスモータ31の回転数の上昇率よりも高い。したがって、モータ制御部71は、ハンマフラグ・オン時にブラシレスモータ31の実際の回転数を素早く目標回転数まで上昇させることができ、作業性が向上する。
【0074】
(制御例3)
図7は、制御例3のフローチャートを示す。
図7のフローチャートは、
図3または
図6のフローチャートのサブルーチンとして実行される。モータ制御部71は、ステップS60でハンマフラグ・オンであるか否かを判断し、ステップS60でYESと判断すると、ステップS61でタイマを起動し、ステップS62において、1秒あたりにおける負荷電流値Iの上昇率が、10%以上であるか否かを判断する。
【0075】
ステップS62の判断は、モータ電流検出回路76からコントローラ72に入力される信号が負荷によるものか、それともノイズによるものかを判断している。10%は閾値であり、負荷電流値Iの上昇率が10%以上であれば負荷がかかっていると判断し、負荷電流値Iの上昇率が10%未満であれば負荷ではなくノイズによる信号が入力されていると判断する、という意味である。モータ制御部71は、ステップS62でYESと判断すると、ステップS63に進んでブラシレスモータ31の目標回転数を18,500rpm に設定し、
図7のフローチャートを終了する。
【0076】
モータ制御部71は、ステップS62でNOと判断すると、ステップS64に進んでブラシレスモータ31の目標回転数を13,000rpm に設定し、
図7のフローチャートを終了する。
【0077】
モータ制御部71は、ステップS60でNOと判断すると、ステップS65において、負荷電流値Iが閾値Ih以上であることが、1秒以上連続して検知されたか否かを判断する。モータ制御部71は、ステップS65でYESと判断すると、ステップS66に進んでブラシレスモータ31の目標回転数を17,000rpm に設定し、
図7のフローチャートを終了する。一方、モータ制御部71は、ステップS65でNOと判断するとステップS64に進む。
【0078】
図7のステップS61〜S63の処理、ステップS62でNOと判断してステップS64に進む処理は、例えば、
図4のタイムチャートの時刻t15以降に実行可能である。また、
図7のステップS66の処理は、例えば、
図4のタイムチャートの時刻t4〜時刻t7の間、または、時刻t10〜時刻t12の間、または、時刻t18以降に実行可能である。
図7のステップS65でNOと判断されてステップS64に進む処理は、
図4のタイムチャートの時刻t1から時刻t3の間、時刻t7から時刻t9の間、時刻t15から時刻t17の間で実行可能である。
【0079】
一方、
図7のステップS61〜S63の処理、ステップS62でNOと判断してステップS64に進む処理は、例えば、
図6のタイムチャートの時刻t10〜時刻t12の間、時刻t15以降に実行可能である。また、
図7のステップS66の処理は、例えば、
図6のタイムチャートの時刻t4〜時刻t6の間で実行可能である。モータ制御部71が、この制御を実行することで、ハンマフラグ・オンの時にブラシレスモータ31を最大の回転数で動作させることができ、作業効率を向上させることができる。
【0080】
(制御例4)
制御例4は、制御例1または制御例2のサブルーチンとして実行される。制御例4は
図8のフローチャートに示されている。モータ制御部71は、ステップS70でハンマフラグ・オンであるか否かを判断し、ステップS70でYESと判断すると、ステップS71で負荷電流値Iが閾値Ih以上であることが、0.3秒連続して検出されたか否かを判断する。モータ制御部71は、ステップS71でYESと判断すると、ステップS72に進んでブラシレスモータ31の目標回転数を18,500rpm に設定し、
図8のフローチャートを終了する。
【0081】
モータ制御部71は、ステップS71でNOと判断すると、ステップS73に進んでブラシレスモータ31の目標回転数を13,000rpm に設定し、
図8のフローチャートを終了する。
【0082】
モータ制御部71は、ステップS70でNOと判断すると、ステップS74において、負荷電流値Iが閾値Ih以上であることが、1秒以上連続して検知されたか否かを判断する。モータ制御部71は、ステップS74でYESと判断すると、ステップS75に進んでブラシレスモータ31の目標回転数を17,000rpm に設定し、
図8のフローチャートを終了する。一方、モータ制御部71は、ステップS74でNOと判断するとステップS73に進む。
【0083】
図8のステップS71,S72の処理、ステップS71でNOと判断してステップS73に進む処理は、例えば、
図4のタイムチャートの時刻t15以降に実行可能である。また、
図8のステップS75の処理は、例えば、
