(58)【調査した分野】(Int.Cl.,DB名)
インバータモータにより駆動される圧縮機と、前記圧縮機が圧縮した冷媒から放熱させる凝縮器と、前記凝縮器からの冷媒が絞り装置を通して供給される冷却器と、貯蔵室を有し、前記冷却器により生成された冷気によって前記貯蔵室内が冷却される貯蔵庫とを備えた冷却貯蔵庫の前記圧縮機の回転数制御方法であって、
前記貯蔵室内の庫内温度を検出する検出工程と、
前記インバータモータの回転数を、前記庫内温度と、冷却の目標とする温度である設定温度との偏差に応じて可変する回転数可変工程と、
前記庫内温度が、前記設定温度より高い温度である所定温度以上である期間の積算時間を計測する計測工程と、
前記積算時間が所定値に達したか否かを判断する判断工程と、
前記判断工程において前記積算時間が前記所定値に達したと判断された場合、前記インバータモータの回転数を、少なくとも前記庫内温度が前記所定温度より低い温度である前記設定温度に達するまで、最高回転数近傍の高回転数に固定する回転数固定工程と、
を含む、圧縮機の回転数制御方法。
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、従来の制御方法は、一定時間毎に庫内温度と設定温度との偏差を求め、その偏差が大きい場合には回転数を高め、偏差が小さくなると回転数を低くするようにしていたため、設定温度に達するまでに不必要に時間を要するという不都合を有していた。例えば、庫内が食品を冷却するに適する設定温度近くに維持されているコントロール冷却運転時に、一時的に繰り返し扉を開閉させると、庫内温度が一時的に急上昇するため、庫内温度と設定温度との偏差が一時的に大きくなる時期が出現する。このような場合、庫内温度は急上昇し、それに対して当初は最高回転数を発生することができるが、庫内温度が低下して設定温度に近づくにつれて回転数を低下させてしまうので、設定温度に到達するまでの時間が長くなる。そのため、早く冷やしたいという要求に対応できないという不都合があった。
【0006】
そのため、本明細書は、圧縮機を庫内温度と設定温度との偏差に応じて回転数可変制御する場合において、設定温度までの冷却時間を短縮できる冷却貯蔵庫およびその圧縮機の回転数制御方法を提供するものである。
【課題を解決するための手段】
【0007】
本明細書によって開示される冷却貯蔵庫は、インバータモータにより駆動される圧縮機と、前記圧縮機が圧縮した冷媒から放熱させる凝縮器と、前記凝縮器からの冷媒が絞り装置を通して供給される冷却器と、貯蔵室を有し、前記冷却器により生成された冷気によって前記貯蔵室内が冷却される貯蔵庫と、前記貯蔵室内の庫内温度を検出する温度センサと、前記庫内温度が、冷却の目標とする温度である設定温度より高い温度である所定温度以上である期間の積算時間を計測するタイマと、前記インバータモータの回転数を、前記庫内温度と前記設定温度との偏差に応じて可変する回転数可変処理を実行する回転数制御部と、を備え、前記回転数制御部は、前記積算時間が所定値に達したか否かを判断する判断処理と、前記判断処理において前記積算時間が前記所定値に達したと判断した場合、前記インバータモータの回転数を、少なくとも前記庫内温度が前記設定温度に達するまで、最高回転数近傍の高回転数に固定する回転数固定処理と、を実行する。
本構成によれば、庫内温度が設定温度より高い所定温度以上である期間の積算時間が、所定値に達した場合、インバータモータの回転数が、少なくとも庫内温度が設定温度に達するまで、最高回転数近傍の高回転数に固定される。それによって、圧縮機を、庫内温度と設定温度との偏差に応じて回転数速度制御する場合において、設定温度までの冷却時間を短縮できる。ここで、「最高回転数近傍の高回転数」には、最高回転数の85%に相当する回転数から最高回転数までの範囲にある回転数が含まれる。また、インバータモータの回転数が、最低速から最高速まで段階(ステップ)制御される場合、段数に応じて、最高速の数段階下までの段階の速度に対応する回転数が、「最高回転数近傍の高回転数」に含まれる。例えば、0速から11速まで12段階でステップ制御される場合、9速、10速、および11速に対応する回転数が、「最高回転数近傍の高回転数」に含まれる。
