【実施例1】
【0026】
図1は、実施例1のスラスト軸受周りの概略構成を示す断面図である。
図2は、実施例1のスラスト軸受の概略構成を示す正面図である。
図3は、実施例1のスラスト軸受の一部を示す斜視図である。
図4は、実施例1のスラスト軸受の軸受パッドにおける潤滑油の径方向における分布を示す説明図である。
図5は、実施例1のスラスト軸受の潤滑油供給ノズルを示す正面図である。
【0027】
図1に示すように、実施例1に係るスラスト軸受40は、例えば、ガスタービンまたは蒸気タービン等のタービン6に設けられている。スラスト軸受40は、タービン6の回転軸であるタービンロータ20の軸方向における荷重を支持するものである。
【0028】
タービンロータ20は、その軸方向が水平方向となるように配置される。このタービンロータ20は、径方向外側に突出して設けられるスラストカラー50を含んで構成されている。スラストカラー50は、タービンロータ20の外周に周方向に亘って円環状に形成されている。
【0029】
スラストカラー50の軸方向の両側には、スラスト軸受40が一対設けられており、スラストカラー50、一対のスラスト軸受40及び後述する潤滑油供給ノズル76は、軸受ケーシング24に収容されている。スラストカラー50及び一対のスラスト軸受40は、軸受ケーシング24によって軸方向に固定されている。この軸受ケーシング24は、その内部が大気解放されている。つまり、軸受ケーシング24は、密封容器とはなっておらず、その内部に空気が流通することで、大気圧となっている。
【0030】
一対のスラスト軸受40は、スラストカラー50を挟んで、軸方向の一方側及び他方側にそれぞれ配置されている。このスラスト軸受40は、軸受パッド(ティルティングパッド)70を用いた、いわゆるティルティングパッド軸受であり、また、スラストカラー50と軸受パッド70との間に潤滑油(潤滑流体)を直接噴射する直接潤滑型のものとなっている。
【0031】
次に、
図1及び
図2を参照して、スラスト軸受40について説明する。なお、軸方向の一方側のスラスト軸受40と、軸方向の他方側のスラスト軸受40とは、配置が異なるが、同様の構成となっているため、一方のスラスト軸受40について説明する。
【0032】
図1及び
図2に示すように、スラスト軸受40は、スラストカラー50からの荷重を支持する複数の軸受パッド70と、各軸受パッド70を支持するベース74と、軸受パッド70とベース74との間に設けられるレベリング機構72と、潤滑油を供給する複数の潤滑油供給ノズル(潤滑流体供給ノズル)76と、を有する。
【0033】
複数の軸受パッド70は、スラストカラー50と軸方向に対向して設けられ、タービンロータ20の周方向に沿って所定の間隔を空けて並べて配置されている。また、各軸受パッド70は、扇状に形成されており、スラストカラー50と対向する面において、径方向外側における周長が長く、径方向内側における周長が短くなっている。スラストカラー50と各軸受パッド70との間には、潤滑油供給ノズル76から潤滑油が供給されることで潤滑油膜が形成され、この潤滑油膜によって、タービンロータ20の回転時に、スラストカラー50と各軸受パッド70との間で生じる摩擦等を低減している。各軸受パッド70は、図示しないピボットにより、レベリング機構72に対して傾斜自在に支持される。
【0034】
ベース74は、スラストカラー50から軸受パッド70を介してレベリング機構72に伝達された荷重を受け止める支持部材である。ベース74は、円環状に形成され、軸受ケーシング24に固定される。
【0035】
レベリング機構72は、複数の軸受パッド70の位置を調整し、タービンロータ20の周方向において、複数の軸受パッド70の負担荷重を均等化させるものである。
【0036】