図4のタイムチャートの時刻t4〜時刻t7の間、または、時刻t10〜時刻t12の間で実行可能である。
図8のステップS74でNOと判断されてステップS73に進む処理は、
図4のタイムチャートの時刻t1から時刻t3の間、時刻t7から時刻t9の間で実行可能である。
【0084】
一方、
図8のステップS71,S72の処理、ステップS71でNOと判断してステップS73に進む処理は、例えば、
図6のタイムチャートの時刻t10以降に実行可能である。また、
図8のステップS75の処理は、例えば、
図6のタイムチャートの時刻t3〜時刻t6の間で実行可能である。
図8のステップS74でNOと判断してステップS73に進む処理は、
図6のタイムチャートの時刻t1から時刻t4の間、時刻t7から時刻t9の間で実行可能である。モータ制御部71が、この制御を実行することでハンマフラグ・オンの時にブラシレスモータ31を最大の回転数で動作させることができ、作業効率を向上させることができる。
【0085】
(設定例1)
次に、ブラシレスモータ31を制御する場合におけるデューティ比の設定例1を、
図9を参照して説明する。ここでは、作業者が回転数設定ダイヤル62を操作して複数段階の回転数モード、例えば、回転数モード1〜5の段階で、ブラシレスモータ31の目標回転数を任意に変更する例を挙げる。モータ制御部71は、目標回転数Ntを用いてブラシレスモータ31を制御する場合、回転数モード1〜5の何れが選択されている場合も、デューティ比を30%に設定する。
【0086】
これに対して、モータ制御部71は、目標回転数Nmを用いてブラシレスモータ31を制御する場合、ハンマフラグがオフされていると、選択された回転数モードに応じて、デューティ比が70%〜90%の範囲内で段階的に変更される。モータ制御部71は、回転数モードが大きいほど、大きいデューティ比を設定する。
【0087】
例えば、モータ制御部71は、
図4のタイムチャートの時刻t13以前に、目標回転数Nmを用いてブラシレスモータ31を制御する際に、回転数モードに応じてデューティ比を70%〜90%の範囲内で選択する。また、モータ制御部71は、
図4のタイムチャートの時刻t17以降、ハンマフラグ・オンの状態で目標回転数Nmを用いてブラシレスモータ31を制御する際に、回転数モードに関わりなくデューティ比を100%に設定する。デューティ比100%である場合のブラシレスモータ31の回転数は、デューティ比90%である場合のブラシレスモータ31の回転数よりも高い。
【0088】
また、モータ制御部71は、
図6のタイムチャートの時刻t10以前に、目標回転数Nmを用いてブラシレスモータ31を制御する際に、回転数モードに応じてデューティ比を70%〜90%の範囲内で選択する。また、モータ制御部71は、
図6のタイムチャートの時刻t17以降、ハンマフラグ・オンの状態で目標回転数Nmを用いてブラシレスモータ31を制御する際に、回転数モードに関わりなく、デューティ比を100%に設定する。
【0089】
(設定例2)
次に、ブラシレスモータ31を制御する場合におけるデューティ比の設定例2を、
図10を参照して説明する。モータ制御部71は、目標回転数Ntを用いてブラシレスモータ31を制御する場合、
図9と同じデューティ比の制御を行う。また、モータ制御部71は、目標回転数Nmを用いてブラシレスモータ31を制御し、かつ、ハンマフラグがオフされている場合、
図9と同じデューティ比の制御を行う。
【0090】
さらに、モータ制御部71は、目標回転数Nmを用いてブラシレスモータ31を制御し、かつ、ハンマフラグがオンされている場合を説明する。この場合、回転数モード5が選択されているとデューティ比が100%を選択し、回転数モード1〜4のいずれかが選択されていると、ハンマフラグがオフである場合と同じデューティ比を用いる。つまり、作業者が回転数設定ダイヤル62を操作して、目標回転数の最大値を選択している場合に限りデューティ比を100%に設定する。
【0091】
例えば、モータ制御部71は、
図4のタイムチャートの時刻t13以前に、目標回転数Nmを用いてブラシレスモータ31を制御する際に、回転数モードに応じてデューティ比を70%〜90%の範囲内で選択する。また、モータ制御部71は、
図4のタイムチャートの時刻t17以降、目標回転数Nmを用いてブラシレスモータ31を制御する際に、回転数モード1〜4の何れかが選択されていると、デューティ比を70%〜85%の範囲内に設定する。これに対して、
図4のタイムチャートの時刻t17以降、目標回転数Nmを用いてブラシレスモータ31を制御する際に、回転数モード5が選択されていると、デューティ比を100%に設定する。
【0092】
また、モータ制御部71は、
