【実施例1】
【0036】
歯特定部に、360度にわたり濃度が段階的に変化して透過光量が変化する指標が設けられた円盤面を挟んで発光素子と受光素子が設けられている例を
図1〜
図5及び
図9に基づいて説明する。
図1に示すようにテープフィーダ1は、基板に、レジスタ、コンデンサ、IC、トランジスタ、等の小片状の電子部品を実装する表面実装機に対して着脱可能に装着されて利用される。テープフィーダ1には、上記の電子部品を保持したテープ3が巻き付けられたリ一ル2が装着されている。このリ一ル2からは、テープ繰り出し機構10によってテープ3が間欠的に1ピッチずつ繰り出される。そして、テープ3の電子部品は、テープ繰り出し機構10の上部の部品取出部4に繰り出され、表面実装機のヘッドユニット(不図示)によって吸着され、そして、吸着された電子部品は表面実装機のヘッドによって基板に実装される。
【0037】
テープ3には、テープ3の延在方向において所定間隔毎に設けられたテープ送り用の送り穴(不図示)が設けられており、テープ3の送り穴にスプロケット30の歯31(
図4参照)が嵌合される。テープ3の送り穴にスプロケット30の歯31が嵌合された状態でスプロケット30が1ピッチずつ送られることにより、テープ3が移動して電子部品が搬送される。
【0038】
テープフィーダ1のテープ繰り出し機構10は、テープ繰り出し機構10を制御するCPU、ROM若しくはRAM又は両方を有する制御基板11と、制御基板11からの制御信号を受けて動作するモータ20と、テープ3を1ピッチずつ送るスプロケット30と、モータ20の回転駆動力をスプロケット30に伝達させるギヤ列(ギヤ部)40(
図4、
図5参照)とを備えている。そして、制御基板11からの制御信号は、フレキシブルプリント回路基板14を通ってモータ20に出力される。
【0039】
図2及び
図3に示すように、モータ20は、モータ軸25に固定されたロータマグネット24を有するロータ27と、ロータマグネット24の外周面に対向するコイル26bを有するステ一タ26とを備えている。ステ一タ26は、コイル26bと、コイル26bが巻回されたコア26aとを備えている。ロータ27は、ステ一タ26のコイル26bに供給される制御基板11からのパルスで、一定の角度だけ回転する。ロータ27と共に回転するモータ軸25は、円筒状のベアリング29の軸穴に挿入されている。モータ20のロータ27は、例えば500パルスで一回転する。なお、以下の本実施例ではモータ20のロータ27は、500パルスで一回転するものとして説明する。また、モータ20は、ロータ27の回転位置を検出するエンコーダ機能を有する光学エンコーダ21と、モータ20のロータ27の回転方向及び回転速度を検出するホ一ル素子群22と、モータ20のロータ27の原点位置を特定する原点特定用ホ一ル素子(原点特定部)23とを備えている。
【0040】
図3に示すように、光学エンコーダ21は、エンコーダスリット板21aと、投/受光型光学素子21bと、を備えたインクリメンタル型の光学式エンコーダである。エンコーダスリット板21aは、モータ20のモータ軸25に固定されている円盤状の部材であり、周方向にスリットパタ一ンが形成されている。光学エンコーダ21の投/受光型光学素子21bは、エンコーダスリット板21aに対面する位置に配置されている。
【0041】
投/受光型光学素子21bは、エンコーダスリット板21aに向かって光を照射し、エンコーダスリット板21aのスリットで透光された光を受光せず、反射された光のみを受光する。投/受光型光学素子21bは、エンコーダスリット板21aによって透光された光を受光せず反射された光のみを受光することで反射光のオン/オフを検出し、このオン/オフに伴う検出信号をフレキシブルプリント回路基板14を介して制御基板11に出力する。制御基板11では、光学エンコーダ21からの検出信号によってモータ20のロータ27の回転位置が分かるようになっている。
【0042】
図2に示すように、ロータマグネット24は、N極とS極とが周方向に交互に形成されたマグネットである。ロータマグネット24には、ホ一ル素子群22と原点特定用ホ一ル素子23が対面している。ホ一ル素子群22は、周方向に並設された3個のホ一ル素子22a,22b,22cを備えている。各ホ一ル素子22a,22b,22cは、モータ20のロータ27の回転による磁界の変化に応じた信号を制御基板11に出力する。制御基板11では、各ホ一ル素子22a,22b,22cからの信号によってロータ27の回転速度や回転方向を検出できるようになっており、検出した回転速度や回転方向に基づいて制御基板11がモータ20の駆動制御を行う。