図2に示すように、複数の潤滑油供給ノズル76は、周方向に隣り合う軸受パッド70同士の間にそれぞれ設けられている。複数の潤滑油供給ノズル76には、図示しない潤滑油供給装置から潤滑油が供給される。複数の潤滑油供給ノズル76は、スラストカラー50と軸受パッド70との間へ向けて潤滑油を供給する。複数の潤滑油供給ノズル76から供給された潤滑油は、タービンロータ20が所定の回転方向に回転することから、スラストカラー50と各軸受パッド70との間の潤滑油は、回転方向の上流側から下流側へ向かって流通する。このため、軸受パッド70の回転方向の上流側が、潤滑油が流入する入口側となり、軸受パッド70の回転方向の下流側が、潤滑油が流出する出口側となる。
【0037】
ここで、
図4に示すように、タービンロータ20が所定の回転方向に回転すると、スラストカラー50と軸受パッド70との間において、径方向外側の周長は、径方向内側の周長よりも長くなっていることから、径方向外側の周速が径方向内側の周速よりも速くなるために、
図4の実線で示すように、径方向外側の潤滑油が、径方向内側よりも不足し易いものとなる。このため、スラストカラー50と軸受パッド70との間には、径方向内側に比して径方向外側に気液二相状態が発生し易い。一方で、
図4の仮想線(二点鎖線)で示すように、スラストカラー50と軸受パッド70との間に形成される潤滑油膜は、径方向内側から径方向外側に向かって均一に形成されることが好ましい。
【0038】
このとき、
図2に示すように、軸受パッド70の内径をR
iとし、軸受パッド70の外径をR
oとする。また、軸受パッド70の内径R
iにおける周速をV
iとし、軸受パッド70の外径R
oにおける周速をV
oとし、回転数をNとする。さらに、
図4に示すように、潤滑油膜の膜厚をhとする。この場合、軸受パッド70の外径R
oにおける周速V
oは、「V
o=2πNR
o」で表される。また、軸受パッド70の外径R
oにおいて必要となる供給油量をq
oとすると、「q
o=πNR
oh」で表される。同様に、軸受パッド70の内径R
iにおける周速V
iは、「V
i=2πNR
i」で表される。また、軸受パッド70の内径R
iにおいて必要となる供給油量をq
iとすると、「q
i=πNR
ih」で表される。
【0039】
ここで、上記したように、潤滑油膜の膜厚hを、径方向に亘って均一にする場合(膜厚hが同じである場合)、供給油量q
oと供給油量q
iとは、「q
o/q
i=R
i/R
o」で表される。つまり、供給油量q
o及び供給油量q
iは、外径側の供給油量q
oが、内径側の供給油量q
iに比して多くなるように、内外径比に応じた供給油量となっている。
【0040】
上記した供給油量q
oと供給油量q
iとの関係を満たすために、実施例1では、潤滑油供給ノズル76を、
図3及び
図5に示すように形成している。
図3及び
図5に示すように、各潤滑油供給ノズル76は、正面視方形状に形成されており、径方向に延在して設けられている。各潤滑油供給ノズル76には、複数の潤滑油供給孔(潤滑流体供給孔)81が形成されている。複数の潤滑油供給孔81は、同一形状となる円形開口の孔である。
【0041】
複数の潤滑油供給孔81は、径方向に沿って並べた一列となる潤滑油供給孔群82となっており、一列の潤滑油供給孔群82は、周方向に二列に並べて設けられている。二列の潤滑油供給孔群82のうち、一方の一列の潤滑油供給孔群82aが、潤滑油供給ノズル76に隣接する一方の軸受パッド70の出口側に設けられ、他方の一列の潤滑油供給孔群82bが、潤滑油供給ノズル76に隣接する他方の軸受パッド70の入口側に設けられる。換言すれば、一方の一列の潤滑油供給孔群82aが、回転方向の上流側に設けられ、他方の一列の潤滑油供給孔群82bが、回転方向の下流側に設けられる。
【0042】
