【実施例】
【0043】
以下に、本発明を具体的に説明する。
【0044】
(参考例1)GPC分子量分析測定
GPC分子量分析は以下の条件で実施した。
検出器:多波長紫外−可視吸収検出器 UV(株式会社島津製作所製SPD−M20A、波長254nm)
カラム:TSKgelGMPW
XL、G2500PW
XL各1本(φ7.8mm×30cm、東ソー)
溶媒:アンモニア緩衝液(pH11)/メタノール(1/1=v/v)
流速:0.7mL/min
カラム温度:23℃
注入量:0.2mL
標準試料:東ソー株式会社製、Polymer Laboratories製単分散ポリエチレンオキサイド、ポリエチレングリコール。
【0045】
標準試料であらかじめ溶出時間と分子量の対数との関係を取得し、LogM(Mは分子量)あたりの重量分率dW/dlogM(Wは重量)で変換し、横軸を分子量の対数、縦軸をピーク面積が1になるようにプロットして解析した。
【0046】
(参考例2)ポリフェノール量の測定
適宜希釈した測定試料1.0mL、フェノール試液(ナカライテスク社)1.0mL、水5mLを25mLのメスフラスコに入れて5分間室温で放置し、これに7%炭酸ナトリウム水溶液10mLを加える。更に水を加えて25mLとして混合し、2時間室温で放置する。反応液の一部を取り、φ0.45μmのPTFEフィルターでろ過し、750nmで吸光度を測定する(吸光度は0.6ABS以下となるようにサンプルを適宜希釈)。標準物質としてカテキン試薬(シグマ社、純度98%以上)を用い、カテキン換算値として算出した。
【0047】
(参考例3)芳香族化合物の測定
クマル酸、フェルラ酸等の芳香族化合物濃度の測定は以下の条件で実施した。
機器:日立高速液体クロマトグラムLaChrom Eite
カラム:Synergi 2.5μ Hydro−RP100A 100×3.00mm (Phenomenex)
移動相:0.1%リン酸:アセトニトリル=93:7から5:95までグラジェント
検出器:Diode Array
流速:0.6mL/min
温度:40℃。
【0048】
(試験例1)クルマエビの脱皮促進効果(本発明の低分子リグニンおよび本発明の高分子リグニン)
[飼料の調製]
バガス1kg(台糖農産株式会社より購入、ベトナム製)を0.45wt%水酸化ナトリウム水溶液に乾燥重量で5wt%添加・混合し、90℃、2時間反応させ、6N塩酸を用いてpHを7に調整した後、ザルで固体を分離し、MF膜(商品名:トレフィルHFSタイプ、東レ社製)で濾過を行い、バガスアルカリ熱水抽出液を作製した。このアルカリ抽出液を参考例1に記載の方法でGPC分子量分析を行った。分析結果は
図1に示すとおりで、分子量7,000にピークを有する本発明の低分子リグニン、および分子量21,000に分子量ピークを有する本発明の高分子リグニンを含有することを確認した。また、数平均分子量は8,900であった。更にこのバガスアルカリ抽出液を参考例2に従ってポリフェノール量を測定したところ、カテキン換算で0.2重量%であった。また、参考例3に記載の方法でクマル酸、フェルラ酸を測定したところ、クマル酸が0.08重量%、フェルラ酸が0.016重量%であり、同濃度のクマル酸、フェルラ酸のみ含有した液体のポリフェノール含量はカテキン換算で0.072重量%であった。このことから、本発明の低分子リグニンおよび本発明の高分子リグニンのポリフェノール含量はカテキン換算で0.128重量%あることが分かる。このバガスアルカリ熱水抽出液(固形分2%、固形分あたりポリフェノール含量はカテキン換算10%)を溶質の重量ベースで配合飼料(ヒガシマル醤油株式会社製、ノーサン印くるまえび育成用配合飼料 H クルマエビ スーパーB)に飼料乾燥重量あたり0.2%で噴霧・混合した(飼料乾燥重量あたりポリフェノール含量はカテキン換算0.02%、本発明の低分子リグニンおよび本発明の高分子リグニンのポリフェノール含量はカテキン換算0.0128重量%)。更に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面にコーティングした。作製した飼料を本発明の低分子リグニンおよび本発明の高分子リグニンを含有する飼料として用いた。
【0049】
[成長促進効果の評価]