【0043】
制御基板11は、原点特定用ホ一ル素子23からの信号の波形からロータ27が360度回転する間の特定の回転位置を原点位置として定め、後で説明するようにこの原点位置を基準としてロータ27を回転させることとなる。
【0044】
また、モータ20が駆動されると、それに伴いギヤ列40を構成する各ギヤが回転する。
図4に示すように、ギヤ列40は、モータ20のモータ軸25と同軸でモータ軸25と共に回転する第1平歯ギヤ41と、第1平歯ギヤ41に噛合する第2平歯ギヤ42と、第2平歯ギヤ42と同軸で第2平歯ギヤ42と共に回転する第3平歯ギヤ43と、第3平歯ギヤ43に噛合する第4平歯ギヤ44と、第4平歯ギヤ44と同軸で第4平歯ギヤ44と共に回転する第5平歯ギヤ45と、第5平歯ギヤ45と噛合する第6平歯ギヤ46とを備えている。
【0045】
スプロケット30は、第6平歯ギヤ46と同軸で第6平歯ギヤ46と共に回転する。また、前述したように、モータ20のロータ27は500パルスで一回転する。なお、スプロケット30は歯31が一歯送られるときモータ20のロータ27が一回転かまたはそれ以上回転するようにギヤ列40のギヤ比が設定されている。なお、本実施例ではモータ20のロータ27が一回転すると、スプロケット30の歯31が一歯送られるように構成されている。スプロケット30は、例えば30個の歯31を有しており、それぞれの歯31には、制御基板11が各歯31を識別するための番地が設定されている(
図9参照)。また、歯特定部は、スプロケット30のテープ3の送り穴に嵌合する所定位置Aの歯31を特定するための歯特定手段50を備えている。
【0046】
歯特定部の歯特定手段50は、
図4と
図5に示すように、スプロケット30と同軸で回転する円盤の円盤面51に指標として360度にわたり濃度が段階的に変化して透過光量が変化する段階的変化指標52が設けられ、この円盤面51を挟んで設けられた発光素子53と受光素子54を備えている。また、受光素子54で検出された透過光量のデータに基づき所定位置にある歯31を特定できるように、各々の歯と透過光量が関連付けられている。発光素子53と受光素子54は公知のものが使用でき、また透過型フォトセンサーを用いてもよい。なお、透過光量を段階的に変化させるために、指標の濃度を段階的に変化させることに代え、円盤面51の厚さを段階的に変化させ、透過光量が変化するようにしてもよい。
【0047】
そして受光素子54で透過光量を検出することにより、制御基板11では、所定位置Aにどの歯31があるかを特定できるようになっている。なお、段階的変化指標52は、濃度が段階的に変化することにより受光素子54で検出される透過光量が段階的に変化すればよい。また、その変化の段数はスプロケット30の歯数以上であれば任意に選択可能であるが、変化の段数とスプロケット30の歯数を同じにして一対一の関係で対応させてもよい。一対一の関係で対応させておけば、スプロケット30の歯の特定が容易となる。また、スプロケット30が歯31と次位の歯31の間の中間地点に近いような位置にある場合でも、必ずどちらかの歯31を所定位置Aにあるものとして特定する。後で説明するように、この所定位置Aにある歯31の特定は、その特定した歯31から次位の歯31へ回転させるために必要となるモータ20のパルス数を知るために利用するだけであり、歯31の正確な停止位置の識別までは必要としないからである。
【0048】
また、
図1に示すように、制御基板11には、モータ20の動作を制御するためのプログラムが記憶されており、記憶されているプログラムとして、スプロケット30の歯31のある番地から次の番地へ回転させるためのモータ20の回転量を示す第一のパルス数と、スプロケット30の歯31のある番地とその番地に対応する原点位置までのモータ20の回転量を示す第二のパルス数とを示すマップM(
図9参照)を記憶する記憶部12と、モータ20のロータ27の回転制御を行うモータ回転制御部13と、が設けられている。