この二列の潤滑油供給孔群82a、82bの潤滑油供給孔81は、それぞれ径方向に不等の間隔となっている。具体的に、上流側(出口側)の潤滑油供給孔群82aにおける複数の潤滑油供給孔81は、径方向に隣り合う潤滑油供給孔81同士の間の間隔が、径方向の外側に向かって狭くなっている。同様に、下流側(入口側)の潤滑油供給孔群82bにおける複数の潤滑油供給孔81は、径方向に隣り合う潤滑油供給孔81同士の間の間隔が、径方向の外側に向かって狭くなっている。つまり、所定の潤滑油供給孔81の径方向外側に隣り合う潤滑油供給孔81との間の間隔は狭くなっており、所定の潤滑油供給孔81の径方向内側に隣り合う潤滑油供給孔81との間の間隔は広くなっている。このため、二列の各潤滑油供給孔群82a、82bの潤滑油供給孔81は、スラストカラー50と軸受パッド70との間において、径方向外側に供給する潤滑油の供給油量が、径方向内側に供給する潤滑油の供給油量よりも多くなるように供給する。このとき、「q
o/q
i=R
i/R
o」の関係式を満足するように、潤滑油供給孔81同士の間隔が適宜調整される。
【0043】
また、潤滑油供給ノズル76に形成される複数の潤滑油供給孔81は、径方向に沿って互い違いとなる千鳥状に配置されている。具体的に、径方向において、上流側(出口側)の潤滑油供給孔群82aにおける潤滑油供給孔81は、下流側(入口側)の潤滑油供給孔群82bにおける潤滑油供給孔81同士の間に位置するように、径方向に位置ずれして設けられている。このため、潤滑油供給孔群82a及び潤滑油供給孔群82bを含む複数の潤滑油供給孔81は、径方向に隣接する潤滑油供給孔81同士の間の間隔が、各潤滑油供給孔群82a、82bの径方向に隣接する潤滑油供給孔81同士の間の間隔に比して短いものとなる。
【0044】
また、下流側(入口側)の潤滑油供給孔群82bにおける潤滑油供給孔81の数は、上流側(出口側)の潤滑油供給孔群82aにおける潤滑油供給孔81の数に比して多く形成されている。このため、下流側の潤滑油供給孔群82bは、径方向における内側及び外側の潤滑油供給孔81が、最も内側及び最も外側の位置に形成される。
【0045】
各潤滑油供給ノズル76には、複数の潤滑油供給孔81が形成される面側において、周方向の上流側に形成される上流側テーパ面85aと、周方向の下流側に形成される下流側テーパ面85bと、が設けられている。
【0046】
上流側テーパ面85aは、径方向に亘って形成され、下流側から上流側へ向かって下り斜面となっており、軸受パッド70の出口側を向いた面となっている。この上流側テーパ面85aには、上記した上流側の潤滑油供給孔群82aが設けられている。このため、上流側の潤滑油供給孔群82aは、軸受パッド70の出口側へ向かって潤滑油を直接噴射する。
【0047】
下流側テーパ面85bは、径方向に亘って形成され、上流側から下流側へ向かって下り斜面となっており、軸受パッド70の入口側を向いた面となっている。この下流側テーパ面85bには、上記した下流側の潤滑油供給孔群82bが設けられている。このため、下流側の潤滑油供給孔群82bは、軸受パッド70の入口側へ向かって潤滑油を直接噴射する。
【0048】
上記の潤滑油供給ノズル76において、複数の潤滑油供給孔81からスラストカラー50及び軸受パッド70の間へ向かって潤滑油が噴射されると、噴射された潤滑油は、タービンロータ20が回転していることから、スラストカラー50の周方向への移動に伴って、回転方向の上流側から下流側へ向かって流通する。このとき、上流側の潤滑油供給孔群82aから軸受パッド70の出口側へ向かって噴射された潤滑油は、スラストカラー50と軸受パッド70の間に流通し易くなっている。また、下流側の潤滑油供給孔群82bから軸受パッド70の入口側へ向かって噴射された潤滑油は、軸受パッド70の周囲に流通し易くなっている。そして、二列の各潤滑油供給孔群82a、82bから噴射された潤滑油は、径方向外側の供給油量が多くなり、径方向内側の供給油量が少なくなることで、