平均体重14.1g(標準偏差1.5)、平均全長143.1mm(標準偏差6.0)のクルマエビ24尾を1水槽あたり8尾(12.5尾/m
2)3水槽で本発明の低分子リグニンおよび本発明の高分子リグニンを含有する飼料の水産生物成長促進効果を評価した。水槽底部には底砂をひき、海水は天然濾過海水を加温し、20〜25℃とし、換水率は3.8回/日とした。光条件は12時間明、12時間暗とし、本発明の低分子リグニンおよび本発明の高分子リグニンを含有する飼料を1回/日、消灯直後に給餌した。給餌量は開始時のエビ体重比3%で計量し、その後、試験開始9日目に同比4%、試験開始20日目に同比5%と摂餌状況に応じて段階的に給餌量をあげていった。30日間試験を実施し、その期間中の24尾の合計脱皮回数を計測した。結果を表1に示す。
【0050】
(試験例2)クルマエビの脱皮促進効果(本発明の低分子リグニン)
[飼料の調製]
試験例1で作製したバガスアルカリ熱水抽出液を6N塩酸でpH5に中和し、本発明の高分子リグニンを沈殿させた。珪藻土を1%添加・混合後、フィルタープレス(薮田機械社株式会社製YTO型)を用いて固液分離を行い、本発明の低分子リグニン液をろ液側に、本発明の高分子リグニンを固形分側に分離した。得られたろ液を水酸化ナトリウム50%(wt/v)溶液でpH7に調整し本発明の低分子リグニン液を得た。この本発明の低分子リグニン液を参考例1に記載の方法でGPC分子量分析を行った。結果は
図2に示すとおりで、分子量7,000にピークを有する本発明の低分子リグニンを含有することを確認した。また、GPC分子量分析結果から求められる数平均分子量は4,000であった。更にこの低分子リグニン液を参考例2に従ってポリフェノール量を測定したところ、カテキン換算で0.1%であった。また、参考例3に記載の方法でクマル酸、フェルラ酸を測定したところ、クマル酸が0.06重量%、フェルラ酸が0.012重量%であり、同濃度のクマル酸、フェルラ酸のみ含有した液体のポリフェノール含量はカテキン換算で0.05重量%であった。このことから、本発明の低分子リグニンはカテキン換算で0.05重量%あることが分かる。この低分子リグニン液(固形分1.5%、固形分あたりカテキン換算7%)を溶質の重量ベースで配合飼料(ヒガシマル醤油株式会社製、ノーサン印くるまえび育成用配合飼料 H クルマエビ スーパーB)に飼料乾燥重量あたり0.2%で噴霧・混合した(飼料乾燥重量あたりカテキン換算0.014%、本発明の低分子リグニンのポリフェノール含量はカテキン換算0.007重量%)。更に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面に浸漬させた。作製した飼料を本発明の低分子リグニンを含有する飼料として用いた。
【0051】
[成長促進効果の評価]
本試験例で調製した飼料を用いる以外は試験例1と同様とした。結果を表1に示す。
【0052】
(試験例3)クルマエビの脱皮促進効果(本発明の高分子リグニン)
[飼料の調製]
試験例1で作製したバガスアルカリ熱水抽出液を6N塩酸でpH3に中和し、本発明の高分子リグニンを沈殿させた。濾過助剤として珪藻土を1%添加・混合後、フィルタープレス(薮田機械株式会社製YTO型)を用いて固液分離を行い、固体として珪藻土を含有した本発明の高分子リグニンを得た。珪藻土を含有した本発明の高分子リグニンを乾燥させ、固形分85%とした。この本発明の高分子リグニン(固形分あたりのポリフェノール量がカテキン換算で7%)を溶質の重量ベースで配合飼料(ヒガシマル醤油株式会社製、ノーサン印くるまえび育成用配合飼料 H クルマエビ スーパーB)に飼料乾燥重量あたり0.2%で混合した(飼料乾燥重量あたりポリフェノール含量はカテキン換算0.014%)。更に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面に浸漬させた。作製した飼料を本発明の高分子リグニンを含有する飼料として用いた。
【0053】
一方、飼料作製とは別に、本発明の高分子リグニンの分画分子量の測定を実施した。珪藻土含有不溶性本発明の高分子リグニンに対し、50%(wt/v)の水酸化ナトリウムを添加してpHを12に調整し、本発明の高分子リグニンを溶解した。この本発明の高分子リグニン液に6N塩酸でpH7に調整し、参考例1に記載の方法でGPC分子量分析を行った。結果を
