(58)【調査した分野】(Int.Cl.,DB名)
第1の光学窓と、第2の光学窓と、少なくとも1つの光源と、少なくとも1つの検出器とを含むセンサヘッドであって、前記少なくとも1つの光源は、第1の光学的領域内に前記第1の光学窓を通して流体の流れの中に光を放出するように構成され、前記少なくとも1つの検出器は、第2の光学的領域内に前記流体の流れからの蛍光発光を前記第2の光学窓を通して検出するように構成されるセンサヘッドと、
前記センサヘッドが中に挿入される空洞を画定するハウジングと、前記空洞の外側から前記空洞の内側に流体の流れを移動させるように構成されている入口ポートと、前記空洞の内側から再び前記空洞の外側に流体の流れを移動させるように構成されている出口ポートとを含むフローチャンバと、を備え、
前記入口ポートは、第1の流体ノズル及び第2の流体ノズルであって、前記第1の流体ノズル及び前記第2の流体ノズルのそれぞれが前記第1の光学的領域と前記第2の光学的領域との間に位置された第3の光学的領域の中に突き出す、第1の流体ノズル及び第2の流体ノズルを画定し、前記第1の流体ノズルは、前記流体の流れの一部分を前記第1の光学窓に対して方向付けるように構成され、前記第2の流体ノズルは、前記流体の流れの一部分を前記第2の光学窓に対して方向付けるように構成される、光学センサ。
前記第1の光学窓及び前記第2の光学窓は同一の平面内に配置され、かつ、前記第1の流体ノズル及び前記第2の流体ノズルは、前記第1の光学窓及び前記第2の光学窓と同一の平面内に配置される、請求項1に記載の光学センサ。
前記第1の流体ノズルは、前記第1の流体ノズルの中心を通って延びる第1の流体軸線を画定し、前記第2の流体ノズルは、前記第2の流体ノズルの中心を通って延びる第2の流体軸線を画定し、前記第1の流体軸線は概ね前記第1の光学窓の中心と交わり、前記第2の流体軸線は概ね前記第2の光学窓の中心と交わる、請求項1に記載の光学システム。
前記センサヘッドは、近位端部から遠位端部に延びるセンサハウジングを含み、前記センサハウジングは、第2の平らな面と交わる第1の平らな面によって画定される山形切り抜き部分を含み、前記第1の光学窓は前記第1の平らな面の中に配置され、前記第2の光学窓は前記第2の平らな面の上に配置される、請求項1に記載の光学センサ。
前記第1の平らな面は約90度の角度を画定するように前記第2の平らな面と交わり、前記第1の光学窓と前記第2の光学窓は、前記センサハウジングの前記近位端部と前記遠位端部との間で同一の平面内に配置され、前記第1の流体ノズルと前記第2の流体ノズルは、前記第1の光学窓及び前記第2の光学窓と同一の平面内に配置される、請求項4に記載の光学センサ。
前記第1の光学窓及び前記第2の光学窓は同一の平面内に配置され、前記第1の流体ノズルの中を通して流体を方向付けることは、前記第1の光学窓と同一の平面内において流体を方向付けることを含み、前記第2の流体ノズルの中を通して流体を方向付けることは、前記第2の光学窓と同一の平面内において流体を方向付けることを含む、請求項8に記載の方法。
前記第1の流体ノズルは、前記第1の流体ノズルの中心を通って延びる第1の流体軸線を画定し、及び、前記第2の流体ノズルは、前記第2の流体ノズルの中心を通って延びる第2の流体軸線を画定し、及び、前記第1の流体ノズルの中を通して流体を方向付けることは、前記第1の流体軸線が概ね前記第1の光学窓の中心と交わるように流体を方向付けることを含み、及び、前記第2の流体ノズルの中を通して流体を方向付けることは、前記第2の流体軸線が概ね前記第2の光学窓の中心と交わるように流体を方向付けることを含む請求項8に記載の方法。
前記センサヘッドは、近位端部から遠位端部に延びるセンサハウジングを含み、前記センサハウジングは、第2の平らな面と交わる第1の平らな面によって画定されている山形切り抜き部分を含み、前記第1の光学窓は前記第1の平らな面の中に配置され、前記第2の光学窓は前記第2の平らな面の上に配置される、請求項8に記載の方法。
前記センサヘッドの前記光学窓は第1の光学窓及び第2の光学窓を備え、前記少なくとも1つの光源は、前記第1の光学窓の中を通して光を放出するように構成され、前記少なくとも1つの検出器は、前記第2の光学窓の中を通して蛍光発光を検出するように構成され、前記フローチャンバの前記流体ノズルは第1の流体ノズル及び第2の流体ノズルを備え、前記第1の流体ノズルは、前記流体の流れの一部分を前記第1の光学窓に対して方向付けるように構成され、前記第2の流体ノズルは、前記流体の流れの一部分を前記第2の光学窓に対して方向付けるように構成される、請求項13に記載の光学センサシステム。
前記第1の流体ノズルは、前記第1の流体ノズルの中心を通って延びる第1の流体軸線を画定し、前記第2の流体ノズルは、前記第2の流体ノズルの中心を通って延びる第2の流体軸線を画定し、前記第1の流体軸線は概ね前記第1の光学窓の中心と交わり、前記第2の流体軸線は概ね前記第2の光学窓の中心と交わる、請求項14に記載の光学センサシステム。
前記センサヘッドは、近位端部から遠位端部に延びるセンサハウジングを含み、前記センサハウジングは、第2の平らな面と交わる第1の平らな面によって画定される山形切り抜き部分を含み、前記第1の光学窓は前記第1の平らな面の中に配置され、前記第2の光学窓は前記第2の平らな面の上に配置される、請求項14に記載の光学センサシステム。
前記第1の平らな面は約90度の角度を画定するように前記第2の平らな面と交わり、前記第1の光学窓及び前記第2の光学窓は、前記センサハウジングの前記近位端部と前記遠位端部との間で同一の平面内に配置され、前記第1の流体ノズル及び前記第2の流体ノズルは、前記第1の光学窓及び前記第2の光学窓と同一の平面内に配置される、請求項16に記載の光学センサ。
前記気体供給源と前記フローチャンバとの間に配置される第1の弁と、前記液体供給源と前記フローチャンバとの間に配置される第2の弁とをさらに備え、前記コントローラは、前記第2の弁を開くことによって前記液体供給源を前記フローチャンバと流体連通状態にするために前記液体供給源を制御するように構成され、前記コントローラは、さらに、前記第1の弁を開くことによって前記気体供給源を前記フローチャンバと流体連通状態にするために前記気体供給源を制御するように構成される、請求項13に記載の光学センサ。
光学センサのフローチャンバから液体を排出することであって、前記光学センサは、前記フローチャンバの中に挿入されている光学窓を有するセンサヘッドを含み、前記フローチャンバは、前記光学窓に対して流体を方向付けるように構成されている流体ノズルを画定する入口ポートを含むことと、
前記流体ノズルの中を通して、かつ、液体が排出された前記フローチャンバの空間の中を通して、かつ、前記光学窓に対して流体を方向付けるように、前記フローチャンバの前記入口ポートの中を通して流体を流すことと、を含み、
前記フローチャンバを排出することは、気体供給源を前記フローチャンバと流体連通状態にするように前記気体供給源を制御することを含み、前記入口ポートの中を通して流体を流すことは、液体供給源を前記フローチャンバとの流体連通状態にするように前記液体供給源を制御することを含む、方法。
前記気体供給源を制御することは、前記気体供給源と前記フローチャンバとの間に配置される第1の弁を制御することを含み、前記液体供給源を制御することは、前記液体供給源と前記フローチャンバとの間に配置される第2の弁を制御することを含む、請求項21に記載の方法。
前記センサヘッドの前記光学窓は第1の光学窓及び第2の光学窓を備え、前記光学センサは、さらに、前記第1の光学窓の中を通して光を放出するように構成される少なくとも1つの光源と、前記第2の光学窓の中を通して蛍光発光を検出するように構成される少なくとも1つの検出器とを備え、前記フローチャンバの前記流体ノズルは第1の流体ノズル及び第2の流体ノズルを備え、前記第1の流体ノズルは、前記第1の光学窓に対して流体を方向付けるように構成され、及び、前記第2の流体ノズルは前記第2の光学窓に対して流体を方向付けるように構成される、請求項21に記載の方法。
前記第1の流体ノズルは、前記第1の流体ノズルの中心を通って延びる第1の流体軸線を画定し、前記第2の流体ノズルは、前記第2の流体ノズルの中心を通って延びる第2の流体軸線を画定し、前記第1の流体軸線は概ね前記第1の光学窓の中心と交わり、前記第2の流体軸線は概ね前記第2の光学窓の中心と交わる、請求項24に記載の方法。
前記センサヘッドは、近位端部から遠位端部に延びるセンサハウジングを含み、前記センサハウジングは、第2の平らな面と交わる第1の平らな面によって画定される山形切り抜き部分を含み、前記第1の光学窓は前記第1の平らな面の中に配置され、前記第2の光学窓は前記第2の平らな面の上に配置される、請求項24に記載の方法。
前記第1の平らな面は約90度の角度を画定するように前記第2の平らな面と交わり、前記第1の光学窓及び前記第2の光学窓は、前記センサハウジングの前記近位端部と前記遠位端部との間で同一の平面内に配置されており、前記第1の流体ノズル及び前記第2の流体ノズルは、前記第1の光学窓及び前記第2の光学窓と同一の平面内に配置される、請求項26に記載の方法。
【発明を実施するための形態】
【0014】
以下の詳細な説明は本質的に例示的であり、かつ、本発明の範囲、適用可能性、又は、構成を何らかの形で限定することは意図されていない。むしろ、以下の説明は、本発明の例を具体化するための幾つかの実際的な具体例を提供する。構造と材料と寸法と製造プロセスの具体例が選択された要素に関して示されており、かつ、他の要素のすべては、本発明の分野の当業者にとって既知であるものを使用する。当業者は、記述されている例の多くが様々な適切な代替案を有することを理解するだろう。
【0015】
活性化学薬剤を伴う流体が、様々な異なる用途のために様々な異なる産業で使用されている。例えば、クリーニング産業では、塩素又は他の活性化学薬剤を含む流体溶液が、様々な表面及び機器をクリーニングして殺菌するために使用されることが多い。こうした溶液では、活性化学薬剤の濃度又は他のパラメータが、その流体のクリーニング特性と殺菌特性とに影響を与える可能性がある。したがって、意図された用途のために流体が適切に調合されて調製されることを確実なものにすることが、その流体が後続の使用において適切なクリーニング特性及び殺菌特性を提供することを確実なものにすることを促進するだろう。
【0016】