【0049】
図9に示すように、記憶部12は、スプロケット30の歯31の番地毎に、所定位置Aの歯31を次位の歯31に送るときのモータ20のロータ27の回転量を記憶している。ところで、前述したように、モータ20のロータ27は500パルスの信号を受けて一回転する構成であるため、本来であれば所定位置Aの歯31を次位の歯31に送るときのモータ20のロータ27の回転量は500パルスで全て等しいはずである。しかし、スプロケット30及びギヤ列40の寸法誤差やバックラッシュの影響により、単純にモータ20のロータ27の一回転で歯31を一歯ずつ送ろうとすると、部品取出部4(
図1参照)に対する歯31の停止位置が微妙にずれてしまう問題が発生し、歯31の停止位置の精度が低下するという問題が発生する。特に、近年では電子部品の小型化が進んでいるため、歯31の停止位置の精度が低いと、テープ3が保持する電子部品を上手く吸着できないという問題を生じさせてしまう。
【0050】
そこで、本発明では歯31の停止位置の精度を高めるため、歯31毎に歯31の停止位置を微妙に変えており、記憶部12に、予め歯31毎にモータ20のロータ27の回転量の情報を第一のパルス数として記憶させる。そして、モータ回転制御部13により、歯特定手段50によって特定された歯31の番地に対応するマップMのパルス数の信号をモータ20に出力して、所定パルス数ロータ27を回転させるようにする。
【0051】
また、歯31とその歯31に対応する原点位置も同様に必ずしも一定とはならないため、記憶部12に、予め歯31毎に原点位置までのモータ20のロータ27の回転量の情報を第二のパルス数として記憶させる。その結果、後述するように、アブソリュートエンコーダを使用することなくスプロケット30の各歯31を正確な位置で停止させることができるようになる。
【0052】
また、
図4に示すように、ギヤ列40は、スプロケット30と同軸の第6平歯ギヤ46と、第6平歯ギヤ46と噛み合う第5平歯ギヤ45とを備えており、歯特定手段50は、スプロケッ30の軸上に設けられている。このように、本実施例のテープフィーダ1では、スプロケット30の軸に歯特定手段50を設けているので、ギヤに歯特定手段50を設ける場合と比べて構成を簡易にすることができる。
【0053】
次に、テープフィーダ1の電源オン時の初期設定の動作について説明する。
まず、テープフィーダ1に電源が投入されると、その直後に歯特定部の歯特定手段50が所定位置Aの歯31の番地を特定する。スプロケット30が歯31と次位の歯31の間の中間地点に近いような位置にある場合であっても、必ずどちらかの歯31を所定位置Aにあるものとして特定する。その後、モータ回転制御部13は、モータ20を駆動させて、スプロケット30の歯31を送る。このとき、原点特定用ホ一ル素子23は、検出した磁界に応じた信号を制御基板11に出力し、制御基板11がモータ20の原点位置の特定を行う。なお、モータ20の原点位置を検出する前に、歯特定手段50が次位の歯31が所定位置Aに到達したことを認識したときは、その認識した次位の歯31の番地を基準として続けて原点位置の特定を行う。
【0054】
その後、モータ回転制御部13は、歯特定手段50が特定した歯31の次の番地に対応するマップMの第一のパルス数と歯特定手段50が特定した歯31から原点位置までの対応するマップMの第二のパルス数を参照して、原点位置からの所定のパルス数だけモータ20のロータ27を回転させて停止させる。すなわち、歯特定手段50が特定した歯31から原点位置までの第二のパルス数を歯特定手段50が特定した歯31の次の番地に対応するマップMの第一のパルス数から減らしたパルス数だけ原点位置からモータ20のロータ27を回転させる。こうして、初期設定としてマップMによって歯31の停止位置を調整した後に、表面実装機のヘッドユニットによってテープ3からの電子部品の吸着が行われる。そして、制御基板11は、モータ20のロータ27を回転させるモータ回転信号を表面実装機から受信すると、再度、歯31の番地の特定、原点位置の特定、及び原点位置からのロータ27の回転を繰り返す。
【0055】
以下、この初期設定の調整方法をさらに詳述する。例えば、