図6のタイムチャートの時刻t10以前に、目標回転数Nmを用いてブラシレスモータ31を制御する際に、回転数モードに応じてデューティ比を70%〜90%の範囲内で選択する。また、モータ制御部71は、
図6のタイムチャートの時刻t10以降、目標回転数Nmを用いてブラシレスモータ31を制御する際に、回転数モード1〜4の何れかが選択されていると、デューティ比を70%〜85%の範囲内に設定する。これに対して、
図6のタイムチャートの時刻t10以降、目標回転数Nmを用いてブラシレスモータ31を制御する際に、回転数モード5が選択されていると、デューティ比を100%に設定する。モータ制御部71は、設定例1及び設定例2を実行することで、ハンマフラグ・オンの時にはブラシレスモータ31を最大の回転数で動作させることができ、作業効率を向上させることができる。
【0093】
本実施形態で説明した事項と、本発明の構成との対応関係を説明すると、ブラシレスモータ31が、本発明のモータに相当し、先端工具Tが、本発明の先端工具に相当し、従動スリーブ54、駆動側のベベルギヤ55、従動側のベベルギヤ56、コイルばね57、動作モード切替レバーが、本発明のモード切替機構に相当し、モータ制御部71が、本発明の負荷検出部及びモード推定部及びモータ制御部及び目標回転数設定部に相当する。ブラシレスモータの回転数、デューティ比の変化率が、本発明の処理内容に相当する。また、本実施形態では、デューティ比の変化率dDsを用いたブラシレスモータの回転数の上昇率と、デューティ比の変化率dDfを用いたブラシレスモータの回転数の上昇率と、が異なる。
【0094】
また、先端工具が対象物に押し付けられているか否かが、本発明の負荷に相当し、先端工具が対象物から離れていることが、本発明の第1負荷に相当し、先端工具が対象物に押し付けられることが、本発明の第2負荷に相当する。さらに、打撃モード及び回転打撃モードが、本発明における複数の動作モードに相当する。さらに、目標回転数Nt、デューティ比30%である場合のブラシレスモータ31の回転数が、本発明の第1目標回転数に相当する。また、目標回転数Nm、具体的には、デューティ比70%〜90%の範囲内で制御されるブラシレスモータ31の回転数が、本発明の第2目標回転数に相当する。さらに、目標回転数Nm、具体的には、デューティ比100%で制御されるブラシレスモータ31の回転数が、本発明の第3目標回転数に相当する。また、デューティ比90%で制御されるブラシレスモータ31の回転数が、本発明の最大回転数に相当する。また、デューティ比70%〜85%の範囲内で制御されるブラシレスモータ31の回転数が、本発明の「最大回転数よりも低い回転数」に相当する。
【0095】
本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、先端工具が対象物に押し付けられたか否か、つまり、負荷が有るか無いかを判断する場合、ブラシレスモータの回転数を用いることも可能である。この場合、
図3のフローチャートのステップS6でブラシレスモータの実際の回転数が目標回転数Nt以上であるか否かを判断し、
図3のフローチャートのステップS7でブラシレスモータの実際の回転数が目標回転数Nt未満であるか否かを判断するルーチンとすればよい。
【0096】
また、
図5のフローチャートのステップS38でブラシレスモータの実際の回転数が目標回転数Nt以上であるか否かを判断し、
図5のフローチャートのステップS41でブラシレスモータの実際の回転数が目標回転数Nt未満であるか否かを判断するルーチンとすればよい。なお、ブラシレスモータの回転速度は、ブラシレスモータの回転数と技術的に等価であるため、ブラシレスモータの実際の回転数、目標回転数に代えて、実際の回転速度、目標回転速度を用いることも可能である。つまり、ブラシレスモータの回転速度は、本発明の処理内容に含まれる。また、回転数設定ダイヤル62により設定可能な回転数モードの数は、5を超えてもよいし、5未満でもよい。さらに、回転数設定ダイヤル62の操作により、ブラシレスモータ31の回転数を無段階に設定可能であってもよい。
【0097】
さらに、
図1に示す作業機10aは、交流電源と電動モータを接続する形態であるが、本発明は、直流電源としての二次電池と電動モータとを接続する作業機にも適用できる。さらに、実施の形態においては、電動モータとしてブラシレスモータが使用されているが、コミュテータとブラシとを有するブラシ付きのモータを使用するようにしてもよい。また、本発明のモータは、電動モータの他、油圧モータ、空気圧モータ、内燃機関を含む。さらに、本発明は、負荷の変化を複数回検出してハンマフラグ・オンと処理すればよく、負荷の変化を3回異常検出した場合に、上常検出した場合に、ハンマフラグ・オンと処理してもよい。