この開示は、流体媒質の特徴を測定するための光学センサを説明する。特に、この開示は、例えば、流体媒質中の化学種の濃度、流体媒質の温度又は同種のもののような、流体媒質の特徴を測定するために使用されることがある、光学センサに関連した方法とシステムと装置とを説明する。用途に応じて、光学センサは、連続的に又は周期的に流体供給源から流体の流れを受け入れて、その特徴を実質的にリアルタイムで測定するためにその流体を分析する、オンラインセンサ(online sensor)として実現されてよい。例えば、この光学センサは、パイプ、チューブ、又は、他の導管を介して、流体の流れに連結されることがある。この場合に、この光学センサは、導管を介して流体供給源から流体のサンプルを受け入れ、及び、その流体の特徴を測定するためにその流体を分析してよい。
【0017】
用途によっては、この光学センサは、光学分析のために、汚損材料(例えば、固体粒子)を含む流体を受け入れることがある。流体が光学センサを通過する時に、汚損材料がそのセンサ上に付着し、蓄積した汚損材料の付着物または薄膜を発生させることがある。時間の経過に応じて、光学センサがそのセンサを通過して流れる流体を正確に光学的に分析することができなくなるまで、光学センサ上に付着した汚損材料の量が増大することがある。例えば、光学センサが、分析対象の流体の中に光を送り込み及び/又はその流体から光を受け取るための光学窓を含む時には、この光学窓は、この光学窓の中を通過する光を制限する汚損材料の層で覆われることがある。このことが、光学センサによって測定されることが意図されている流体の特徴に関する不正確な測定値をその光学センサが示すことを生じさせる原因となる。
【0018】
本開示に説明されている方法によって、流体ノズルを画定する入口ポートを有する光学センサが提供される。この流体ノズルは、光学センサの中に入る流体を光学センサの光学窓に向けて方向付けるように配置されてよい。例えば、この流体ノズルは、流入する流体が光学センサ内の他のあらゆる構造に接触する前に光学センサの光学窓に接触するように、光学センサの中に入る流体を光学窓に対して直接的に方向付けてよい。光学窓に接触する流入流体の力が、汚損材料が光学窓上に蓄積することを阻止し、及び/又は、蓄積した汚損材料を洗い流し去ることを促進するだろう。光学センサをクリーニングのために定期的に動作状態から解除する必要なしに、光学窓に対して方向付けられた流体がセルフクリーニング機能を果たしてよい。この結果として、光学センサは、クリーニングを必要とすることなしに稼働状態を維持することができ、及び/又は、光学センサはクリーニングの間の延長された使用寿命を示すことができる。
【0019】
本開示による幾つかの例では、光学センサは、その光学センサの光源が中を通して流体の中に光を放出する第1の光学窓と、その光学センサの検出器が中を通して流体から光を受け取る第2の光学窓とを少なくとも含む。光学センサは、蛍光発光を発生させるために流体の中に光を放出し、及び、検出器はその流体の特徴を測定するために蛍光発光を検出することができる。この例では、光学センサは、第1の光学窓に対して流入流体流の一部分を方向付けるように構成される第1の流体ノズルと、第2の光学窓に対して流入流体流の別の一部分を方向付けるように構成される第2の流体ノズルとを含んでよい。各々の光学窓に関連付けられている別個のノズルを備えることによって、複数の光学窓のための単一のノズルを光学センサが使用する場合に比較して、より高い圧力の流体流が各々の光学窓に衝突することができる。
【0020】
本開示による光学センサがシステムの一部分として使用される幾つかの事例では、この光学センサは、このセンサに流入流体の流れを供給する液体供給源と、流入流体の流れを供給することが可能な気体供給源との両方に流体的に連結されてよい。動作中には、この液体供給源は、分析のために光学センサに流体を供給してよい。しかしながら、光学センサから液体が排出されてから光学センサに気体が充填されるように、定期的に、液体供給源が閉鎖されて、気体供給源が開かれてもよい。その後に、分析のために光学センサに液体を再充填するために、液体供給源が再び開かれてよい。これが行われる時には、光学センサの中に最初に入る液体が、光学センサが液体で満たされていた場合に比べて、より迅速に光学センサ内の気体空間の中を通って移動するだろう。したがって、この最初の流入流体は、光学センサがすでに液体で満たされている時に後からその光学センサの中に入る液体に比較して、より大きい力を伴って光学センサの光学窓に衝突することができる。このことが、蓄積した汚損材料を光学窓から取り除くことを促進する、比較的に高圧力のクリーニング作用を実現するだろう。
【0021】
図1は、例示的な光学センサシステム100を示す概念図であり、この光学センサシステムは、蛍光特性を有する化学溶液を分析するために使用されてよい。システム100は、光学センサ102と、コントローラ104と、電源106と、ユーザインタフェース108とを含む。光学センサ102は、流体の流れを受け入れて収容するための空洞を画定するフローチャンバ110と、このフローチャンバの中に挿入されるセンサヘッド112とを含む。センサヘッド112は、例えば、流体中の化合物の濃度、流体の温度又は同種のもののような流体の1つ又は複数の特徴を、流体がフローチャンバ110の中を通過する時に測定するように構成されている。光学センサ102は動作中にコントローラ104と通信することが可能であり、及び、コントローラ104は光学センサシステム100を制御することが可能である。
【0022】
コントローラ104は光学センサ102に通信可能な形で接続され、かつ、プロセッサ114と記憶装置116とを含む。光学センサ102によって生成される信号は有線接続又は無線接続を経由してコントローラ104に通信され、この接続は
図1の例では有線接続として示される。記憶装置116は、コントローラ104を動作させるためのソフトウェアを記憶し、かつ、さらに、例えば光学センサ102からの、プロセッサ114によって発生させられたか又は受け取られたデータも記憶してよい。プロセッサ114は、光学センサ102の動作を制御するために、記憶装置116内に記憶されているソフトウェアを実行する。
【0023】
光学センサ102のフローチャンバ110は、フローチャンバの外側からフローチャンバの内側に流体を移動させるための入口ポートと、再びフローチャンバの外側へ流体の流れを放出するように構成されている出口ポートとを含む。センサヘッド112はフローチャンバ110の中に(例えば、着脱可能な形で、又は、恒久的に)挿入され、及び、フローチャンバ110の中を通過する流体の中に光を送るための、及び/又は、流体の流れから光学エネルギーを受け取るための少なくとも1つの光学窓を含む。動作時には、流体がフローチャンバ110の中に入り、かつ、センサヘッド112の光学窓を通過して送られる。センサヘッド112は、フローチャンバの内側に配置されると、流体が光学窓を通過して移動する時に、その流体を光学的に分析してよい。例えば、光学センサ102が蛍光測定器として具体化されている時には、この光学センサは、蛍光発光を生じさせるために流体の中に光を送り込み、そして、その次に、その流体を光学的に分析するために蛍光発光を検出してもよい。
【0024】
さらに詳細に後述するように(
図7から
図10)、フローチャンバ110は、フローチャンバの中に入る流体を直接的にセンサヘッドの光学窓に向かって方向付けるように構成される流体ノズルを画定する入口を含んでよい。例えば、フローチャンバ110は、センサヘッドの光学窓と同一の平面内にあり、かつ、フローチャンバの中に入る流体が流体ノズルから放出された後に光学窓と直接的に接触するように方向配置されている、流体ノズルを含んでよい。流体ノズルは、流体が流体ノズルから放出された後にその流体がフローチャンバ110の壁面又は他の内部表面に接触するのではなく、流体がフローチャンバ内の他のあらゆる表面に接触する前にその流体がセンサヘッド112の光学窓に接触するように、流体を放出してよい。幾つかの例では、このフローノズル(flow nozzle)は、流体ノズルによって放出される流体の流れの中心が概ね光学窓の中心に方向付けられているように、方向配置されている。フローチャンバ110の中に入る流体をセンサヘッド112の光学窓に向けて方向付けることが、光学窓上の汚損物の蓄積を減少させるか又は排除することを促進するだろう。
【0025】
光学センサ102は、
図1の例では2つの流体供給源(第1の流体供給源118と第2の流体供給源120)として示される、少なくとも1つの流体供給源に接続される。第1の流体供給源118は、第1の弁124を通過する第1の流体導管122を経由してフローチャンバ110と流体連通する。第2の流体供給源120は、第2の弁128を通過する第12の流体導管126を経由してフローチャンバ110と流体連通する。第1の流体導管122と第2の流体導管126は、光学センサシステム100の例では、フローチャンバ110の共通入口ポート(例えば、単一の入口ポート)に流体的に連結される。フローチャンバ110が複数の入口ポートを有する例のような他の例では、第1の流体導管122と第2の流体導管126は、異なる入口ポートを経由してフローチャンバに流体的に連結されてよい。
【0026】
図1には示されていないが、コントローラ104は、第1の弁124と第2の弁128とに対して通信可能な形で接続される。幾つかの例では、コントローラ104は、第1の流体供給源118及び/又は第2の流体供給源120からの流体をフローチャンバ110と流体連通状態にするように、第1の弁124と第2の弁128とを選択的に開閉する。例えば、記憶装置116は、プロセッサ114によって実行される時に、第1の流体供給源118及び/又は第2の流体供給源120からの流体をフローチャンバ110と選択的に流体連通状態にするように、第1の弁124及び/又は第2の弁128とをコントローラ104が選択的に開放及び/又は閉鎖することを生じさせる命令を記憶してよい。第1の流体供給源118がフローチャンバ110と流体連通状態にある時に、第1の流体供給源からの流体がフローチャンバの中を通って流れることが可能である。これとは対照的に、第2の流体供給源120がフローチャンバ110と流体連通状態にある時に、第2の流体供給源からの流体はフローチャンバの中を通って流れることが可能である。
【0027】
