(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0005】
鉄筋コンクリート部材は、何れの破壊態様であるかによって傾向に若干の相違はあるものの、一旦破壊が始まってしまうと、耐力が低下していくのを食い止めることはできないという難点がある。
図2(b)は、従来の鉄筋コンクリート部材の荷重変位特性を示したものであるが、ここに示すように、従来の鉄筋コンクリート部材は、作用する荷重がPcrに達するとコンクリートにひびが入り始め、Pyに達すると鉄筋や鉄骨が降伏し始める。そして、荷重が最大荷重Puに達した後は、鉄筋コンクリート部材が完全に破壊され、これ以降は最大荷重Puに満たない大きさの荷重が作用するだけでも大きく変位してしまう。これは、損傷が集中する箇所ほど作用する応力が大きく、さらにその箇所に応力が作用し続けることで、応力を負担しきれずに破壊領域が徐々に拡大していくためである。
このように一旦破壊が始まり、耐力が低下していく一方となった鉄筋コンクリート部材は、この部材に接合される他の部材の変位が大きくなるのを抑えることが出来ないので、最悪の場合、コンクリート構造物全体の崩壊を引き起こす虞がある。
【0006】
本発明は、上記の課題に鑑みてなされたもので、破壊が生じた後の耐力の低下を途中で食い止めることのできる鉄筋コンクリート部材の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記課題を解決するため、本発明は、型枠内に、前記型枠の一端から他端にかけて主鉄筋を配設し、その後、前記型枠内にコンクリートを流し込んで固化させる鉄筋コンクリート部材の製造方法において、前記型枠内に、
複数の骨材を、内部に空隙が出来るように集めて形成した集合体に、パイプの一端を差し込んだものを、前記主鉄筋に沿って、かつ、前記型枠の内壁から離間するように配設し、その後、前記型枠にコンクリートを、前記
パイプの他端が埋没しないように流し込み、その後、前記
パイプの他端から、エポキシ樹脂、熱硬化性樹脂、または高靭性セメント複合材料を注入して前記
集合体内の、前記コンクリートが浸入せずに残った空隙を充填することを特徴とする。
【0008】
このようにすれば、前記コンクリート内に、前記コンクリートよりも引張強度が高い材料で形成されるとともに、前記主鉄筋に沿って配設された芯部を備え、所定以上のコンクリートの変形により、前記芯部と前記コンクリートとの付着が切れる鉄筋コンクリート部材が製造される。
この鉄筋コンクリート部材は、応力が作用すると芯部とコンクリートとの付着が切れるので、それ以降、芯部は応力を受け持たなくなり、周辺部のコンクリートと主鉄筋とで構成される鉄筋コンクリート部で応力を受け持つようになる。そして、さらに応力(変形)が大きくなると、鉄筋コンクリート部が破壊し始めて荷重を負担できなくなるので、鉄筋コンクリート部材の耐力が徐々に低下し、鉄筋コンクリート部材が変形していく。しかし、鉄筋コンクリート部材の変形がある大きさまで達したところで、引張強度の大きい芯部が荷重を受け持つようになるため、鉄筋コンクリート部材の耐力の低下が食い止められるようになる。その結果、この鉄筋コンクリート部材に接合される他の部材の変位が大きくなるのを防ぐことができる。
また、内部の空間を残したままコンクリート構造物を構築した後、すなわち、コンクリート部材の外周部を先に形成した後に芯部を形成するといったことも可能となる。
【0009】
また、このようにすれば、コンクリートを流し込む際に、コンクリートを骨材が支えるので、空間がつぶれてしまうのを防ぐことが出来る。
また、芯部を全てこれらの材料で形成した場合に比べて材料の使用量が抑ええられるので、鉄筋コンクリート部材の製造コストを下げることができる。
特に、エポキシ樹脂または熱硬化性樹脂の場合は、固化する際の収縮が問題となるが、このようにすれば、樹脂の収縮の程度が、芯部を全て樹脂で形成した場合に比べて小さくなるので、コンクリートと芯部との間に大きな隙間が生じ、鉄筋コンクリート部が破壊された後の芯部の荷重を受け持つ機能が低下してしまうのを防ぐことができる。
【0010】
また、望ましくは、上記発明において、前記複数の骨材を籠に詰めることにより、前記集合体を形成するようにするとよい。
このようにすれば、骨材同士を接着する場合等に比べ、集合体を容易に形成することができる。