【0008】
上記冷却貯蔵庫において、カウンタを備え、前記回転数制御部は、前記庫内温度を前記温度センサから所定のサンプリング間隔毎にサンプリングし、前記タイマは、前記サンプリング間隔を計測し、前記カウンタは、前記回転数制御部が、前記庫内温度が前記所定温度以上である期間において前記庫内温度をサンプリングするサンプリング回数をカウントし、前記回転数制御部は、前記判断処理において、前記サンプリング回数が所定回数に達した場合、前記積算時間が前記所定値に達したと判断するようにしてもよい。
本構成によれば、積算時間が、庫内温度をサンプリングするサンプリング回数が所定回数に達したこととされる。すなわち、インバータモータの回転数を最高回転数近傍の高回転数に固定するか否かの判定条件である積算時間を、時間そのものの積算値とせず、庫内温度をサンプリング間隔(区間)単位としたことで、判定を単純化させ、それによってインバータモータの回転数速度制御を簡素化することができる。
【0009】
また、上記冷却貯蔵庫において、前記回転数制御部は、前記サンプリング回数が前記所定回数に達しない場合、前記回転数可変処理を実行するようにしてもよい。
本構成によれば、貯蔵物を冷却する、いわゆるコントロール冷却運転時において普通に行われる扉の開閉によって庫内温度が所定温度以上に上昇する場合において、サンプリング回数が前記所定回数に達しない期間において回転数可変処理を実行しつつ、扉の開閉の頻度が高い場合に回転数固定処理を好適に実行できる。
【0010】
また、本明細書によって開示される圧縮機の回転数制御方法は、インバータモータにより駆動される圧縮機と、前記圧縮機が圧縮した冷媒から放熱させる凝縮器と、前記凝縮器からの冷媒が絞り装置を通して供給される冷却器と、貯蔵室を有し、前記冷却器により生成された冷気によって前記貯蔵室内が冷却される貯蔵庫とを備えた冷却貯蔵庫の圧縮機の回転数制御方法であって、前記貯蔵室内の庫内温度を検出する検出工程と、前記インバータモータの回転数を、前記庫内温度と、冷却の目標とする温度である設定温度との偏差に応じて可変する回転数可変工程と、前記庫内温度が、前記設定温度より高い温度である所定温度以上である期間の積算時間を計測する計測工程と、前記積算時間が所定値に達したか否かを判断する判断工程と、前記判断工程において前記積算時間が前記所定値に達したと判断された場合、前記インバータモータの回転数を、少なくとも前記庫内温度が前記設定温度に達するまで、最高回転数近傍の高回転数に固定する回転数固定工程と、を含む。
【0011】
上記圧縮機の回転数制御方法において、前記検出工程において、前記庫内温度を所定のサンプリング間隔毎にサンプリングし、前記計測工程において、前記庫内温度が前記所定温度以上である期間において前記庫内温度をサンプリングするサンプリング回数をカウントし、前記判断工程において、前記サンプリング回数が所定回数に達した場合、前記積算時間が前記所定値に達したと判断するようにしてもよい。
【0012】
また、上記圧縮機の回転数制御方法において、前記サンプリング回数が前記所定回数に達しない場合、前記回転数可変工程を行うようにしてもよい。
【発明の効果】
【0013】
明細書によって開示される冷却貯蔵庫およびその圧縮機の回転数制御方法によれば、庫内温度が設定温度より高い所定温度以上である期間の積算時間が、所定値に達した場合、インバータモータの回転数が、少なくとも庫内温度が設定温度に達するまで、最高回転数近傍の高回転数に固定される。それによって、圧縮機を庫内温度と設定温度との偏差に応じて回転数可変制御する場合において、設定温度までの冷却時間を短縮できる。