第1の弁124と第2の弁128とを制御することに加えて、又は、この代わりに、コントローラ104は、第1の流体供給源118と第2の流体供給源120とからの流体の送出を制御する1つ又は複数の送出装置に対して通信可能な形で接続されているだろう。例示的な送出装置は、ポンプと他の計量装置とを含む。コントローラ104は、第1の流体供給源118及び/又は第2の流体供給源120からの流体をフローチャンバ110と流体連通状態にするように、この送出装置を起動及び/又は停止させるだろう。コントローラ104は、さらに、第1の流体供給源118及び/又は第2の流体供給源120からの流体がフローチャンバ110の中に入る速度を調整するために送出装置の速度を増大及び/又は減少させるだろう。
【0028】
第1の流体供給源118及び第2の流体供給源120の各々は気体状流体、液体状流体を供給し、又は、一方の流体供給源が気体状流体を供給し、一方、別の流体供給源が液体状流体を供給してよい。一例では、第1の流体供給源118は気体状流体供給源であり、かつ、第2の流体供給源120は液体状流体供給源である。第2の流体供給源120は、センサヘッド112による光学分析のためのものであることが意図されている液体をフローチャンバ110に対して供給してよい。例えば、第2の流体供給源120は、液体に対して機能的特性(例えば、クリーニング特性、抗菌特性)を付与する化合物を含む液体をフローチャンバ110に供給してよい。光学センサ102は液体を受け入れて、例えば液体供給源の組成を監視及び/又は調整するために、化合物の濃度を測定するためにその液体を光学的に分析してよい。第1の流体供給源118は、幾つかの例ではフローチャンバのクリーニング及び/又はフローチャンバからの液体の排除のために使用される気体を、フローチャンバ110に供給してよい。
【0029】
光学センサ102の動作中は、第2の流体供給源120は、汚損材料(例えば、固体粒子)を含む液体を、光学分析のためのフローチャンバ110に供給してよい。この液体がフローチャンバの中を通過するにつれて、その汚損材料はフローチャンバの中に蓄積して、センサヘッド112上に付着する可能性がある。時間の経過と共に、この汚損材料は、フローチャンバの中を通過する液体の特徴を光学センサ102が正確に測定することが不可能になるレベルまで、センサヘッド112上に蓄積する場合がある。
【0030】
光学センサ102内の付着物の蓄積を減少させるか又は排除することを促進するために、第1の流体供給源118は、フローチャンバ110から液体を排出するためにフローチャンバ110に気体を周期的に供給してよい。例えば、コントローラ104は、フローチャンバに対する液体の流れを停止させてフローチャンバ110に対する気体の流れを開始させるように、光学センサシステム100の動作中に第1の弁124及び第2の弁128を制御してよい。この気体は、フローチャンバ110から液体が排出されるように、フローチャンバ110内の液体を追い出してよく。その後で、コントローラ104は、液体状流体供給源とフローチャンバとの間の流体連通を再開させてよい。気体が満ちたフローチャンバ110の中に入る液体は、そのチャンバが流体で満たされている時よりも早い速度でフローチャンバ内を移動してよい。フローチャンバ110の中に入るこの高速の流体が、例えばセンサヘッド112の光学窓上の付着物のような蓄積した汚損材料をフローチャンバ110内から取り除くことを促進してよい。
【0031】
例えば、光学窓に対して流体を方向付けるように構成されている流体ノズルを有するフローチャンバ110を含む光学センサ(例えば、
図7から
図10)の動作中に、液体が流体ノズルからセンサヘッド112の光学窓に対して放出されてよい。これは、フローチャンバ110が第2の流体供給源120のような液体状流体供給源と流体連通状態にある時に起こるだろう。コントローラ104は、周期的に、液体状の第2の流体の供給源120とフローチャンバ110との間の流体連通を阻止するために第2の弁128を閉じ、かつ、さらには、気体状の第1の流体の供給源118をフローチャンバに対して流体連通状態にするために第1の弁124を開いてよい。第1の流体供給源118からの気体は、フローチャンバが液体状流体でなく気体状流体によって満たされるように、フローチャンバ110内の液体状流体を追い出してよい。その次に、コントローラ104は、気体状の第1の流体の供給源118とフローチャンバ110との間の流体連通を阻止するために第1の流体弁124を閉じ、かつ、さらには、液体状の第2の流体の供給源120をフローチャンバに対して流体連通状態にするために第2の弁128を開いてよい。フローチャンバ110を再び満たすために液体が最初にフローチャンバの中に入る時に、この液体はフローチャンバ110の流体ノズルから放出され、かつ、センサヘッド112の光学窓に接触する前に、気体で満たされた空間の中を通って移動してよい。気体が満ちた空間の中を通って移動するこの液体は、この液体が同じ空間の中を通って移動しており及びその空間が液体で満たされている場合に比べて、より早い速度で移動することができる。例えば、気体が満ちた空間の中を通って移動する液体は、その液体が同じ空間の中を通って移動しており、かつ、その空間が液体で満たされている場合に比べて、少なくとも2倍の早さ(例えば、少なくとも3倍の速さ、約3倍から約5倍の早さ)で移動することができる。この結果として、液体は、フローチャンバ110の液体が排除されていない場合に比べて、センサヘッド112の光学窓から蓄積した汚損材料を取り除くためのより大きな力を及ぼすだろう。
【0032】
フローチャンバ110の個別的な形状構成とは無関係に、光学センサシステム100のコントローラ104は、任意の適切な頻度でフローチャンバ110に対して第1の流体供給源118と第2の流体供給源120の一方を交互に連通状態にするように、第1の流体供給源118と第2の流体供給源120とを制御してよい。一例では、コントローラ104は、気体状の第1の流体の供給源118とフローチャンバ110との間の流体連通を阻止するために第1の弁124を閉じ、かつ、液体状の第2の流体供給源120とフローチャンバ110との間の流体連通を開くために第2の弁128を開く。コントローラ104は、例えば1分間を超える、5分間を超える、1時間を越える、又は、約1分間から約5分間の範囲内の期間のような、約30秒間を越える時間期間にわたって、第1の弁124を閉じた状態に保持すると同時に第2の弁128を開いた状態に保ち、液体状の流体がフローチャンバ110の中に流れ込んで通過することを可能にしてよい。その次に、コントローラ104は、液体状の第2の流体の供給源120とフローチャンバ110との間の流体連通を阻止するために第2の弁128を閉じ、かつ、気体状の第1の流体の供給源118とフローチャンバとの間の流体連通を開くために第1の弁124を開いてよい。その次に、コントローラ104は、例えば1分間を超える、10分間を超える、又は、約1分間から約30分間の範囲内の期間のような、10秒間を越える時間期間にわたって、第1の弁124を開いた状態に保持し、かつ、第2の弁128を閉じた状態に保持してよい。上述の値は単なる例であり、他の時間の範囲が採用可能でありかつ想定される。
【0033】
幾つかの例では、コントローラ104は、フローチャンバが気体で満たされている時間の量をフローチャンバが液体で満たされる時間の量で除算した比率が1よりも大きいように、フローチャンバ110に対する気体状流体と液体状流体との供給を制御する。例えば、コントローラ104は、フローチャンバが気体で満たされる時間の量をフローチャンバが液体で満たされる時間の量で除算した比率が2よりも大きいように、5よりも大きいように、10よりも大きいように、又は、2から10の間であるように、フローチャンバ110に対する気体状流体と液体状流体との供給を制御してよい。こうした例では、フローチャンバ110は、フローチャンバが液体で満たされる時間期間よりも長い時間期間にわたって気体で満たされてよい。フローチャンバ110によって受け入れられる液体が汚損材料を含む事例では、液体がフローチャンバを通過する時間の量を減少させることが、チャンバ内に付着した汚損材料の量を減少させてよい。汚損材料を含むことがある液体状流体でフローチャンバ110が満たされた状態のままであることを可能にする代わりに、このフローチャンバ110から液体が排出されて、気体でフローチャンバが満たされることが可能である。フローチャンバ110は、周期的に、分析のために気体で満たされ、及び、その次に気体で満たされ、このことが、クリーニングのために取り外される必要が生じる前に光学センサ102が稼働状態のままであることが可能な時間の長さを延長するだろう。
【0034】
流体は、フローチャンバ110の中を通過した後に、流体供給源に戻されるか、又は、廃棄されてよい。
図1の例では、フローチャンバ110は、出口弁132を経由して出口導管130に流体連通しており、及び、排水弁136を経由して排水導管134に流体連通している。動作時には、コントローラ104は、出口弁132と排水弁136とを選択的に開閉するために、出口弁132と排水弁136とに通信可能な形で接続されていてよい。例えば、第1の弁124が閉じられておりかつ第2の弁128が開かれている時に、出口弁132をこの弁を開くように制御し、かつ、排水弁136をこの弁を開くように制御してよい。このことが、流体が第2の流体供給源120からフローチャンバ110の中を通って流れて出口導管130を経由して流体供給源に戻ることを可能にするだろう。これとは逆に、コントローラ104は、第1の弁124が開かれておりかつ第2の弁128が閉じられている時に、出口弁132がその弁を閉じるように制御し、かつ、排水弁136がその弁を開くように制御してよい。このことが、(例えば、フローチャンバから液体を排出するために)流体がフローチャンバ110の外に流れ出すことを可能にし、及び/又は、フローチャンバの外に洗い流された蓄積された汚損材料を放出するための別個の流体経路を実現するだろう。
【0035】