図3に示す。この分析結果から、得られたリグニンは、分子量21,000にピークを有する本発明の高分子リグニンであり、本発明の低分子リグニンは含有していないことを確認した。また、この分析結果から求められる数平均分子量は13,800であった。この時調整した本発明の高分子リグニン液を参考例2に従ってポリフェノール量を測定したところ、カテキン換算で0.1重量%であった。また、参考例3に記載の方法でクマル酸、フェルラ酸を測定したところ、クマル酸、フェルラ酸は検出されなかった。
【0054】
[成長促進効果の評価]
本試験例で調製した飼料を用いる以外は試験例1と同様とした。結果を表1に示す。
【0055】
(試験例4)クルマエビの脱皮促進効果(無添加)
[飼料の調製]
配合飼料(ヒガシマル醤油株式会社製、ノーサン印くるまえび育成用配合飼料 H クルマエビ スーパーB)に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面に浸漬させ、無添加飼料を作製した。
【0056】
[成長促進効果の評価]
本試験例での無添加飼料を用いる以外は試験例1と同様とした。結果を表1に示す。
【0057】
(試験例5)クルマエビの脱皮促進効果(バガス水熱処理液)
[飼料の調製]
バガスを乾燥重量30%に調整し、高圧で180℃、10分水熱処理(高圧蒸煮処理)を行った。得られたバガス熱水処理液を、1N水酸化ナトリウムを用いてpH7に調整した。バガス熱水処理液を参考例1に記載の方法でGPC分子量分析を行った結果を
図4に示す。この分析結果から、バガスの熱水処理液は、ピーク高さが高い順に、分子量3,200、分子量6,000および分子量17,000に分子量ピークを有するリグニンを含んでいることがわかった。また、GPC分子量分析結果から求められる数平均分子量は2,870であった。バガス水熱処理液は、ピーク高さが最高となる有効成分は分子量4,000以下にピークをもち、このピーク高さが最高となる有効成分は本発明の低分子リグニン、本発明の高分子リグニンとは異なるものの、組成としては本発明の低分子リグニンおよび本発明の高分子リグニンを含有する。また、このバガス水熱処理液を参考例2に従ってポリフェノール量を測定したところ、カテキン換算で0.001%であった(固形分1.0%、固形分あたりのカテキン換算0.1%)。このバガス水熱処理液を溶質の重量ベースで配合飼料(ヒガシマル醤油株式会社製、ノーサン印くるまえび育成用配合飼料 H クルマエビ スーパーB)に飼料乾燥重量あたり0.2%で混合した(飼料乾燥重量あたりカテキン換算0.0002%)。更に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面に浸漬させた。
【0058】
[成長促進効果の評価]
本試験例で調製した飼料を用いる以外は試験例1と同様とした。結果を表1に示す。
【0059】
【表1】
【0060】
表1に示す通り、試験例1〜3の本発明の低分子リグニンおよび/または本発明の高分子リグニンを含有する飼料を用いた場合、試験例4の無添加飼料を用いた場合と比べてクルマエビの脱皮回数が増加することが分かった。
【0061】
(試験例6)カクレクマノミの成長促進効果(本発明の低分子リグニンおよび本発明の高分子リグニン)
[飼料の調製]
試験例1で作製したバガスアルカリ熱水抽出液(固形分2%、固形分あたりカテキン換算10%)を溶質の重量ベースで配合飼料(Feed One社製、アンブローズ400)に飼料乾燥重量あたり0.2%で噴霧・混合した(飼料乾燥重量あたりカテキン換算0.02%、本発明の低分子リグニンおよび本発明の高分子リグニンはカテキン換算0.0128重量%)。更に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面に浸漬させた。
【0062】
[成長促進効果の評価]