【発明を実施するための形態】
【0015】
<実施形態>
一実施形態を
図1から
図6を参照して説明する。
1.冷却貯蔵庫の構成
本実施形態では、冷却貯蔵庫として、業務用の縦型冷蔵庫の場合を例示しており、まず
図1により全体構造を説明する。縦型冷蔵庫は前面開口の縦長の断熱貯蔵庫10から構成されており、下面の四隅に立てられた脚11によって支持され、内部が貯蔵室である冷蔵室12とされている。冷蔵室12の前面開口は、仕切枠13によって上下2つの開口部14に仕切られ、各開口部14には断熱扉15が水平方向に揺動開閉可能に装着されている。
【0016】
断熱貯蔵庫10の上面には、パネル17により囲って機械室18が設けられ、その中に基台19上に設置した冷凍ユニット20が収容されている。冷凍ユニット20は、
図2に示すように、圧縮機22、凝縮器24、ドライヤ25、キャピラリチューブ26、冷却器27、およびアキュムレータ28を含む。
【0017】
圧縮機22は、インバータモータ21に駆動されて冷媒を圧縮する。凝縮器24は、凝縮器ファン23により冷却される。キャピラリチューブ26は絞り装置に相当する。冷却器27は、キャピラリチューブ26を通過した冷媒を蒸発させる。
【0018】
各機器は、冷媒配管29によって循環接続されている。また、
図1に示されるように、基台19が冷蔵室12の天井壁に形成した窓孔16を塞ぐようにして取り付けられている。
【0019】
冷蔵室12の天井部分における窓孔16の下面側には、エアダクトを兼ねたドレンパン30が張設され、その上方に冷却器室31が形成されている。ドレンパン30の底面は奥縁(
図1の左側)に向けて下り勾配となるように形成され、奥縁側には吹出口33が切り欠き形成されている。また、ドレンパン30の手前側の領域には吸込口32が開口され、そのドレンパン30の手前側上部に設けたファン34により冷蔵室12内の空気を吸引して冷却器27により冷却して吹出口33から冷蔵室12内に戻すようになっている。なお、冷却器室31内には吸込口32から流入した庫内空気が触れる位置に、冷蔵室12内の温度である庫内温度THを検出するための温度センサ35が設けられている。
【0020】
上記インバータモータ21は、
図2に示されるように、可変周波数の交流電力を出力するインバータ駆動回路36により駆動されるが、その出力周波数は制御部40によって決定される。インバータモータ21は、例えば、3相4極のモータである。
【0021】
制御部40は、CPU(回転数制御部の一例)41、温度設定部42、メモリ43、タイマ44、およびカウンタ45等を含む。なお、制御部40の構成はこれに限られず、制御部40は、CPU等を含むASIC(特定用途用IC)によって構成されてもよい。
【0022】
温度設定部42は、冷蔵室12内の冷却の目標温度である設定温度SPを設定する。ここで、設定温度SPとしては、温度設定部42を介してユーザによって設定される設定温度と、メモリ43に記憶された、プルダウン冷却運転時における設定温度とがある。すなわち、ユーザ設定による設定温度SPは、例えば、食品等の貯蔵物を冷却するコントロール冷却運転時における、設定温度である。また、プルダウン冷却運転時における設定温度SPは、例えば貯蔵庫10を設置して始めて電源を投入したときのように、コントロール冷却運転時よりも相当に高い温度からコントロール冷却運転時の温度域まで冷却する際の設定温度である。なお、本実施形態では、便宜上、各設定温度を同一の温度とするが、各設定温度は異なる温度としてもよい。
【0023】
メモリ43はROMを含み、ROMには、
図3に示すマップ、およびCPU41が実行するプログラム等が格納されている。