第1の流体供給源118と第2の流体供給源120の各々は任意の適切なタイプの流体であってよい。第1の流体供給源118が気体状流体である例では、気体は、大気空気、酸素、窒素、二酸化炭素、または、任意の他の許容可能なタイプの気体であってよい。幾つかの例では、この気体は大気圧にある。他の例では、この気体は、大気圧を基準として正の圧力である。さらに、第2の流体供給源120が液体状流体である例では、この流体は、(例えば、この液体中の化合物の濃度を測定するために)光学的に分析されることが意図されている液体であるか、又は、光学センサ102をクリーニングするために提供される液体であってよい。例えば、第2の流体供給源120は、光学センサ102から汚損材料をクリーニングするための水または別のクリーニング流体であってよい。他の例では、光学的に分析されることが意図されている液体が、別個のクリーニング液体を提供することに加えて、又は、この代わりに、センサヘッド112の光学窓に対して方向付けられてよい。すなわち、光学センサから汚損材料を取り除くために別個のクリーニング液体を光学センサ102に対して供給する代わりに、分析のためにセンサの中に入る液体自体が、光学センサ内の付着物の蓄積を減少させるか又は排除することを促進するように光学センサの中に送り込まれてよい。
図1の例における光学センサシステム100が第1の流体供給源118と第2の流体供給源120とを含むが、他の例では、光学センサシステムは、より少数の流体供給源(例えば、単一の流体供給源)、又は、より多数の流体供給源(例えば、3つ、4つ、又は、5つ以上の流体供給源)を含んでよく、本開示はこの点に関して限定されない。
【0036】
例えば、一例では、光学センサシステム100は、気体状流体供給源と、光学センサ102をクリーニングするための液体状流体の供給源と、光学センサ102による分析の対象である液体状流体の供給源とを含む。コントローラ104は、気体状流体供給源をフローチャンバ110との流体連通状態にするようにそのシステムを制御し、一方、クリーニングのための液体状流体の供給源と分析対象である液体状流体の供給源との間の流体連通が阻止される。このことがフローチャンバ110から液体を排除するだろう。この後に、コントローラ104は、フローチャンバ110をクリーニングするための液体状流体の供給源をフローチャンバ110と流体連通状態にするようにそのシステムを制御することが可能であり、一方、気体状流体供給源と分析対象の液体状流体の供給源とに対する流れが阻止される。その次に、コントローラ104は、分析対象である液体状流体の供給源をフローチャンバ110と流体連通状態にするようにシステムを制御することが可能であり、一方、クリーニングのための液体状流体の供給源と分析対象である液体状流体の供給源との間の流体連通が阻止される。
【0037】
光学センサシステム100内の光学センサ102は、様々な異なるタイプの液体状流体を分析するために使用されることが可能である。光学センサ102によって分析されることがある例示的な流体が、非限定的に、クリーニング薬剤、殺菌薬剤、工業用冷却塔のための冷却水、殺虫剤のような殺生物剤、耐食剤、スケール防止剤(anti−scaling agent)、付着防止剤(anti−fouling agent)、洗濯洗剤、CIP洗浄剤、塗床剤、自動車手入れ用調合物(vehicle care composition)、ウォーターケア調合物(water care composition)、ボトル洗浄用調合物又は同種のものを含む。幾つかの例では、この流体は、1つ又は複数の化学添加剤を含む水性化学溶液である。これらの流体と他の流体とが第2の流体供給源120として使用されてよい。
【0038】
幾つかの例では、光学センサ102は、フローチャンバ110の中を流れる流体の中に光学エネルギーを放出する光源を伴う蛍光測定器として構成される。この流体は、この流体の中に送り込まれる光学エネルギーに反応して蛍光発光を放出することができる。その次に、光学センサ102は、放出された蛍光発光を検出して、放出された蛍光発光の大きさに基づいて、その溶液内の1つ又は複数の化合物の濃度のような、その溶液の様々な特徴を測定することが可能である。光学センサ102が蛍光発光を検出することを可能にするために、こうして例においては、流体供給源から提供される液体状流体は、蛍光発光特徴を示す分子を含んでよい。幾つかの例では、この流体は、蛍光発光特性を示すことがある、例えば、−OH、−NH
2、−OCH
3のような1つ又は複数の電子供与置換基を有する多環式化合物及び/又はベンゼン分子を含んでよい。用途に応じて、これらの化合物は、こうした化合物によって流体に与えられる機能的特性(例えば、クリーニング特性及び殺菌特性)の故に、光学センサ102の中に入る流体中に本来的に存在することがある。
【0039】
自然的に蛍光発光する化合物に加えて、又は、この代わりに、この液体状流体は、蛍光トレーサ(蛍光マーカーとも呼称されることがある)を含んでよい。この蛍光トレーサは、特に流体に蛍光発光特性を付与するために、流体の中に混合されることが可能である。例示的な蛍光トレーサ化合物は、非限定的に、ナフタレンジスルホナート(NDSA)、2−ナフタレンスルホン酸、アシッドエロー7,1,3,6,8−ピレネテトラスルホン酸ナトリウム塩、及び、フルオレセインを含む。
【0040】
フローチャンバ110によって受け取られる流体の個別的な組成とは無関係に、光学センサ102は、フローチャンバの中を通って流れる流体の1つ又は複数の特徴を測定することが可能である。例示的な特徴は、非限定的に、流体中の1つ又は複数の化合物の濃度、流体の温度、及び/又は、流体の他の特徴を含み、かつ、意図された用途のために流体が適切に調合されていることを確実にすることを促進するだろう。光学センサ102は、検出された特徴情報をコントローラ104に通信してもよい。
【0041】
システム100内の光学センサ102は、概して、光学センサの中を通過する移動流体の流れを受け入れると説明されているが、他の例では、光学センサは、光学センサのフローチャンバの中を通って流れることがない流体の静止体積の1つ又は複数の特徴を測定するために使用されてよい。光学センサ102が、入口ポートと出口ポートを有するフローチャンバ(
図7から
図10)を含む時には、この入口ポートと出口ポートは、流体の静止(例えば、非流動)体積を保持するための形成された限定された空洞に連結されてよい。限定されたフローチャンバは、光学センサ102を校正するために有用だろう。校正中に、フローチャンバは、既知の特徴(例えば、1つ又は複数の化合物の既知の濃度、既知の温度)を有する流体で満たされることが可能であり、及び、光学センサ102が、その校正溶液の推定された特徴を測定することが可能である。光学センサによって測定された推定された特徴は、(例えば、コントローラ104によって)既知の特徴に対して比較されて、光学センサ102を校正するために使用されることが可能である。
【0042】
図1の例における光学センサシステム100は、さらに、電源106と、ユーザインタフェース108と、導管122、126、130、134とを含む。電源106は、光学センサシステム100の様々な構成要素に対して動作電力を供給し、かつ、異なる例では、交流電流供給線、直流電流供給線、又は、電池のような、供給線からの電力を含んでよい。ユーザインタフェース108は、(例えば、光学センサシステム100の動作パラメータを変更するために、校正ルーチンを実行するために)光学センサシステム100に対して入力を与えるために、又は、光学センサシステムからの出力を受け取るために、使用されることが可能である。ユーザインタフェース108は、概して、表示スクリーン又は他の出力媒体と、ユーザ入力媒体とを含んでよい。幾つかの例では、光学センサシステム100は、有線接続又は無線接続を経由して1つ又は複数の遠隔計算装置と通信することが可能である。システム100内の流体導管122、126、130、134は、任意のタイプの可とう性又は非可とう性のチューブ、配管、又は、他の流体経路であってよい。
【0043】
図1の例では、光学センサ102は、フローチャンバ110の中を通って流れる流体の特徴(例えば、化合物の濃度、温度、又は、同種のもの)を測定する。
図2は、流体媒質の特徴を測定する光学センサ200の一例を示すブロック図である。センサ200は、光学センサシステム100内の光学センサ102として使用されることがあり、又は、センサ200は、光学センサシステム100以外の他の用途に使用されることがある。
【0044】
図2を参照すると、センサ200は、コントローラ220と、1つ又は複数の光学エミッタ222(本明細書では「光学エミッタ222」と呼称される)と、1つ又は複数の光学検出器224(本明細書では「光学検出器224」と呼称される)と、温度センサ221とを含む。コントローラ220は、プロセッサ226と記憶装置228とを含む。動作時には、光学エミッタ222は、流体流路230の中を流れる流体の中に光を送り込み、かつ、光学検出器224は、流体によって生じさせられる蛍光発光を検出する。光学エミッタ222によって流体の中に送られる光は、流体内の蛍光分子の電子を励起させて、光学検出器224によって検出されることが可能なエネルギー(すなわち、蛍光)をその分子が放出することを生じさせることによって、蛍光発光を生じさせることができる。例えば、光学エミッタ222は、1つの周波数(例えば、紫外周波数)の光を、流体流路230の中を流れる流体の中に送り込み、かつ、異なる周波数(例えば、可視光周波数)で蛍光発光分子が光エネルギーを放出することを生じさせるだろう。センサ200内の温度センサ221は、そのセンサの付近(例えば、そのセンサに接触している)流体流の温度を測定することが可能である。幾つかの例では、センサ200は、外部装置と通信する。
【0045】
記憶装置228は、ソフトウェアと、コントローラ220によって使用又は生成されるデータとを記憶する。例えば、記憶装置228は、センサ200によって監視されている流体の中の1つまたは複数の化学成分の濃度を測定するために、コントローラ220によって使用されるデータを記憶してよい。幾つかの例では、記憶装置228は、光学検出器224によって検出された蛍光発光を1つまたは複数の化学成分の濃度に関係付ける方程式の形態でデータを記憶する。
【0046】
プロセッサ226は、本開示においてセンサ200とコントローラ220とに属する機能を果たすために、記憶装置228内に記憶されているソフトウェアを実行してよい。コントローラ220、コントローラ104、又は、本開示において言及されているあらゆる他の装置内のプロセッサとして説明されている構成要素の各々は、1つ又は複数のマイクロプロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、プログラム可能論理回路又は同種のもののような、1つまたは複数のプロセッサを、単独で、又は、任意の適切な組み合わせの形で含むことが可能である。