【0011】
また、望ましくは、上記発明において、前記
パイプの他端に前記エポキシ樹脂、前記熱硬化性樹脂、または前記高靭性セメント複合材料の入った容器を接続するとともに、前記容器を前記
パイプの他端よりも上方に配置し、前記エポキシ樹脂、前記熱硬化性樹脂、または前記高靭性セメント複合材料を、その重みを利用して注入するようにするとよい。
このようにすれば、圧入するための装置が不要となるだけでなく、低圧でゆっくりと注入されることで、より確実に空隙を充填することができる。
【発明の効果】
【0012】
本発明によれば、破壊が生じても、耐力の低下を途中で食い止めることのできる鉄筋コンクリート部材が得られる。
【発明を実施するための形態】
【0014】
<第1発明第1実施形態>
以下、図面を参照して、第1発明の第1実施形態について詳細に説明する。
【0015】
〔鉄筋コンクリート部材の構造〕
まず、本実施形態における鉄筋コンクリート部材である、鉄筋コンクリート梁(以下、梁10)の構造について説明する。
図1は、梁10を、一部のコンクリートのみ切り取って示した図である。
梁10は、
図1(a)に示すように、2本の柱Pの間に水平に設けられている。この梁10は、芯部1、芯部1の周囲に設けられる鉄筋コンクリート部(以下、RC部2)からなる。
【0016】
芯部1は、結合材11、および砂利(骨材)12により、RC部2内部の空間を充填するように角柱状に形成されている。本実施形態で用いている結合材11は、エポキシ樹脂等の硬化剤を用いて硬化させる樹脂、熱硬化性樹脂(レジン)、高靭性セメント複合材料等である。固化した結合材11は、コンクリート21に比べて引張強度が高く、コンクリート21との付着強度(コンクリート中の対象物を引き抜くのに要した力や押し抜くのに要した力の最大値を、コンクリートと対象物とが接触する面積で除した値)が、鋼材(後述する主鉄筋22やせん断補強鉄筋23)とコンクリートとの付着強度に比べて低くなっている。
【0017】
RC部2は、コンクリート21で角柱状に形成され、内部には、主鉄筋22とせん断補強鉄筋23がそれぞれ複数配設されている。
主鉄筋22は、
図1(a)に示すように、芯部1の上方および下方、すなわち、RC部2の上部および下部に、梁10の長手方向に沿って複数本配設されている。各主鉄筋22は、
図1(b)に示すように、RC部2の上面および下面に沿って一列に並べて配設されている。また、各主鉄筋22の一端は一方の柱Pに定着し、他端は他方の柱Pに定着している。
【0018】
せん断補強鉄筋23は、
図1(b)に示すように、梁10の、主鉄筋22の配設方向と直交する方向に切断した断面の矩形よりも、コンクリートのかぶりの分だけ一回り小さい矩形環状に形成され、全ての主鉄筋22と芯部1が内側を通るように等間隔に複数配設されている。なお、梁10のせん断補強鉄筋の配設数は、従来の鉄筋コンクリート部材が必要とした数よりも少なくなっている。これは、芯部1によって梁10のせん断応力に対する耐力が高められているためである。以下、主鉄筋22とせん断補強鉄筋23とを区別しない場合には、鉄筋22,23と表記する。
【0019】
〔鉄筋コンクリート部材の荷重変位特性〕
次に、上記梁10の荷重変位特性について説明する。
まず、梁10の両端部を図示しない測定装置の台に乗せ、梁10の上面中央部に下向きの荷重をかけていき、梁10中央部の下方への変位(変形)量を測定した。そのときの荷重と変位の関係をグラフにしたものが
図2(a)である。
【0020】
図2(a)に示すように、梁10の中央部に大きさP1の荷重が作用すると、コンクリート21の下部にひび割れが生じ、梁10の中央部がD1だけ下方に変位する。すると、芯部1とコンクリート21との付着が切れる。これ以降、最大荷重P2に達するまでは、荷重が大きくなるにつれて変位も大きくなっていき、最大荷重P2に達したところで、RC部2のコンクリート21が曲げ破壊またはせん断破壊する。このとき、芯部1とコンクリート21との付着は切れている上、芯部1を形成する結合材11の強度は極めて高いので、芯部1にRC部2の破壊は殆ど影響しない。コンクリート21が破壊された後は、梁10の耐力が低下し、最大荷重P2に満たない大きさの荷重が作用するだけでも変位量D2を超えて変位するようになる。破壊が最も進行した状態では、最大荷重P2を大きく下回る荷重P3が作用するだけで、変位量がD3まで達するようになる。