タイマ44は、庫内温度THが所定温度PD以上である期間の積算時間Σtを計測する。本実施形態では、タイマ44は、庫内温度THをサンプリングするサンプリング間隔KSを計測する。そして、サンプリング間隔KSに基づいて、積算時間Σtが、CPU41によって計測される。なお、本実施形態では、サンプリング間隔KSは、例えば2分とされる(
図5、
図6参照)。
【0024】
また、カウンタ45は、CPU41が、庫内温度THが所定温度PD以上である期間において庫内温度THをサンプリングするサンプリング回数をカウントする。
【0025】
CPU41は、インバータモータ21の回転数Nm、すなわち、圧縮機22の回転数Nmの基本制御として、回転数Nmを、庫内温度THと設定温度SPとの偏差に基づいて可変する回転数可変制御(回転数可変処理)を実行する。その際、CPU41は、偏差が大きいほどより高回転数に回転数Nmを制御する。CPU41は、例えば、
図3に示されるように、設定温度SPからの温度差BTに基づいて、回転数Nmを0速から6速まで7段階に制御する。
【0026】
設定温度SPは、
図3に示されるように、本実施形態のように冷蔵室12を冷蔵制御する場合は、例えば3℃とされる。なお、冷却貯蔵庫が、例えば冷凍庫であって、冷却貯蔵庫を冷凍制御する場合は、例えば−20℃とされる。
【0027】
また、回転数Nmは、例えば、0速の場合は0/s(秒)、1速の場合は30/s(1800rpm)、2速の場合は42/s(2520rpm)、3速の場合は54/s(3240rpm)、4速の場合は66/s(3960rpm)、5速の場合は78/s(4680rpm)、6速の場合は90/s(5400rpm)とされる。
【0028】
また、各設定温度SPからの温度差BT、すなわち、温度境界設定値は、例えば、BT1=0K(K=絶対温度幅)、BT2=2K、BT3=4K、BT4=6K、BT5=8Kとされる。ここで、SP+SP_Uは、設定温度SPの上限値を示し、SP−SP_D、設定温度SPの下限値を示し、それぞれBT2と等しい。すなわち、SP_U=SP_D=BT2=2Kである。また、所定温度PDは、本実施形態では、設定温度SPにBT3(4K)を加算した温度とされる。すなわち、PD=SP+BT3(4K)とされる。なお、所定温度PDは、これに限られない。例えば、PD=SP+BT4(6K)であってもよいし、PD>SP+BT5であってもよい。
【0029】
すなわち、インバータモータ21の回転数可変処理において、回転数Nmは、例えば冷蔵制御の場合において、庫内温度THが11℃以上の場合、最高回転数の6速(90/s)とされ、9℃≦TH<11℃の場合、5速(78/s)とされ、7℃≦TH<9℃の場合、4速(66/s)とされる。また、5℃≦TH<7℃の場合、3速(54/s)とされ、3℃≦TH<5℃の場合、2速(42/s)とされ、1℃≦TH<3℃の場合、1速(30/s)とされる。そして、庫内温度TH<1℃の場合、0速(0/s)とされ、圧縮機22は停止される。また、所定温度PDは、9℃とされる。なお、
図3に示すような、庫内温度THと回転数Nmとの関係は、例えば、マップとしてメモリ43に格納されている。
【0030】
また、本実施形態においては、CPU41は、電源オン時におけるプルダウン冷却運転時等において、所定条件を満たす場合、上記回転数可変処理に代えて、後述する回転数固定処理を行う。回転数固定処理では、インバータモータ21の回転数Nmは、庫内温度THが設定温度SPに達した後において圧縮機22の動作を停止させるまで、最高回転数、ここでは6速(90/s)に固定される。ここで、6速(90/s)の回転数は、「最高回転数近傍の高回転数」の一例である。
【0031】
2.圧縮機の回転数制御処理
次に、
図4から
図6を参照して、本実施形態における圧縮機22の回転数制御処理、すなわち、インバータモータ21の回転数制御処理を説明する。
図5は、貯蔵庫10の電源オン時のプルダウン冷却運転時におけるタイムチャートを示し、
図6は、プルダウン冷却運転後における、貯蔵物を冷却するコントロール冷却運転時におけるタイムチャートを示す。なお、