【0047】
光学エミッタ222は、流体流路230内に存在する流体の中に光学エネルギーを放出する少なくとも1つの光学エミッタを含む。幾つかの例では、光学エミッタ222は、特定の範囲の波長全体にわたる光学エネルギーを放出する。他の例では、光学エミッタ222は、1つ又は複数の個別の波長の光学エネルギーを放出する。例えば、光学エミッタ222は、2つ、3つ、4つ、または、5つ以上の別個の波長で放出してよい。
【0048】
一例では、光学エミッタ222は、紫外(UV)スペクトルの範囲内の光を放出する。UVスペクトルの範囲内の光は、約200nmから約400ナノメートルの範囲内の波長を含んでよい。光学エミッタ222から放出される光は、流体流路230内の流体の中に送られる。光学エネルギーを受け取ることに反応して、流体中の蛍光分子は励起して、その分子が蛍光発光を生じさせることを引き起こすだろう。光学エミッタ222によって放出されるエネルギーとは異なる周波数であるか又は異なる周波数ではないことがある蛍光発光は、蛍光発光分子中の励起された電子がエネルギー状態を変化させる時に発生させられるだろう。蛍光発光分子によって放出されるエネルギーは、光学検出器224によって検出されてよい。例えば、光学エミッタ222は、約280nmから約310nmの周波数範囲内の光を放出してよくし、かつ、流体の組成に応じて、約310nmから約400nmの範囲内の蛍光発光を生じさせてよい。
【0049】
光学エミッタ222は、センサ200内で、様々な異なる形で具体化されてよい。光学エミッタ222は、流体中の分子を励起させるための1つ又は複数の光源を含んでよい。例示的な光源は、発光ダイオード(LED)、レーザー、及び、ランプを含む。幾つかの例では、光学エミッタ222は、光源によって放出される光をフィルタリングするための光学フィルタを含む。この光学フィルタは、光源と流体との間に配置され、かつ、特定の波長範囲内の光を通過させるように選択されてよい。別の幾つかの例では、光学エミッタは、光源から放出される光を平行化するために光源の付近に配置されている、平行化レンズ、フード、又は、リフレクタのようなコリメータを含む。コリメータは、光源から放出される光の拡散を減少させて、光学ノイズを低減させるてよい。
【0050】
センサ200は、さらに、光学検出器224も含む。光学検出器224は、流体流路230内の励起された分子によって放出される蛍光発光を検出する少なくとも1つの光学検出器を含む。幾つかの例では、光学検出器224は、光学エミッタ222が位置する側部とは異なる流体流路230の側部上に位置している。例えば、光学検出器224は、光学エミッタ222に対して約90度オフセットしている流体流路230の側部上に配置されているだろう。この配置は、光学エミッタ222によって放出され、流体流路230内の流体を通過して伝達され、光学検出器224によって検出される光の量を、減少させることがある。この伝達された光は、潜在的には、光学検出器によって検出される蛍光発光に干渉する可能性がある。
【0051】
動作中には、光学検出器224によって検出される光学エネルギーの量は、流体流路230中の流体の内容に依存してよい。流体流路が、特定の特性(例えば、特定の化合物、及び/又は、化学種の特定の濃度)を有する流体溶液を含む場合に、光学検出器224は、その流体によって放出される特定のレベルの蛍光エネルギーを検出することができる。しかしながら、この流体溶液が異なる特性(例えば、異なる化合物、及び/又は、化学種の異なる濃度)を有する場合には、光学検出器224は、流体によって放出される異なるレベルの蛍光エネルギーを検出してよい。例えば、流体流路230内の流体が、1つ又は複数の蛍光化合物の第1の濃度を有する場合には、光学検出器224は、第1の大きさの蛍光発光を検出してよい。しかしながら、流体流路230内の流体が、第1の濃度よりも高い1つ又は複数の蛍光化合物の第2の濃度を有する場合には、光学検出器224は、第1の大きさよりも大きい蛍光放出の第2の大きさを検出してよい。
【0052】
光学検出器224は、さらに、センサ200内で様々な形で具体化されてよい。光学検出器224は、光学信号を電気信号に変換するための、例えばフォトダイオード又は光電子増倍管のような1つ又は複数の光検出器を含んでよい。幾つかの例では、光学検出器224は、流体から受け取られた光学エネルギーを集束及び/又は成形するために、流体と光検出器との間に配置されたレンズを含む。
【0053】
図2の例のセンサ200は、さらに、温度センサ221も含む。温度センサ221は、そのセンサのフローチャンバの中を通過する流体の温度を感知するように構成されている。様々な例では、温度センサ316は、バイメタル機械式温度センサ、電気抵抗式温度センサ、光学温度センサ、又は、任意の他の適切なタイプの温度センサであってよい。温度センサ221は、感知した温度の度合いを表している信号を発生させることが可能である。他の例では、センサ200は温度センサ221を含まない。
【0054】
コントローラ220は光学エミッタ222の動作を制御し、かつ、光学検出器224によって検出された光の量に関する信号を受け取る。コントローラ220は、さらに、温度センサ221に接触している流体の温度に関する温度センサ221からの信号を受け取る。幾つかの例では、コントローラ220は、さらに、例えば、流体流路230の中を通過する流体の中の1つ又は複数の化学種の濃度を測定するために、信号を処理する。
【0055】
1つの例では、コントローラ220は、流体の中へ放射を方向付けるために光学エミッタ222を制御し、かつ、さらには、流体によって放出される蛍光発光を検出するために光学検出器224を制御する。その次に、コントローラ220は、流体中の化学種の濃度を測定するために光検出情報を処理する。例えば、流体が蛍光トレーサを含む事例では、対象である化学種の濃度が、蛍光トレーサの測定濃度に基づいて測定されることが可能である。コントローラ220は、未知の濃度の蛍光トレーサを含む流体から光学検出器224によって検出された蛍光発光の大きさを、既知の濃度のトレーサを含む流体から光学検出器224によって検出された蛍光発光の大きさに対して比較することによって、蛍光トレーサの濃度を測定することが可能である。コントローラ220は、次の方程式(1)及び(2)を使用して、対象である化学種の濃度を測定することが可能である。
【0057】
上記の方程式(1)及び(2)では、C
cは対象である化学種の現在濃度であり、C
mは蛍光トレーサの現在濃度であり、C
oは対象である化学種の公称濃度であり、C
fは蛍光トレーサの公称濃度であり、K
mはスロープ補正係数(slope correction coefficient)であり、S
xは現在蛍光測定信号であり、Z
oはゼロシフトである。コントローラ220は、さらに、温度センサ221によって測定された温度に基づいて、対象である化学種の測定濃度を調整してよい。
【0058】
センサ102(
図1)とセンサ200(
図2)は、幾つかの異なる物理的構成を有することが可能である。
図3と
図4は、センサ300の1つの例示的な構成の略図であり、この構成はセンサ102とセンサ200とによって使用されることが可能である。センサ300は、フローチャンバ302と、センサヘッド304と、センサキャップ(sensor cap)306と、固着部材308とを含む。センサヘッド304は、
図3において、フローチャンバ302の外側に、かつ、フローチャンバ302の中に挿入可能である形で示されており、一方、
図4では、センサヘッドは、フローチャンバ302の中に挿入されており、かつ、固着部材308によってフローチャンバ302に取り付けられている形で、示されている。センサヘッド304がフローチャンバ302の中に挿入されて取り付けられる時に、このフローチャンバは、流体供給源から流体を受け取ってセンサヘッド304を通過する流体の流れを調整する、限定された空洞を画定するだろう。例えば、より詳細に後述するように、フローチャンバ302は、フローチャンバ302の中に入る流体をセンサヘッド304の光学窓に対して方向付ける流体ノズルを含んでよい。この流体ノズルは、例えばセンサが流体供給源から移動流体を連続的に受け入れるオンラインセンサとして具体化される時に、センサヘッド304上に付着物が蓄積することを回避することを促進し、及び/又は、蓄積した汚損材料をセンサヘッドから取り除くことを促進することができる。
【0059】
センサ300のフローチャンバ302は、センサヘッド304を受け入れて収容するように構成される。概して、センサヘッド304は、フローチャンバ302の中に挿入可能であり、かつ流体チャンバ内の流体の特徴を感知するように構成される、センサ300の任意の構成要素であってよい。様々な例では、センサヘッド304は、
図1及び
図2に関して上述したように、フローチャンバ302内の流体中の1つまたは複数の化合物の濃度、流体チャンバ内の流体の温度、流体チャンバ内の流体のpH、及び/又は、意図された用途のために流体が適切に調合されていることを確実なものにするのを補助することがある流体の他の特徴を測定するために、特徴を感知するように構成されてよい。
【0060】
図5と
図6は、
図3に示されている例示的なセンサヘッド304の別の図である。示されるように、センサヘッド304は、センサヘッドハウジング310と、第1の光学窓312と、第2の光学窓314と、図示される例では2つの温度センサ316A、316B(集合的に「温度センサ316」)として示される少なくとも1つの温度センサとを含む。センサヘッドハウジング310は、例えば光学エミッタ(
図2)及び光学検出器(
図2)のようなセンサ300の様々な構成要素を収容することが可能な流体不浸透性の構造を画定する。センサヘッドハウジング310は、少なくとも部分的に、かつ、場合によっては完全に、流体内に浸されていることが可能である。第1の光学窓312は、例えば蛍光発光を生じさせるために、センサ300の光学エミッタがその中を通してフローチャンバ302内の流体の中に光を送ることが可能な、センサヘッドハウジング310の光学的に透明な部分を画定する。第2の光学窓314は、フローチャンバ302内の流体によって放出される蛍光発光をセンサ300の光検出器がその中を通して受け取ることが可能である、センサヘッドハウジング310の異なる光学的に透明な部分を画定する。温度センサ316は、流体の温度を測定するために、フローチャンバ302内の流体に接触するように構成される。