図9に示すように、電源投入直後に歯特定手段50が特定した歯31の番地が2番地であるとすると、モータ回転制御部13はモータ20のロータ27を回転させて歯31を1ピッチ送るようにする。そして、原点特定用ホ一ル素子23によって原点位置の特定を行う。原点位置の特定が行われた後に、モータ回転制御部13は、3番地に対応する503パルスを参照して原点位置からモータ20のロータ27を回転させる。ただし、歯31を2番地から3番地に回転させるに際し2番地から原点位置まで回転させるのに要するモータのパルス数の100パルスを503パルスから減らす。その結果、原点位置から403パルスだけモータ20のロータ27を回転させる。そうすると、3番地の歯31が正確に所定位置で停止することとなる。
【0056】
なお、歯31を2番地から3番地へ1ピッチ送る間に原点位置の特定が行われなかった場合は、モータ20のロータ27を引き続き回転させて3番地の歯31を基準として歯31を1ピッチ送るようにする。この場合は、モータ回転制御部13は、4番地に対応する510パルスを参照して原点位置からモータ20のロータ27を回転させる。ただし、歯31を3番地から4番地に回転させるに際し3番地から原点位置まで回転させるのに要するモータのパルス数の103パルスを510パルスから減らす。その結果、原点位置から407パルスだけモータ20のロータ27を回転させる。そうすると、4番地の歯31が正確に所定位置で停止することとなる。
【0057】
以上のように動作するテープフィーダ1では、ギヤ列40によってモータ20のロータ27の回転でスプロケット30の歯31が送られ、モータ20のロータ27の回転はギヤ列40で減速されてスプロケット30に伝達される。よって、モータ20のロータ27をマップMに記憶されているスプロケット30の歯31に応じた回転量で回転させ、この回転をギヤ列40で減速させることにより、スプロケット30の歯31の停止位置を細かく調整することが可能となる。よって、歯31の停止位置の精度を高めることができる。また、記憶部12のマップMは、スプロケット30の歯31の番地毎に、歯31を次位の歯31に送るときのモータ20のロータ27の回転量と原点位置までのモータ20のロータ27の回転量を予め記憶している。このように、記憶部12は、スプロケット30やギヤ列40の寸法誤差やバックラッシュを加味したモータ20のロータ27の回転量を予め歯31毎に記憶している。
【0058】
よって、歯特定手段50が所定位置Aの歯31の番地を特定し、モータ20のロータ27を回転させて原点位置の特定を行った後に、モータ回転制御部13は、歯特定手段50が特定した番地の次の番地に対応する第一のパルス数と原点位置までの第二のパルス数を参照して原点位置からモータ20のロータ27を回転させる。このように、モータ20のロータ27の原点位置から次の番地に対応するパルス数だけモータ20のロータ27を回転させることにより、歯31の停止位置の精度向上を可能としている。したがって、歯特定手段50は所定位置Aの歯31の番地を特定できれば、原点位置から次の番地に対応するパルス数だけモータ20のロータ27を回転させることにより、歯31は正確な位置に停止することとなり、歯特定手段50の分解能を高めなくても、歯31の停止位置の精度を高めることができる。
【0059】
なお、初期設定完了後も、歯特定部の歯特定手段50が所定位置Aに到達した次位の歯31の番地を特定し、モータ20のロータ27を回転させて原点位置の特定を行った後に、モータ回転制御部13は、歯特定手段50が特定した番地の次の番地に対応する第一のパルス数と原点位置までの第二のパルス数を参照して原点位置からモータ20のロータ27を回転させる。次位の歯31へ送るたびに歯31の特定と原点位置の検出を行い、所定のパルス数だけモータ20のロータ27を回転させるようにしたので、歯31を非常に正確に所定位置で停止できることとなる。
【0060】
すなわち、テープフィーダ1は、予めマップMに記憶されている回転量でモータ20のロータ27を回転させて歯31の停止位置の精度を高めているので、歯特定手段50の分解能を高める必要が無く、光学式のアブソリュートエンコーダを用いた場合における装置の大型化の問題や、磁気式のアブソリュートエンコーダを用いた場合における制御が困難となる問題は発生しない。従って、テープフィーダ1では、装置の大型化を回避すると共に、正確な制御をし易くすることが可能となっている。