図4の仮想線に示すような、径方向に亘って均一な流量にて潤滑油を供給することが可能である。
【0049】
以上のように、実施例1によれば、直接噴射型のスラスト軸受40において、径方向外側に供給される潤滑油の供給油量を、径方向内側に供給される潤滑油の供給油量に比して多くすることができる。このため、気液二相状態となり易い径方向外側に向けて、潤滑油を多く供給することで、スラストカラー50と軸受パッド70との間の径方向外側において、気液二相状態を形成し難いものとし、径方向に亘って潤滑油を適切に供給することができる。よって、スラストカラー50と軸受パッド70との間の温度上昇を抑制することができ、特に、径方向内側に比して径方向外側の温度が上昇することを抑制することができる。
【0050】
また、実施例1によれば、潤滑油供給ノズル76に形成される複数の潤滑油供給孔81を、二列の潤滑油供給孔群82とし、一方の一列の潤滑油供給孔群82aと他方の一列の潤滑油供給孔群82bとを径方向に位置ずれさせて千鳥状とすることができる。このため、潤滑油供給ノズル76に形成される複数の潤滑油供給孔81の径方向の間隔を、各潤滑油供給孔群82a、82bにおける径方向の間隔に比して短いものとすることができる。このため、径方向に亘ってまんべんなく潤滑油を供給することができることから、スラストカラー50と軸受パッド70との間に潤滑油を不足なく供給することができ、スラストカラー50と軸受パッド70との間の温度上昇を、簡易な構成で抑制することができる。
【0051】
また、実施例1によれば、下流側(入口側)に位置する一列の潤滑油供給孔群82bの数を、上流側(出口側)に位置する一列の潤滑油供給孔群82aの数よりも多くすることができる。このとき、上流側に位置する一列の潤滑油供給孔群82aから供給された潤滑油は、スラストカラー50と軸受パッド70との間に流入し易い。一方で、下流側に位置する一列の潤滑油供給孔群82bから供給された潤滑油は、軸受パッド70の周囲に流入し易い。このため、軸受パッド70の周囲に供給する潤滑油の供給油量を多くすることができるため、軸受パッド70の周囲の温度上昇を抑制することができる。
【0052】
また、実施例1によれば、上流側(出口側)に位置する一列の潤滑油供給孔群82aの噴射方向を、軸受パッド70の出口側へ向かう方向とすることができ、下流側(入口側)に位置する一列の潤滑油供給孔群82bの噴射方向を、軸受パッド70の入口側へ向かう方向とすることができる。このように、上流側の潤滑油供給孔群82aの噴射方向と、下流側の潤滑油供給孔群82bの噴射方向とを異なる方向とすることで、潤滑油供給孔群82a及び潤滑油供給孔群82bが形成される位置に適した噴射方向とすることができる。このため、スラストカラー50と軸受パッド70との間へ向けて潤滑油を適切に供給することができ、スラストカラー50と軸受パッド70との間の温度上昇を好適に抑制することができる。
【0053】
また、実施例1によれば、温度上昇の抑制を図ることが可能なスラスト軸受40を、タービン6に適用することができるため、タービンロータ20の回転負荷による耐性を向上させつつ、タービンロータ20を好適に回転させることができる。
【0054】
なお、実施例1では、潤滑油供給ノズル76に形成される複数の潤滑油供給孔81を、二列の潤滑油供給孔群82a、82bとしたが、この構成に限定されず、単列であってもよいし、3列以上であってもよい。
【0055】
また、実施例1では、下流側の潤滑油供給孔群82bの数を、上流側の潤滑油供給孔群82aの数よりも多くしたが、上流側の潤滑油供給孔群82aの数を、下流側の潤滑油供給孔群82bの数よりも多くしてもよい。この構成によれば、スラストカラー50と軸受パッド70との間へ供給する潤滑油の供給油量を多くすることができるため、スラストカラー50と軸受パッド70との間の温度上昇を、より好適に抑制することができる。