【0061】
センサヘッドハウジング310は任意の適切なサイズと形状を画定することが可能であり、かつ、センサヘッドハウジングのサイズと形状は、例えばハウジングによって支持されたセンサの個数と配置とに応じて、様々であることが可能である。
図5と
図6の例では、センサヘッドハウジング310は、近位端部318から遠位端部320に(すなわち、
図5と
図6に示されているZ方向に)延びており、かつ平らな底面321を含む、細長い本体を画定する。幾つかの例では、センサヘッドハウジング310は、(
図5と
図6に示されているX方向又はY方向における)主幅よりも大きい
図5と
図6に示されているZ方向における長さを有する細長い本体を画定する。他の例では、センサヘッドハウジング310は、そのハウジングの主幅よりも小さい長さを画定する。
【0062】
センサヘッドハウジング310が実質的に円形の横断面形状(すなわち、
図5及び
図6に示されているX−Y平面において)を画定するように示されているが、他の例では、このハウジングは、他の形状を画定することが可能である。センサヘッドハウジング310は、任意の多角形(例えば、正方形、六角形)または弓形(例えば、円形、楕円形)の形状、又は、多角形及び弓形の形状の組み合わせさえ画定することが可能である。例えば、幾つかの例では、センサヘッドハウジング310は、ハウジングの内側に向かって突き出る山形切り抜き部分(angular cutout)を画定する。この山形切り抜き部分は、例えば、光エミッタから1つの窓の中を通して流体サンプルの中に光を方向付けるために、かつ、流体サンプルによって発生させられた蛍光発光を別の窓を通して受け取るために、第1の光学窓312と第2の光学窓314を配置するための場所を提供してよい。この山形切り抜き部分は、さらに、例えばセンサヘッドハウジング310がフローチャンバ302(
図3)の中に挿入されて流体がフローチャンバの中を通って流れている時に、第1の光学窓と第2の光学窓との間で流体を方向付けるための流体流路を画定してよい。
【0063】
センサヘッドハウジング310のこの例では、このハウジングは、第1の平らな面324と第2の平らな面326とによって画定されている山形切り抜き部分322を含む。第1の平らな平面324と第2の平らな平面326の各々は、センサハウジング310の中心に向かって半径方向に内方に延びる。第1の平らな平面324は第2の平らな平面326と交差して、これら2つの平らな面の間に交差角を画定する。幾つかの例では、第1の平らな平面324と第2の平らな平面326との間の交差角は約90度であるが、この交差角は90度より大きいことも90度より小さいことも可能であり、かつ、本開示によるセンサがこの点において限定されないということを理解されたい。
【0064】
センサヘッドハウジング310が山形切り抜き部分322を含む時には、第1の光学窓312は山形切り抜き部分の一方の側部上に配置されることが可能であり、一方、第2の光学窓314は山形切り抜き部分の異なる側部上に配置されることが可能である。こうした配置が、例えば第1の光学窓312が第2の光学窓314から180度の向かい側に位置させられている場合に比較して、光学エミッタによって放出されてフローチャンバ302内の流体の中を通って伝達されて光学検出器によって検出される光の量を減少させることがある。流体の中を通して伝達されて光学検出器によって検出される光学エミッタによって発生させられる光が、潜在的に、蛍光発光を検出する光学検出器の能力の妨げになる可能性がある。
【0065】
第1の光学窓312と第2の光学窓314は、センサヘッドハウジング310の光学的に透明な部分である。第1の光学窓312は、センサ300の光学エミッタによって放出される光の周波数に対して光学的に透明であってよい。第2の光学窓314は、流体チャンバ内の流体によって放出される蛍光発光の周波数に対して光学的に透明であってよい。動作中は、第1の光学窓312と第2の光学窓314は、センサヘッドハウジング310内に収容された光学エミッタによって発生させられた光をフローチャンバ302内の流体の中に送るための、かつ、その流体によって放出された蛍光発光を、センサヘッドハウジング内に収容されている光学検出器によって受け入れるための、光学経路を提供してよい。
【0066】
幾つかの例では、第1の光学窓312と第2の光学窓314は同一の材料で作られているが、一方、他の例では、第1の光学窓312は、第2の光学窓314の形成に使用される材料とは異なる材料で作られている。第1の光学窓312及び/又は第2の光学窓314は、光を伝達し及び屈折させるレンズ、プリズム、又は、他の光学装置を含むか、又は、含まなくてよい。例えば、第1の光学窓312及び/又は第2の光学窓314は、センサヘッドハウジング310の中を通って延びる光学チャネルの中に配置されているボールレンズによって画定されることがある。このボールレンズは、ガラス、サファイア、又は、他の適している光学的に透明な材料で作られることが可能である。
【0067】
図5と
図6の例では、センサヘッドハウジング310は、光を流体の中に伝達するための第1の光学窓312と、流体からの蛍光発光を受け入れるための第2の光学窓314とを含む。第1の光学窓312は、センサヘッドハウジング310の長さに沿って(すなわち、
図5及び
図6に示されているZ方向において)、第2の光学窓314と実質的に同じ位置に配置されている。使用中は、フローチャンバ302(
図3)内の流体が、例えば
図5及び
図6に示されている正のZ方向に流れることによって、第1の光学窓312の中心を通って延びる光軸と第2の光学窓314の中心を通って延びる光軸との間を移動するだろう。流体がこれらの光学窓を通過して移動するにつれて、光エミッタは、第1の窓312の中を通して流体の中に光を送り、その流体中の分子が励起して蛍光発光することを引き起こすだろう。蛍光発光する流体が第2の光学窓314を通過して流れる前に、その蛍光発光する分子によって放出される光学エネルギーが第2の光学窓314を通して光学検出器によって受け取られてよい。
【0068】
センサヘッド304のこの例では、第1の光学窓312は、センサヘッドハウジング310の長さに沿って第2の光学窓314と実質的に同一の位置に配置されているが、他の例では、第1の光学窓312は、センサヘッドハウジングの長さに沿って、第2の光学窓314からオフセットしていることがある。例えば、第2の光学窓314は、第1の光学窓312よりも、センサヘッドハウジング310の近位端部318により接近して配置されてよい。さらに、センサヘッド304が、光学エネルギーを放出するための単一の光学窓と、光学エネルギーを受け取るための単一の光学窓とを含む形で示されているが、他の例では、センサヘッド304は、より少ない数の光学窓(例えば、単一の光学窓)、又は、より多い数の光学窓(例えば、3つ、4つ、又は、5つ以上)を含むことが可能であり、かつ、本開示はこの点に関して限定されない。
【0069】
動作中は、センサ300は、フローチャンバ302の中を流れる流体からの蛍光発光を検出することが可能である。この蛍光発光データは、フローチャンバの中を通って流れる化学種の濃度を測定するために、又は、フローチャンバ内の流体の他の特性を測定するために、使用されるだろう。用途に応じて、蛍光検出によって得られることが可能なデータ以外の、フローチャンバ302の中を通って流れる流体の特徴に関する追加的なデータが、その流体の特性を監視及び/又は調整するために有用であるだろう。この理由から、センサ300は、フローチャンバ302内の流体の様々な特性を感知するために、(例えば、蛍光定量的な光学センサに追加して)様々なセンサを含むことがある。
【0070】
図5及び
図6では、センサヘッド304は、フローチャンバ302内の流体の温度を測定するための温度センサ316を含む。温度センサ316は、流体の温度を感知して、検出温度に対応する信号を生成することが可能である。温度センサを伴って構成される時には、温度センサは、流体に物理的に接触することによって流体の温度を測定する接触センサとして、又は、流体にセンサを物理的に接触させることなしにその流体の温度を測定する非接触型センサとして実現されることが可能である。他の例では、センサヘッド304は温度センサ316を含まない。
【0071】
センサヘッド304のこの例では、温度センサ316は、センサヘッドハウジング310の、光学窓312、314とは異なる面上に配置される。明確に述べると、温度センサ316は、センサヘッドハウジング310の底面321上に配置され、一方、第1の光学窓312と第2の光学窓314はそのハウジングの側壁上に配置される。異なる例では、温度センサ316は、センサヘッドハウジング310の1つの面(例えば、底面321)と同一面上にあるか、センサヘッドハウジングの面から外方に突き出すか、又は、センサヘッドハウジングの面に対して凹んでよい。
【0072】
センサヘッドハウジング310に対する温度センサ316の具体的な配置とは無関係に、フローチャンバ302内の流体は、センサ300の動作中に、温度センサに近接して流れてよい。温度センサが流体の温度を感知することが可能であるように、流体は、温度センサを通過して及び採用随意に温度センサに接触して流れることによって、温度センサ316に近接して流れてよい。
【0073】
簡単に上述したように、センサ300(
図3)はフローチャンバ302を含む。フローチャンバ302は、センサヘッド304を受け入れて収容するように構成される。特に、
図3の例では、フローチャンバ302は、センサヘッドの面が流体チャンバの面に接触するまで、
図3に示されている負のZ方向にセンサヘッドを移動させることによって、センサヘッド304を受け入れるように構成される。この接触面は、センサヘッドハウジング310の底面321(
図5及び
図6)、又は、センサヘッドの別の面であるだろう。フローチャンバ302内に適切に配置され終わると、センサヘッドをフローチャンバに機械的に固定するために、固着部材308がフローチャンバ302及びセンサヘッド304上に取り付けられることが可能である。
【0074】
図7から
図9は、フローチャンバ302の例示的な構成の様々な図である。