【0021】
しかし、変位量がD3まで達した後は、芯部1と主鉄筋22とで荷重を受け持つようになるため、梁10の耐力が再び回復し、場合によっては最大荷重P2を超える荷重P4を受け持つことができるようになる。
なお、本発明では、芯部1の表面の状態を特に指定していない。これは、芯部1の表面をなだらかにすることで、芯部1とRC部2の付着強度は低下するが、表面が粗い場合と同等の効果が得ることができると考えられるためである。
また、ここで示したグラフは一例であり、芯部1の材料、長さ、断面寸法、表面の粗さ、配設位置、配設個数等の設計を変更することにより、梁10の荷重変位特性(曲線が描く極値の位置)は適宜調節可能である。
【0022】
〔鉄筋コンクリート部材の製造方法〕
次に、上記梁10の製造方法について説明する。
図3は、梁10の製造工程を示したものである。
本実施形態の梁10は、設計工程S1、芯部製造工程S2、鉄筋・芯部配設工程S3、コンクリート充填工程S4を経ることにより製造される。
【0023】
(設計・型枠製造工程S1)
初めの設計・型枠製造工程S1では、まず、これから製造しようとする梁10の設計を行う。この工程は、通常、梁10を構成要素とするコンクリート構造物全体を設計する際に行う。具体的には、所望の荷重変位特性を得る(どこにRC部2の破壊ピークを持ってくるか決める)ために必要な、芯部1の材料、長さ、断面寸法、表面の粗さ、配設位置(せん断応力が最も大きく作用する領域)、配設個数、鉄筋22,23の数などを計算により求める。そして、得られた計算結果に基づいて、芯部用の型枠3(
図3(a)参照)、RC部用の型枠4(
図3(b)参照)、必要な数量の材料を用意する。
【0024】
(芯部製造工程S2)
材料や型枠3,4を用意した後は、芯部製造工程S2に移る。芯部製造工程S2では、まず、芯部用の型枠3に骨材12を詰める。そして、型枠3に結合材11を流し込む。結合材11が固化したら、
図3(a)に示すように、芯部1の完成となる。
【0025】
(鉄筋・芯部配設工程S3)
芯部1を製造した後は、鉄筋・芯部配設工程S3に移る。鉄筋・芯部配設工程S3では、まず、
図3(b)に示すように、RC部用の型枠4内に、RC部2の下部に位置することになる主鉄筋22を、モルタル製或いはコンクリート製のスペーサー5を用いて、型枠4の底面および主鉄筋22配設方向に沿う側面から離間するように配設するとともに、主鉄筋22の両端を型枠4の側壁に形成された鉄筋通し孔(図示省略)に通す。なお、図示は省略するが、主鉄筋22を配設する際、後で型枠4の側壁や、スペーサー5が邪魔にならないよう、予め主鉄筋22にせん断補強鉄筋23をくぐらせておく。そして、
図3(c)に示すように、配設した主鉄筋22の上方に、芯部1を、モルタル製或いはコンクリート製のスペーサー6を用いて、配設済みの主鉄筋22から離間するようにかつ、主鉄筋22の配設方向に沿うように配設する。そして、
図3(d)に示すように、せん断補強鉄筋23とRC部2の上部に位置することになる主鉄筋22を組む。
【0026】
(コンクリート充填工程S4)
芯部1を型枠内の所定位置に配設し、鉄筋22,23を組んだ後は、コンクリート充填工程S4に移る。コンクリート充填工程S4では、型枠4内に所定量のコンクリート21を流し込む。すると、
図3(e)に示すように、芯部1および鉄筋22,23がコンクリートに埋没する。その後、コンクリート21を養生し、固化させる。コンクリート21が固化することで、スペーサー5,6はRC部2の一部となる。コンクリート21が固化したら、型枠4を分解し、梁10の完成となる。
【0027】
以上のように、本実施形態では、型枠4内に、コンクリート21よりも引張強度が高い材料(結合材11)で形成され、かつ、所定以上のコンクリート21の変形により、コンクリート21との付着が切れる芯部1を、主鉄筋22に沿って、かつ、型枠4の内壁から離間するように配設し、その後、型枠4内に、コンクリート21を、主鉄筋22および芯部1が埋没するまで流し込んで固化させるようにして鉄筋コンクリート梁10を製造している。