図6では、庫内温度THが下限値(SP−SP_D)まで低下する前に、扉15が間隔をあけて3回開かれ(
図6の時刻t10、t13、t15参照)、その後、庫内温度THが下限値(SP−SP_D)まで低下した場合の例が示される。また、
図5および
図6における経過時間は、圧縮機22の運転開始時からの時間を示す。回転数制御処理は、例えば、メモリ43に記憶されたプログラムにしたがって、CPU41によって実行される。
【0032】
同処理において、CPU41は、まず、電源オン時のプルダウン冷却運転時か否かを判断する(ステップS5)。電源オン時である、すなわち、プルダウン冷却運転時と判断した場合(ステップS5:YES)、インバータモータ21の回転数Nmを最高回転数の6速(90/s)に設定する(ステップS10)。このタイミングは、
図5の時刻t0に相当する。
【0033】
一方、電源オン時でないと判断した場合(ステップS5:NO)、CPU41は、温度センサ35を介して庫内温度THを検出する(ステップS15)。そして、検出された庫内温度THと、メモリ43に格納されている、例えば、
図3に示される庫内温度THと回転数Nmとの関係をマップとを参照して、回転数を判定し、判定された回転数を回転数Nmに設定する(ステップS20)。
【0034】
次いで、CPU41は、ステップS10、あるいはステップS20において設定された回転数Nmにて、インバータモータ21を、インバータ駆動回路36を介して駆動するとともに、タイマ44による庫内温度THのサンプリング間隔KS(2分)のカウントを開始させる(ステップS25)。このタイミングは、例えば、
図5の時刻t1、および
図6の時刻t11に相当する。
【0035】
次いで、タイマ44がサンプリング間隔KSをタイムアウトしたか否か、すなわち、サンプリング間隔KSが経過したか否かを判断する(ステップS30)。サンプリング間隔KSが経過しない場合(ステップS30:NO)、設定回転数Nmでのインバータモータ21の駆動を継続する。一方、サンプリング間隔KSが経過した場合(ステップS30:YES)、温度センサ35を介して庫内温度THを検出し、検出した庫内温度THが所定温度PD(本実施形態では、9℃)以上であるか否かを判断する(ステップS35)。
【0036】
庫内温度THが所定温度PD以上でないと判断した場合(ステップS35:NO)、CPU41は、庫内温度THが、圧縮機22を一時的に停止させるための、例えば、設定温度の下限値(SP−SP_D:本実施形態では、1℃)に達したか否かを判断する(ステップS40)。庫内温度THが、設定温度の下限値(SP−SP_D)に達していないと判断した場合(ステップS40:NO)、ステップS20の処理に戻る。一方、庫内温度THが、設定温度の下限値(SP−SP_D)に達したと判断した場合(ステップS40:YES)、庫内の冷却を一時停止するために、ステップS75の処理に移行して、圧縮機22を一時的に停止させる。
【0037】
一方、ステップS35において、庫内温度THが所定温度PD以上であると判断した場合(ステップS35:YES)、カウンタ45のカウント値をインクリメントする(ステップS45)。このタイミングは、
図5の時刻t2、時刻t3に相当する。また、
図6の時刻t12、時刻t14に相当する。
【0038】
次いで、CPU41は、カウンタ45のカウント値が「2」であるか否かを判断する(ステップS50)。ステップS50の処理は、庫内温度THが所定温度PD以上である期間の積算時間Σtが所定値に達したか否かを判断する判断処理の一例である。すなわち、本実施形態においては、CPU41は、所定温度PD以上である庫内温度THのサンプリング回数が所定回数(本実施形態の場合、2回)に達した場合、積算時間Σtが所定値(本実施形態の場合、4分)に達したと判断する。
【0039】