図7は、フローチャンバからセンサヘッド304が取り除かれた形で示されているフローチャンバ302の上部斜視図である。
図8は、
図7に示されている断面線A−Aに沿った(センサヘッド304がフローチャンバの中に挿入されている)フローチャンバの断面平面図である。
図9は、
図7に示されている断面線B−Bに沿った、(センサヘッド304がフローチャンバの中に挿入されている)フローチャンバ302の断面側面図である。
【0075】
これらの図示されている例では、フローチャンバ302は、フローチャンバハウジン350と、入口ポート352と、出口ポート354とを含む。フローチャンバハウジング350は、センサヘッド304を受け入れるように構成される(例えば、サイズ決定及び成形される)空洞356を画定する。入口ポート352は、フローチャンバハウジング350(例えば、このハウジングの側壁)の中を通って延びており、かつ、このハウジングの外側からこのハウジングの内部に流体を搬送するように構成される。出口ポート354は、フローチャンバハウジング350(例えば、このハウジングの側壁)の中を通って延びており、かつ、このハウジングの内部からこのハウジングの外側に流体を搬送して戻すように構成される。動作時には、流体が入口ポート352を経由してフローチャンバ302の中に入り、第1の光学窓312と、第2の光学窓314と、センサヘッド304の温度センサ316との付近を通過し、かつ、出口ポート354を経由してフローチャンバから出て行くことができる。フローチャンバ302がオンライン用途で使用される時には、流体は、一定の時間期間にわたって連続的にチャンバの中を通って流れてよい。例えば、フローチャンバ302のサイズと形状構成とに応じて、流体は、毎分0.1ガロン(0.3785リットル)から毎分10ガロン(37.85リットル)の範囲内の流量で、そのチャンバの中を通過して流れるだろうが、他の流量も可能であり、想定される。
【0076】
光学センサ300の動作中には、フローチャンバ302は、例えば下流の工業プロセスから、汚損材料(例えば、固体粒子)及び/又は気泡を含む流体を受け入れてよい。こうした汚損材料及び/又は気泡はフローチャンバ内に蓄積し、センサヘッド304がその流体の特徴を適切に検出することを妨げるだろう。本開示による幾つかの例では、フローチャンバ302の入口ポート352が、フローチャンバ302の中に入る流体をセンサヘッド304の光学窓に対して方向付けるように構成されている少なくとも1つの流体ノズルを画定する。例えば、
図8では、入口ポート352が、第1の流体ノズル355Aと第2の流体ノズル355Bとを画定する形で示される(これらのノズルは集合的に「流体ノズル355」と呼称される)。センサヘッド304(
図4及び
図5)がフローチャンバ302内に挿入されると、第1の流体ノズル355Aは、フローチャンバ302の中に入る流体を第1の光学窓312に対して方向付け、一方、第2の流体ノズル355Bは、フローチャンバの中に入る流体を第2の光学窓314に対して方向付けるだろう。入口ポート352の流体ノズル355は、例えば流入する流体がセンサヘッドの光学窓に対して衝突することを引き起こすことによって、センサヘッド304上の汚損材料の蓄積を減少させるか又は排除することを促進することができる。この衝突する流体は、センサヘッド304の光学窓上に汚損材料が蓄積することを防止し、及び/又は、光学窓から蓄積汚染材料を取り除くことができる。
【0077】
さらに、センサヘッド304の光学窓に対して流入流体を方向付けることが、例えば少なくともセンサヘッドによって光学的に分析される前に、その流体中の気泡の形成を排除するか又は減少させてよい。幾つかの用途では、気泡が、流体がフローチャンバの様々な表面と接触する時にフローチャンバ302の中を通って流れる流体の中に発生し、例えば、溶解した気体が溶液の外に出てフローチャンバ内に蓄積することを引き起こすことがある。こうした気泡は、光学センサ300のセンサヘッド304が流体の特徴を測定する際の精度を低下させるだろう。フローチャンバ302の中に入る流体をセンサヘッド304の光学窓に対して方向付けることが、その流体中に気泡が発生することを防止し、及び/又は、その流体中に気泡が発生する前に流体が光学的に分析されることを可能にしてよい。
【0078】
流体ノズル355は、フローチャンバの中に入る流体をセンサヘッド304の光学窓に対して方向付ける任意の構造であってよい。流体ノズル355は、そのノズルの中を通って流れる流体の速度を増大させるために(例えば、
図8に示されている負のY方向に)先細になるか、又は、そのノズルの中を通って流れる流体の速度を減少させるために拡大するか、又は、そのノズルの長さに沿って等しい断面積を維持してよい。
図7から
図9の例では、流体ノズル355は、フローチャンバ302の内側壁からセンサヘッド304の山形切り抜き部分322の中に突き出す。流体ノズル355は、第1の流体ノズル355Aと第2の流体ノズル355Bとにその遠位端部において分岐する単一の流体導管を画定する。他の例では、第1の流体ノズル355Aと第2の流体ノズル355Bは、各々に、フローチャンバ302の壁から突き出る別個の流体経路を画定してよい。さらに、別の例では、流体ノズル355は、フローチャンバ302の壁から突き出さないこともある。むしろ、こうした例では、流体ノズル355は、フローチャンバ302の壁と同一平面上にあるか、又は、この壁の中に凹んでいてよい。
【0079】
流体ノズル355は、フローチャンバ302の中に入る流体をセンサヘッド304の光学窓に対して発射する少なくとも1つの開口部(例えば、
図7から
図9の例では2つの開口部)を画定する。この流体ノズルの開口部のサイズは、例えば、フローチャンバ302のサイズと、フローチャンバの中を通して搬送されることが意図されている流体の量とに応じて、変化することが可能である。さらに、流体ノズルの開口部のサイズは、センサヘッド304の光学窓のサイズに応じて変化してよい。幾つかの例では、流体ノズル355は、センサヘッド304の光学窓の断面積よりも小さいか又はこの断面積に等しい断面積を有する開口部を画定する。例えば、
図7から
図9の例では、第1の流体ノズル355Aは、第1の光学窓312の断面積よりも小さい断面積を画定し、及び/又は、第2の流体ノズル355Bは、第2の光学窓314の断面積よりも小さい断面積を画定してよい。第1の流体ノズル355Aの断面積は、第2の流体ノズル355Bの断面積と同一であるか又はこの断面積とは異なってもよい。流体ノズルが第1の光学窓312及び第2の光学窓314の断面積よりも小さいか又はこれに等しい断面積を有するように、第1の流体ノズル355Aと第2の流体ノズル355Bとをサイズ決定することが、フローチャンバ302の中に入る流体を光学窓上に集中させてもよい。第1の光学窓312及び/又は第2の光学窓314に対して比較的により大きい流体の流れを方向付けるのではなく、比較的により小さい流れの形に流体の流れを集中させることが、流体の流れの圧力及び/又は速度を増大させるだろう。このことは、汚損材料を取り除くために流体の流れがセンサヘッド304の光学窓に衝突する力を増大させることができる。
【0080】
流体ノズル355は、フローチャンバ302に沿った様々な異なる位置に配置されることが可能であり、且つ、この位置は、例えばセンサヘッド304の光学窓の位置に基づいて変化することが可能である。幾つかの例では、センサヘッド304は、センサヘッドハウジング310に沿って共通平面内に配置されている第1の光学窓と第2の光学窓とを含む。この共通平面は、共通垂直平面(例えば、
図5及び
図6に示されているY−Z平面)又は共通水平平面(
図5及び
図6に示されているX−Y平面)であってよい。例えば、センサヘッド304(
図5及び
図6)の例では、第1の光学窓312と第2の光学窓314は、各々の光学窓の中心を通過する共通の水平平面を伴って配置されている。幾つかの例では、流体ノズル355は、センサヘッド304の光学窓と同一の平面(例えば、第1の光学窓312と第2の光学窓314の両方と同一の平面)内に配置されてよい。この場所は、流体ノズルの末端からセンサヘッドの光学窓に流体が移動するために必要とする距離を最小化するだろう。
【0081】
図9は、センサヘッド304がフローチャンバ302の中に挿入されているフローチャンバ302の断面側面図である。この構成では、第2の流体ノズル355Bは、第2の光学窓314と共通又は同一の平面内に配置されている。この断面図には示されていないが、第1の流体ノズル355Aも、第1の光学窓312と共通の平面400内に配置されてよい。流体ノズル355が、センサヘッド304の光学窓と共通の平面400内に配置されている時には、流体は、動作中に、流体ノズルの端部と光学窓との間の平面内を(例えば、直線的に)移動することができる。光学窓に対する流体ノズルの相対的な位置に応じて、センサヘッド304の光学窓の共通平面内に流体ノズル355を配置することは、動作中に流体ノズルと光学窓との間を流体が移動する距離を最小化するだろう。一方、このことは、流体が光学窓に衝突する際の力を増大させてよい。そうは言っても、他の例では、流体ノズル355は、第1の光学窓312及び/又は第2の光学窓314と共通の平面400内に配置されておらず、本開示はこの点において限定されない。
【0082】
流体ノズル355と、特に、流体ノズル355の流体開口部とが、センサヘッド304の光学窓に対して様々な異なる方向配置を有することが可能である。概して、センサヘッド304の光学窓に向かって流体ノズル355の開口部が方向付けられているように、流体ノズル355の開口部を方向付けることが、光学窓に対して流体を方向付けるために有用であってよい。動作中には、流体ノズル355がこのような構成を有する時に、流体ノズルから放出される流体が、フローチャンバ110の壁面又は他の内部面に接触することなしに、流体ノズルからセンサヘッド304の光学窓に移動することができる。この代わりに、流体ノズル355を出て行く流体は、フローチャンバ302の内側の他のあらゆる面に接触する前に、センサヘッド304の光学窓に直接的に接触してよい。
【0083】
さらに