こうすることにより、この鉄筋コンクリート梁10に応力が作用すると芯部とコンクリートとの付着が切れるので、それ以降、芯部は応力を受け持たなくなり、周辺部のコンクリートと主鉄筋とで構成される鉄筋コンクリート部で応力を受け持つようになる。そして、さらに応力(変形)が大きくなると、鉄筋コンクリート部が破壊し始め荷重を負担できなくなるので、鉄筋コンクリート部材の耐力が徐々に低下し、鉄筋コンクリート部材が変形していく。しかし、鉄筋コンクリート部材の変形がある大きさまで達したところで、引張強度の大きい芯部が荷重を受け持つようになるため、鉄筋コンクリート部材の耐力の低下が食い止められるようになる。その結果、この鉄筋コンクリート部材に接合される他の部材の変位が大きくなるのを防ぐことができる。
【0028】
また、本実施形態では、骨材を集めたものに、エポキシ樹脂、熱硬化性樹脂、または高靭性セメント複合材料を流し込んで固化させることにより、芯部を形成するようにしている。
こうすることにより、予めこれらの材料の何れかを固化させたものを型枠に配置して、そこにコンクリートを充填するだけで芯部を形成することができる。
【0029】
また、本実施形態では、製造しようとする鉄筋コンクリート部材が所望の荷重変位特性を発揮するのに必要な芯部の材料、長さ、断面寸法、表面の粗さ、配設位置、配設個数の何れかを算出し、算出結果に基づいて芯部を形成し、配設するようにしている。
こうすることにより、鉄筋コンクリート部材の荷重変位特性を、構築しようとするコンクリート構造物に最適なものとし、コンクリート構造物をより強靭なものとすることができる。
また、破壊が生じ易い箇所に集中して芯部を形成できるので、より破壊の生じにくい鉄筋コンクリート部材を製造することができる。
更に、比較的破壊の生じにくい箇所に芯部を形成する必要がなくなるので、鉄筋コンクリート構造物の製造コストを下げることができる。
【0030】
<第1発明第2実施形態>
次に、第1発明の第2実施形態について説明する。
ここでは、第1実施形態と相違する点のみ説明することとし、共通する点については説明を省略する。
【0031】
〔鉄筋コンクリート部材の構造〕
まず、本実施形態における鉄筋コンクリート部材である、鉄筋コンクリート梁(以下、梁10A)の構造について説明する。
図4は、梁10Aを、一部のコンクリートのみ切り取って示した図である。
梁10Aは、
図4に示すように、芯部の構造が第1実施形態と異なっている。芯部1Aは、コンクリート13と、コンクリート13内に主鉄筋22に沿って配設されたH形鋼14と、コンクリート13の表面を覆うテフロン(登録商標)シート15とで、第1実施形態の芯部1と同形状に形成されている。芯部1Aに用いるコンクリート13は、RC部2のコンクリート21と同じものであっても良いし、異なるものを用いても良い。
芯部1Aは、梁10Aに応力が作用していない状態では、RC部2のコンクリート21とある程度付着しているが、僅かに応力が作用することでこの付着が切れるようになっている。
【0032】
〔鉄筋コンクリート部材の製造方法〕
次に、上記梁10Aの製造方法について説明する。
第2実施形態は、芯部1Aを変更したことに伴い、芯部製造工程が第1実施形態と異なっている。
【0033】
(芯部製造工程S12)
本実施形態の芯部製造工程S12では、まず、芯部用の型枠3内に、H形鋼14を、モルタル製或いはコンクリート製のスペーサーを用いて、型枠3の内面から離間するように配設する。そして、型枠3にコンクリート13を流し込む。その後、コンクリート13を養生し、固化させる。コンクリート13が固化したら、型枠3を分解して、鉄骨コンクリートを取り出す。そして、鉄骨コンクリートの表面全体にテフロンシート15を貼り付ける。こうして、芯部1Aの完成となる。
【0034】
以上のように、本実施形態で用いる芯部1Aは、コンクリート13(第2のコンクリート)と、コンクリート13内に主鉄筋22に沿って配設されたH形鋼14(鋼材)と、コンクリート13の表面を覆い、コンクリート21とコンクリート13とを隔てるテフロンシート(被覆部)とで形成されたものとなっているので、第1実施形態の梁10と同様に、変形がある大きさまで達したところで、耐力の低下が食い止められるようになるのは勿論、テフロンシート15以外は、通常の鉄骨コンクリートと同じ材料なので、樹脂等を用いた場合に比べ低コストで梁10Aを製造することができる。
【0035】
<第2発明>
以下、第2発明の実施形態について説明する。