体長20±3mmのカクレクマノミを1水槽あたり10固体(10固体/20L)3水槽で本発明の低分子リグニンおよび本発明の高分子リグニンを含有する飼料の水産生物成長促進効果を評価した。海水は天然濾過海水を加温し、約25℃とし、換水率は1日に50%換水とした。光条件は12時間明、12時間暗とし、本発明の低分子リグニンおよび本発明の高分子リグニンを含有する飼料を1回/日、消灯直後に給餌した。給餌量は開始時のカクレクマノミ体重比3%とした。7日間試験を実施し、試験終了後にカクレクマノミを回収し1個体当たりの平均体重を測定した。結果を表2に示す。
【0063】
(試験例7)カクレクマノミの成長促進効果(本発明の低分子リグニン)
[飼料の調製]
試験例2で作製した本発明の低分子リグニン液(固形分1.5%、固形分あたりカテキン換算7%)を溶質の重量ベースで配合飼料(Feed One社製、アンブローズ400)に飼料乾燥重量あたり0.2%で噴霧・混合した(飼料乾燥重量あたりカテキン換算0.014%、本発明の低分子リグニンおよび本発明の高分子リグニンはカテキン換算0.007重量%)。更に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面に浸漬させた。
【0064】
[成長促進効果の評価]
本試験例で調製した本発明の低分子リグニンを含有する飼料を用いる以外は試験例6と同様とした。結果を表2に示す。
【0065】
(試験例8)カクレクマノミの成長促進効果(本発明の高分子リグニン)
[飼料の調製]
試験例3で作製した不溶性の本発明の高分子リグニン(固形分85%、固形分あたりカテキン換算7%)を溶質の重量ベースで配合飼料(Feed One社製、アンブローズ400)に飼料乾燥重量あたり0.2%で混合した(飼料乾燥重量あたりカテキン換算0.014%)。更に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面に浸漬させた。
【0066】
[成長促進効果の評価]
本試験例で調製した本発明の高分子リグニンを含有する飼料を用いる以外は試験例6と同様とした。結果を表2に示す。
【0067】
(試験例9)カクレクマノミの成長促進効果(無添加)
[飼料の調製]
配合飼料(Feed One社製、アンブローズ400)に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面に浸漬させ、無添加飼料を作製した。
【0068】
[成長促進効果の評価]
本試験例での無添加飼料を用いる以外は試験例6と同様とした。結果を表2に示す。
【0069】
(試験例10)カクレクマノミの成長促進効果(バガス水熱処理液)
[飼料の調製]
試験例5で作製したバガス熱水処理液(固形分1%、固形分あたりのカテキン換算0.1%)を溶質の重量ベースで配合飼料(Feed One社製、アンブローズ400)に飼料乾燥重量あたり0.2%で混合した(飼料乾燥重量あたりカテキン換算0.0002%)。更に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面に浸漬させた。
【0070】
[成長促進効果の評価]
本試験例で調製したバガス水熱処理液含有する飼料を用いる以外は試験例6と同様とした。結果を表2に示す。
【0071】
【表2】
【0072】
表2に示す通り、試験例6〜8の本発明の低分子リグニンおよび/または本発明の高分子リグニンを含有する飼料を用いた場合、試験例9の無添加飼料を用いた場合と比べて、カクレクマノミの平均体重が増加することが分かった。
【0073】
(試験例11)クルマエビの成長促進効果(本発明の低分子リグニンおよび本発明の高分子リグニン)
[飼料の調製]
試験例1で調製したバガスアルカリ熱水抽出液(固形分2%、固形分あたりカテキン換算10%)を溶質の重量ベースで配合飼料(バイオ科学社製、エビコング)造粒時に飼料乾燥重量あたり0.2%で噴霧・混合した(飼料乾燥重量あたりカテキン換算0.02%、本発明の低分子リグニンおよび本発明の高分子リグニンはカテキン換算0.0128重量%)。作製した飼料を本発明の低分子リグニンおよび本発明の高分子リグニンを含有する飼料として用いた。
【0074】
[成長促進効果の評価]
平均体重32.2mg(標準偏差11.3)、平均全長15.5mm(標準偏差1.9)のクルマエビを1水槽あたり150尾(1,500尾/m