【0061】
また、電源のオン直後の停止状態で所定位置Aの歯31の特定ができ、また初期設定時にテープフィーダ1の通常の動作と切り離して歯31の停止位置の調整を行えるので、歯31の停止位置調整のための動作がテープフィーダ1の通常の動作に影響を与えないようにすることができる。
【0062】
なお、上記実施例では円盤面51に濃度が段階的に変化して透過光量が変化する段階的変化指標52を設け、円盤面51を挟んで発光素子53と受光素子54を設けた例を示したが、円盤面に濃度が段階的に変化して光の反射量が変化する指標を設け、その指標が設けられた円盤面に対向させて発光素子と受光素子を設けてもよい。また、この場合は反射型フォトセンサーを用いることもできる。発光素子と受光素子を同じ側に設けることができるので、装置の小型化が可能となる。
【実施例5】
【0069】
歯特定手段が、スプロケットと同軸上でなく、ギヤ部の他の歯車と同軸上に設けられている例について説明する(図面については省略する。)。なお、実施例1及び実施例2と異なる構成についてのみ説明する。
この場合、歯特定手段が設けられている歯車はスプロケットと同じ角速度で回転する必要がある。なお、回転方向についてはスプロケットと歯特定手段が設けられた歯車は逆回転であってもよい。このようにすると、スプロケット30から歯特定手段50を離すことができ、スプロケット30周辺の構造の厚みを抑えると共にスプロケット30周辺の構造を簡易にすることができる。
【0070】
本発明は、前述した実施例に限定されず、本発明の要旨を逸脱しない範囲で、下記のような種々の変形が可能である。
【0071】
初期設定として所定位置Aの歯31の停止位置を調整した後に、テープ3から電子部品の吸着が行われ、その後に制御基板11がモータ回転信号を表面実装機から受信したが、制御基板11によるモータ回転信号の受信タイミングは、電源投入直後に歯特定手段50が歯31を特定した後であればいつでもよい。
【0072】
上記では、歯特定部の歯特定手段50による歯31の番地の特定と、モータ20のロータ27の回転及び原点位置の特定と、原点位置から所定パルス数だけのモータ20のロータ27の回転と、が繰り返される処理について説明した。しかしながら、番地の特定と原点位置の特定は、電源オン直後の初回実行時にのみ行って、2回目以降は行わないようにしてもよい。このように、2回目以降は番地の特定及び原点位置の特定を行わないようにしても、番地は1ずつ増えていくので、マップMのパルス数に基づいてモータ回転制御部13がモータ20のロータ27を順次回転させていけば、歯31を正確な停止位置に停止させることが可能である。
【0073】
図2に示されるように、モータ20は、エンコーダ機能を有する光学エンコーダ21と、原点を特定する原点特定用ホ一ル素子23とを備えていたが、光学エンコーダ21に原点特定機能を持たせることも可能であり、この場合、原点特定用ホ一ル素子23を省略できる。また、ホ一ル素子群22がモータ20のロータ27の回転位置を検出するエンコーダ機能を有していてもよく、この場合、光学エンコーダ21を省略できる。なお、エンコーダ機能は、磁気式エンコーダで実現させてもよいし、光学式エンコーダで実現させてもよい。
【0074】
また、上記実施例では、モータ20のロータ27が500パルスで一回転したが、モータ20のロータ27が一回転するのに必要なパルス数は上記に限定されない。スプロケット30の歯31の数は30であったが、スプロケット30の歯31の数も上記に限定されない。更に、上記実施例では、ロータ27の一回転で歯31が一歯ずつ送られたが、例えばロータの二回転で歯を一歯ずつ送る等、歯を一歯ずつ送るときのロータの回転量は上記に限定されない。また、上記実施例では、歯31を一歯ずつ送ったが、例えばロータの一回転で0.5歯ずつ送る等、歯を送る単位についても上記に限定されない。
【0075】
歯特定手段50がテープ3の送り穴に嵌合する所定位置Aにある歯31を特定したが、他の位置の歯31を特定してもよい。
【0076】
ギヤ列にはギヤが6枚設けられていたが、設定するギヤ比に応じてギヤの枚数は適宜変更できる。
【0077】
記憶部12とモータ回転制御部13は同一の制御基板11に設けられていたが、別々の制御基板に設けられていてもよい。