本発明は、第1発明と同様に鉄筋コンクリート部材に係るものであるが、製造方法が第1発明と異なっている。このため、ここでは、第1発明と相違する点のみ説明することとし、共通する点については説明を省略する。
【0036】
〔鉄筋コンクリート部材の製造方法〕
まず、本実施形態の鉄筋コンクリート部材である梁10Bの製造方法について説明する。
図5は、梁10Bの製造工程を示したものである。
本実施形態の梁10Bは、設計・型枠製造工程S21、骨材・鉄筋配設工程S22、コンクリート充填工程S23、結合材注入工程S24を経て製造される。すなわち、本実施形態の梁10Bの製造方法は、RC部2を先に形成し、後から芯部1を形成する点で第1発明と異なっている。
【0037】
(設計・型枠製造工程S21)
本実施形態の設計・型枠製造工程S21は、梁10Bの設計、材料、RC部2用の型枠4の用意までは第1発明と同様であるが、ここでは、芯部用の型枠を用意する必要はない。
【0038】
(鉄筋・骨材配設工程S22)
材料や型枠4を用意した後は、鉄筋・骨材配設工程S22に移る。鉄筋・骨材配設工程S22では、まず、
図5(a)に示すように、形成しようとする芯部1よりも一回り大きな網状の袋や容器に骨材12を詰める。本実施形態では、網状の袋や容器の一例として、蛇籠7a(金属製の籠)を用いている。そして、蛇籠7aに詰められた骨材12(以下、集合体7)を、
図5(b)に示すように、型枠4内に配置し、鉄筋22,23を組む。集合体7の配設の仕方は、第1発明の芯部1の配設の仕方と同様であり、鉄筋22,23の組み方も第1発明と同様である。鉄筋22,23を組んだ後は、
図5(c)に示すように、集合体7の複数個所にパイプ8の一端を差し込む。このパイプ8を差し込まれた集合体7が、内部に空間を有するとともに、開口が設けられた部材ということになる。パイプ8の長さや差込位置は、後でパイプ8の他端を型枠4の上端辺りまで持ってくることのできるように調節しておく。
【0039】
(コンクリート充填工程S23)
鉄筋22,23を組み、集合体7を配設した後は、コンクリート充填工程S23に移る。コンクリート充填工程S23では、型枠4にコンクリート21を所定量、パイプ8の他端が埋没しないように流し込む。すると、集合体7および鉄筋22,23がコンクリート21に埋没するとともに、パイプ8の上端部がコンクリート21の上に出る。このとき、コンクリートのモルタル或いはセメントペーストが集合体7の表層部の空隙に入り込むが、これらの粘性は高いので、集合体7の中心部までは届かず、集合体7の中心部には空隙が残る。また、パイプ8によって集合体7内の空隙とコンクリート21の外側とが連通する。そして、コンクリート21を養生し、固化させる。
【0040】
(結合材注入工程S24)
コンクリートが固化した後は、結合材注入工程S24に移る。結合材注入工程S24では、
図5(d)に示すように、コンクリート21の表面から出たパイプ8の他端から結合材11を流し込む。本実施形態では、パイプ8の上端に結合材11の入った容器(図示省略)を接続するとともに、その容器をパイプ8の上方に配置することにより、結合材11を、その重みによって集合体7の空隙にゆっくりと充填していく。すると、結合材11が集合体7内の空隙に入り込み芯部1が形成される。前述したように、集合体7を形成するのに用いた蛇籠7aは、形成しようとする芯部1よりも一回り大きくしているので、集合体7の表層部にセメントが入り込んでも、必要な大きさの芯部1Bが形成される。
【0041】
以上のように、本実施形態では、型枠4内に、内部に空間を有するとともに、空間に通じる開口が設けられた部材(集合体7およびパイプ8)を、主鉄筋22に沿って、かつ、型枠4の内壁から離間するように配設し、その後、型枠4にコンクリート21を、開口(パイプ8の上端)を閉塞しないように流し込み、その後、開口からエポキシ樹脂、熱硬化性樹脂、または高靭性セメント複合材料を注入し、空間内を充填するようにしたので、第1発明とほぼ同様の、コンクリート21内に、コンクリートよりも引張強度が高い材料で形成されるとともに、主鉄筋22に沿って配設された芯部1Bを備え、所定以上のコンクリート21の変形により、芯部1とコンクリート21との付着が切れる鉄筋コンクリート部材を製造することができる。
また、内部の空間を残したままコンクリート構造物を構築した後、すなわち、コンクリート部材の外周部を先に形成した後に芯部を形成するといったことも可能となる。