2)で本発明の低分子リグニンおよび本発明の高分子リグニンを含有する飼料の水産生物成長促進効果を評価した。水槽底部には底砂をひかず、海水は天然濾過海水を加温し、20〜25℃とし、換水率は5回/日とした。光条件は12時間明、12時間暗とし、本発明の低分子リグニンおよび本発明の高分子リグニンを含有する飼料を1日3回給餌した。給餌量はエビ体重比3〜5%で摂餌状況に応じて段階的に給餌量をあげていった。50日間試験を実施し、その期間中の生残数、平均体重、平均全長を測定した。結果を表3に示す。
【0075】
(試験例12)クルマエビの成長促進効果(本発明の低分子リグニン)
[飼料の調製]
試験例2で調製した低分子リグニン(固形分1.5%、固形分あたりカテキン換算7%)を溶質の重量ベースで配合飼料(バイオ科学社製、エビコング)造粒時に飼料乾燥重量あたり0.2%で噴霧・混合した(飼料乾燥重量あたりカテキン換算0.014%、本発明の低分子リグニンはカテキン換算0.007重量%)。作製した飼料を本発明の低分子リグニンを含有する飼料として用いた。
【0076】
[成長促進効果の評価]
本試験例で調製した飼料を用いる以外は試験例11と同様とした。結果を表3に示す。
【0077】
(試験例13)クルマエビの成長促進効果(本発明の高分子リグニン)
[飼料の調製]
試験例3で調製した珪藻土を含有した本発明の高分子リグニン(固形分あたりのポリフェノール量がカテキン換算で7%)を溶質の重量ベースで配合飼料(バイオ科学社製、エビコング)造粒時に飼料乾燥重量あたり0.2%で噴霧・混合した(飼料乾燥重量あたりカテキン換算0.014%)。作製した飼料を本発明の高分子リグニンを含有する飼料として用いた。
【0078】
[成長促進効果の評価]
本試験例で調製した飼料を用いる以外は試験例11と同様とした。結果を表3に示す。
【0079】
(試験例14)クルマエビの成長促進効果(無添加)
[飼料の調製]
配合飼料(バイオ科学社製、エビコング)を何も添加することなく造粒し無添加飼料を作製した。
【0080】
[成長促進効果の評価]
本試験例での無添加飼料を用いる以外は試験例11と同様とした。結果を表3に示す。
【0081】
(試験例15)クルマエビの成長促進効果(バガス水熱処理液)
[飼料の調製]
試験例5で調製したバガス水熱処理液を溶質の重量ベースで配合飼料(バイオ科学社製、エビコング)造粒時に飼料乾燥重量あたり0.2%で混合した(飼料乾燥重量あたりカテキン換算0.0002%)。
【0082】
[成長促進効果の評価]
本試験例で調製した飼料を用いる以外は試験例11と同様とした。結果を表3に示す。
【0083】
【表3】
【0084】
表3に示す通り、試験例11〜13の本発明の低分子リグニンおよび本発明の高分子リグニンを含有する飼料、本発明の低分子リグニンを含有する飼料、本発明の高分子リグニンを含有する飼料を用いた場合、試験例14の無添加飼料に比べてクルマエビの生残数、体重、全長が増加することが分かった。
【0085】
(参考例4)リグノスルホン酸液のGPC分子量分析
一般的なリグニン市販品であるリグノスルホン酸(日本製紙ケミカル社製 サンエキスP252をNaOHでpH10に調整した水溶液に3%溶解させたもの)を参考例1に記載の方法でGPC分子量分析を行った。結果を
図5に示す。この結果から、得られたリグニンは、分子量100,000にピークを有するリグニンを含有し、本発明の低分子リグニン、高分子リグニンを含有しないことを確認した。また、数平均分子量は39,000であった。
【0086】
(参考例5)UV検出器を用いたGPC分子量分析において、波長254nmにおける分子量ピークが4,000以下に有するリグニンのGPC分子量分析
バガス1kg(台糖農産株式会社より購入、ベトナム製)を0.6(wt/wt)%水酸化ナトリウム水溶液に乾燥重量で5wt%添加・混合し、180℃、5分反応させ、6N塩酸を用いてpHを7に調整した後、ザルで固体を分離し、MF膜(商品名:トレフィルHFSタイプ、東レ社製)で濾過を行い、バガスアルカリ水熱処理液を作製した。このアルカリ水熱処理を参考例1に記載の方法でGPC分子量分析を行った。分析結果を
図6に示す。この分析結果から、得られたリグニンは、分子量3,700にピークを有するリグニンを含有し、本発明の低分子リグニン、高分子リグニンを含有しないことを確認した。また、数平均分子量は3,300であった。
【0087】