カウント値が「2」でないと判定した場合(ステップS50:NO)、ステップS5の処理に戻る。このタイミングは、
図5の時刻t2、および
図6の時刻t12に相当する。
【0040】
一方、カウント値が「2」であると判定した場合(ステップS50:YES)、回転数Nmが最高回転数の6速(90/s)に固定して最高回転数でのインバータモータ21の駆動を継続するとともに(回転数固定処理の一例)、回転数固定フラグを「1(ON)」とする(ステップS60)。このタイミングは、
図5の時刻t3、および
図6の時刻t14に相当する。ここで、カウント値「2」は、所定回数の一例である。なお、所定回数は2回に限られず、例えば、3回であってもよい。
【0041】
次いで、CPU41は、ステップS40と同様に、庫内温度THが、圧縮機22を一時的に停止させるための、例えば、設定温度の下限値(SP−SP_D)に達したか否かを判断する(ステップS65)。庫内温度THが、設定温度の下限値(SP−SP_D)に達していないと判断した場合(ステップS65:NO)、最高回転数(90/s)でのインバータモータ21の駆動を継続する。
【0042】
一方、庫内温度THが、設定温度の下限値(SP−SP_D)に達したと判断した場合(ステップS65:YES)、カウント値および回転数固定フラグをゼロ(OFF)にリセットするとともに(ステップS70)、回転数Nmを0速(0/s)として圧縮機22を一時的に停止させる(ステップS75)。このタイミングは、
図5の時刻t4、および
図6の時刻t16に相当する。
【0043】
次いで、CPU41は、庫内温度THが、設定温度の上限値(SP+SP_U:本実施形態では、5℃)に達したか否かを判断する(ステップS80)。庫内温度THが、設定温度の上限値(SP+SP_U)に達していないと判断した場合(ステップS75:NO)、圧縮機22の一時停止状態を継続する。一方、庫内温度THが、設定温度の上限値(SP+SP_U)に達したと判断した場合(ステップS80:YES)、回転数Nmを、例えば3速(54/s)として圧縮機22を起動し(ステップS85)、ステップS25の処理に移行する。このタイミングは、
図5の時刻t5に相当する。
【0044】
3.本実施形態の効果
庫内温度THが設定温度SPより高い所定温度PD以上である期間の積算時間Σtが、所定値(本実施形態では4分)に達した場合、インバータモータの回転数が、少なくとも庫内温度が設定温度に達するまで、庫内温度THが最高回転数(本実施形態では6速(90/s))に固定される。それによって、圧縮機22を、庫内温度THと設定温度SPとの偏差に応じて回転数速度制御する場合において、設定温度SPまでの冷却時間を短縮できる。
【0045】
その際、本実施形態では、積算時間Σtは、庫内温度THをサンプリングするサンプリング回数が所定回数(本実施形態では2回)に達したこととされる。すなわち、インバータモータ21の回転数Nmを最高回転数に固定するか否かの判定条件である積算時間Σtを、時間そのものの積算値とせず、庫内温度THのサンプリング間隔(本実施形態では、2分)単位としたことで、判定を単純化させ、それによってインバータモータ21の回転数速度制御を簡素化することができる。
【0046】
また、貯蔵物を冷却する、いわゆるコントロール冷却運転時に扉15が開閉された場合等において、サンプリング回数が所定回数に達しない場合、CPU41は、回転数可変処理を実行する。そのため、コントロール冷却運転時において普通に行われる扉15の開閉によって庫内温度THが所定温度PD以上に上昇する場合において、サンプリング回数が所定回数に達しない期間において回転数可変処理を実行しつつ、扉15の開閉の頻度が高い場合、圧縮機22が停止するまでに回転数固定処理を好適に実行できる。
【0047】
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