【0042】
また、本実施形態では、空間を有するとともに、空間と開口が設けられた部材として、複数の骨材を、内部に空隙が出来るように集めて形成した集合体7に、パイプ8の一端を差し込んだものを用い、型枠4に、コンクリート21を、パイプ8の他端が埋没しないように流し込み、パイプ8の他端からエポキシ樹脂、熱硬化性樹脂、または高靭性セメント複合材料(結合材11)を注入し、集合体7内の、コンクリート21が浸入せずに残った空隙を充填するようにしたので、コンクリート21を流し込む際に、コンクリート21を骨材12が支えるので、空間がつぶれてしまうのを防ぐことが出来る。
また、骨材を用いた分だけこれらの材料の使用量が抑えられるので、鉄筋コンクリート部材の製造コストを下げることができる。
特に、エポキシ樹脂または熱硬化性樹脂の場合は、固化する際の収縮が問題となるが、このようにすれば、樹脂の収縮の程度が、芯部を全て樹脂で形成した場合に比べて小さくなるので、コンクリートと芯部との間に大きな隙間が生じ、鉄筋コンクリート部が破壊された後の芯部の荷重を受け持つ機能が低下してしまうのを防ぐことができる。
【0043】
また、本実施形態では、複数の骨材を網状の袋または容器に詰めることにより、集合体を形成するようにしたので、骨材同士を接着する場合等に比べ、集合体を容易に形成することができる。
【0044】
また、本実施形態では、開口にエポキシ樹脂、熱硬化性樹脂、または高靭性セメント複合材料の入った容器を接続するとともに、容器を開口よりも上方に配置し、エポキシ樹脂、熱硬化性樹脂、または高靭性セメント複合材料を、その重みを利用して注入するようにしたので、圧入するための装置が不要となるだけでなく、低圧でゆっくりと注入されることで、より確実に空隙を充填することができる。
【0045】
以上、本発明を実施形態に基づいて具体的に説明してきたが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
例えば、上記実施形態では、本発明を梁に適用した場合について説明したが、コンクリート構造物の柱や床スラブ、脚柱、杭などの他の鉄筋コンクリート部材に適用しても良い。
また、上記実施形態では、芯部1の、主鉄筋22の延設方向と直行する方向に切断したときの断面形状を矩形としたが、この断面形状は、梁を同方向に切断したときの断面形状と相似しているのが好ましく、例えば、梁の断面形状を円形とした場合には、芯部1の断面形状も円形にするとよい。
また、上記実施形態では、芯部1を結合材11と骨材12とで構成したが、梁10が小さく、コストの負担増加や、結合材11の収縮によるRC部2への影響が小さい場合には、骨材を用いずに構成するようにしても良い。また、製造条件(固化させる際の温度、骨材の湿潤の程度など)に応じて他の結合材を使用するようにしても良い。
また、上記実施形態では、芯部1AにH形鋼を用いたが、山形鋼や鉄筋など他の鋼材を用いても良い。
また、上記実施形態では、テフロンシート15でコンクリート13の表面全体を覆ったが、RC部2のコンクリート21と芯部1Aのコンクリート13とを接着するようなもので無ければ他の材料で覆うようにしても良い。また、全体でなく一部のみを覆うようにしてもよい。
また、上記実施形態では、型枠4内に集合体7を配置後、直ちにコンクリート21を流し込んだが、コンクリート21を流し込む前に,例えば、集合体7の表面にモルタルを吹き付ける等して、集合体7の空隙部をあらかじめ小さくする処理を行っておくようにしてもよい。
また、上記実施形態では、結合材11の重み(重力)を利用して結合材11を注入したが、所定の装置を用いて圧入するようにしてもよい。
また、上記実施形態では、骨材の集合体でコンクリートの内部に空隙を形成するようにしたが、予め有底筒状(角筒状や円筒状)のRC部を形成し、その開口から骨材を充填し、結合材11を注入するようにしても良い。
また、上記実施形態は何れも、鉄筋コンクリート部材をプレキャストのものとした場合について説明をしたが、第1,第2発明の製造方法は、コンクリートを現場打ちする場合にも応用することが出来る。すなわち、RC部用の型枠4を、施工現場で柱などの型枠と一体に組み、梁10をコンクリート現場打ちし、梁10と柱などの他の鉄筋コンクリート部材と同時に形成することもできる。