【0048】
(1)上記実施形態では、CPU41は、カウンタ45のサンプリングカウント値が「2」に達した場合(S50:YES)、すなわち、積算時間Σtが所定値に達した場合、庫内温度THが設定温度SPに達し後において圧縮機22が停止されるまで、インバータモータの回転数を、最高回転数(90/s)に固定する回転数固定処理を実行する例を示したが、これに限られない。回転数固定処理は、少なくとも庫内温度THが設定温度SPに達するまで実行されるようにすればよい。すなわち、庫内温度THが設定温度SPに達する
図5の時刻(t4−1)から、時刻t4以前までの時刻において回転数固定処理を終了し、その後、圧縮機22を停止するまでは回転数可変処理を行うようにしてもよい。この場合であっても、プルダウン冷却運転時、あるいはコントロール冷却運転時において、積算時間Σtが所定値に達した場合、庫内温度THが設定温度SPに達するまでの時間を短縮することができる。
【0049】
(2)上記実施形態では、積算時間Σtは、庫内温度THをサンプリングするサンプリング回数が所定回数(本実施形態では2回)に達したこととされる例を示したがこれに限られない。庫内温度THが所定温度PD以上である期間そのものを計時し、計時された期間の積算値を積算時間Σtとしてもよい。
【0050】
(3)上記実施形態では、所定温度PDを、「設定温度SP+BT4」の固定温度とする例を示したがこれに限られない。例えば、プルダウン冷却運転時(
図5参照)と、コントロール冷却運転時(
図6参照)とでは、所定温度PDを異なる温度とするようにしてもよい。
【0051】
(4)上記実施形態では、インバータモータの回転数が、最低速の0速から最高速の6速まで7段階で制御され、最高速の6速(90/s)の速度を、「最高回転数近傍の高回転数」とする例を示したが、これに限られない。すなわち、「最高回転数近傍の高回転数」は、最高速の回転数に限られない。例えば、5速(78/s)を「最高回転数近傍の高回転数」としてもよい。あるいは、最高速の85%(76.5/s)から最高速(90/s)までの範囲にある回転数を「最高回転数近傍の高回転数」としてもよい。
また、回転数Nmの段階(ステップ)制御は、7段階の制御に限られず、例えば、16段階、あるいは32段階の制御であってもよい。その際、段数に応じて、最高速の数段階下までの段階の速度に対応する回転数を「最高回転数近傍の高回転数」としてもよいし、最高速の85%から最高速までの範囲にある回転数を「最高回転数近傍の高回転数」としてもよい。
【0052】
(5)上記実施形態では、庫内温度THをサンプリングするサンプリング間隔KSに関して、ステップS60の回転数固定処理を実行するためのサンプリング間隔KSと、通常の回転数速度制御時におけるサンプリング間隔KSとを、例えば、2分間で同一とする例を示したがこれに限られない。例えば、通常の回転数速度制御処理(回転数可変処理)と、回転数固定処理の実行に係る処理(例えば、
図4における、ステップS40を除くステップS25〜S75の処理)とを並行に実行し、通常の回転数速度制御処理におけるサンプリング間隔KSを、回転数固定処理を実行するための処理におけるサンプリング間隔KSよりも短くするようにしてもよい。また、この並行処理を実行する際、回転数固定処理を実行するための条件が満たされた場合(例えば、
図4における、ステップS50:YES)、回転数固定処理を優先させ、圧縮機22が停止したら、通常の回転数速度制御処理を再スタートさせるようにすればよい。
【0053】
(6)上記実施形態では、冷却貯蔵庫として、業務用の縦型冷蔵庫の例を示したがこれに限られない。冷却貯蔵庫は、例えば、業務用の縦型冷凍庫であってもよいし、冷蔵室と冷凍室を備えた横型の冷却貯蔵庫であってもよい。また、業務用の冷蔵庫あるいは冷凍庫にも限られず、一般家庭用の冷蔵庫あるいは冷凍庫であってもよい。