図8を参照すると、第1の流体ノズル355Aは、第1の流体ノズルの中心を通って延びる第1の流体軸線380Aを画定し、かつ、第2の流体ノズル355Bは、第2の流体ノズルの中心を通って延びる第2の流体軸線380Bを画定する。第1の流体軸線380Aは、流体が第1の流体ノズル355Aの中を通って流れている時に、そのノズルを出て行く流体の流れが実質的に第1の光学窓上に集中させられるように、概ね第1の光学窓312の中心を通過して延びて交わる。第2の流体軸線380Bは、流体が第2の流体ノズル355Bの中を通って流れている時に、そのノズルを出て行く流体の流れが実質的に第2の光学窓上に集中させられるように、概ね第2の光学窓314の中心を通過して延びて交わる。他の例では、第1の流体軸線380A及び/又は第2の流体軸線380Bは、第1の光学窓312及び/又は第2の光学窓314の中心ではないこれらの光学窓の異なる部分を通過して延びるか、又は、これらの光学窓を通過して延びないだろう。例えば、第1の流体軸線380Aと第2の流体軸線380Bは、流体が第1の流体ノズル355Aと第2の流体ノズル355Bとの中を流れている時に、これらのノズルを出て行く流体の流れが、例えば第1の光学窓312と第2の光学窓314とに対して流れる前に、センサヘッドハウジングの壁に衝突するように、センサヘッドハウジング310の壁を貫通して延びてよい。こうした構成は、流入流体流がセンサヘッド304の光学窓に衝突する前にこの流入流体流の力を散逸させることがある。
【0084】
図7から
図9の例におけるフローチャンバ302の動作中に、流体はフローチャンバの入口ポート352の中に入り、かつ、第1の流体ノズル355Aと第2の流体ノズル355Bとに分岐する前に、この入口ポートを通過して移動し、かつ、幾つかの例では流体ノズル355の一部分の中を通過して移動する。入口ポートの中に入る流体の一部分は第1の流体ノズル355Aを通して放出され、一方、入口ポートの中に入る流体の別の部分は第2の流体ノズル355Bを通して放出される。幾つかの例では、入口ポート352の中に入る流体のすべてが、第1の流体ノズル355Aと第2の流体ノズル355Bとを経由して入口ポートから放出される。例えば、流体ノズル355Aが、第2の流体ノズル355Bによって画定されている開口部と概ね同一の大きさである開口部を画定する時には、入口ポート352に入る流体の概ね半分が第1の流体ノズル355Aを経由して入口ポートから放出され、一方、その他方の半分が第2の流体ノズル355Bから放出されてよい。流体ノズル355からの放出時に、流体は、第1の光学窓312と第2の光学窓314とに接触する前に、流体ノズルの遠位先端から気体又は液体で満たされた空間の中を通って移動してよい。
【0085】
センサヘッド304の動作中に、このセンサヘッドは、第1の光学窓312の中を通して、フローチャンバ302の中を通って流れる流体の中に光を放出し、かつ、流体の特徴を検出するために、第2の光学窓314を通して流体からの光学エネルギー(例えば、蛍光発光)を受け取ってよい。流体ノズル355が、第1の光学窓312と第2の光学窓314の中を通って延びる光学経路の中に、フローチャンバ302の壁から突き出る場合には、流体ノズルは、センサに対する光学的な干渉を潜在的に生じさせることがある。したがって、幾つかの例では、流体ノズル355がフローチャンバ302の壁から突き出る時に、流体ノズルは、そのノズルによる光学的干渉を最小限にするか又は防止することを促進するようにサイズ決定される。
【0086】
図10は、
図7に示されている断面線A−Aに沿ったフローチャンバ302(そのフローチャンバの中に挿入されているセンサヘッド304を伴って示されており、かつ、図示のために流体ノズル355は省略されている)別の断面平面図である。
図10は、光学センサ300によって画定されていることがある例示的な光学的領域を示す。この例では、第1の光学窓312は、山形切り抜き部分322の第1の光学的領域402の中に光源からの光を投射するように構成されており、かつ、第2の光学窓314は、山形切り抜き部分の第2の光学的領域404からの光を受け取るように構成されている。第1の光学的領域402は、第1の光学窓312及び第2の光学窓314に隣接した第2の光学的領域404と重なる。センサヘッド304の方向配置と設計とに応じて、第1及び第2の光学的領域が第1の光学窓312と第2の光学窓314とから遠ざかる形で延びて第3の光学的領域406を画定するのにつれて、第1の光学的領域402は第2の光学的領域404から分岐してよい。流体ノズル(
図10には示されていない)は、このノズルが第1の光学的領域402及び/又は第2の光学的領域404の中に突き出すことなしに第3の光学的領域406の中に突き出すように、サイズ決定されてよい。このようなサイズ決定が、突き出している流体ノズルがセンサヘッド304に対する光学的干渉を引き起こす度合いを最小限にすることを促進することができる。
【0087】
図7から
図10の例における光学センサ300は、2つの光学窓(光学窓312と第2の光学窓314)を含む。この理由から、この例では、フローチャンバ302は、2つの流体ノズル、すなわち、第1の流体ノズル355Aと第2の流体ノズル355Bとを有するものとして概して説明されている。他の例では、フローチャンバ302は、より少数の流体ノズル(例えば、単一の流体ノズル)、又は、より多数の流体ノズル(例えば、3つ、4つ、又は、5つ以上の流体ノズル)を有してよく、かつ、本開示はこの点において限定されない。例えば、光学センサ300のセンサヘッド304が3つ以上の光学窓を有する時には、フローチャンバ302は3つ以上の流体ノズルを有してよい。幾つかの例では、フローチャンバ302は、センサヘッド304の各光学窓に関連付けられている少なくとも1つの流体ノズルを含む。さらに、第1の流体ノズル355Aと第2の流体ノズル355Bが、共通の入口ポートと流体連通している形で、
図7から
図10に示されているが、他の例では、各々の流体ノズルは、フローチャンバハウジング350の側壁を貫通して延びる別個の入口ポートによって画定されてよい。フローチャンバ302の入口ポート352の内側で流入流体を分割するのではなく、フローチャンバの中に入る流体は分岐させられるか、又は、フローチャンバの外側の異なる供給源から供給されて異なる入口ポートを経由してフローチャンバの中に送り込まれてもよい。
【0088】
図7に関連して簡単に説明したように、フローチャンバ302は入口ポート352と出口ポート354とを含む。入口ポート352は、供給源からフローチャンバ302の内側に流体を搬送するための導管に連結するように構成される。出口ポート354は、フローチャンバ302から出て行くように流体を搬送する導管に連結するように構成される。入口ポート352と出口ポート354は、フローチャンバハウジング350の外周の周りの任意の適切な位置に配置されることが可能である。
図7から
図10の例では、入口ポート352はハウジングの側壁上に配置されており、一方、出口ポート354はハウジングの底面上に配置されている。入口ポート352は、出口ポート354に対して相対的に他の位置に配置されることがあるが、本開示はこの点において限定されない。
【0089】
さらに
図3を参照すると、センサ300は、さらに、センサキャップ306と固着部材308とを含む。センサキャップ306は、センサ300の様々な電気的構成要素を収容するキャップを画定するだろう。例えば、センサキャップ306は、光学エミッタ(例えば、光学エミッタ222)の少なくとも一部分、及び/又は、光学検出器(例えば、光学検出器224)、及び/又は、センサ300のコントローラ(例えば、コントローラ220)を収容してよい。センサキャップ306は、センサ300に恒久的に固定されている(例えば、センサ300と一体的に成形されている)か、又は、センサ300から取り外し可能であってよい。
【0090】
幾つかの例では、センサ300は、コントローラ、及び/又は、(例えば、センサキャップ306内に)センサと共に物理的に収容されている他の電子構成要素を含まない。むしろ、センサ300の様々な構成要素は、そのセンサから物理的に分離されており、かつそのセンサに(例えば、有線接続又は無線接続によって)通信可能な形で接続されている1つ又は複数のハウジングの中に配置されてよい。1つの例では、センサ300のセンサキャップ306は取り外し可能であり、かつ、センサのセンサヘッド304は、手持ち型のコントローラモジュールに接続するように構成される。センサ300と共に使用可能な例示的な手持ち型のコントローラモジュールは、2010年3月31日付けで出願された米国特許出願公開第2011/0240887号明細書と、同様に2010年3月31日付けで出願された米国特許出願公開第2011/0242539号明細書とに説明されている。これらの特許出願の内容全体が参照として本明細書に援用されている。
【0091】
動作中は、加圧された流体がセンサ300のフローチャンバ302の中を通って流れてよい。センサヘッド304が、フローチャンバ302から取り外し可能な形に設計されている時には、フローチャンバの中を通って流れる加圧流体は、その流体チャンバの外にセンサヘッドを押し出そうとするだろう。この理由から、センサ300は、センサヘッド304をフローチャンバ302の中に固着させるための固着部材を含んでよい。
【0092】
図3の例では、センサ300は固着部材308を含む。固着部材308は、加圧流体がフローチャンバの中を通って流れている時に、センサヘッド304がフローチャンバ302から外れることを防止することを促進することができる。幾つかの例では、固着部材308は、センサヘッドとフローチャンバの両方の一部分の上に固着部材をねじ込むことによって、センサヘッド304をフローチャンバ302に取り付けるように構成される。異なる例では、固着部材308は、例えば、クリップ、ボルト又は同種のもののような、様々なタイプの取り付け特徴要素を使用して、センサヘッド304をフローチャンバ302に取り付けるように構成されてよい。センサヘッド304をフローチャンバ302に機械的に固定することによって、センサ300は、流体サンプルを受け入れて分析するための(例えば、入口ポート352と出口ポート354を除いて)流体密な空洞を画定することができる。
【0093】
この開示で説明されている方法は、少なくとも部分的に、ハードウェア、ソフトウェア、ファームウェア、又は、これらの任意の組み合わせの形で、具体化されてよい。例えば、説明した方法の様々な側面が、1つ又は複数のマイクロプロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、任意の他の同等の集積論理回路又はディスクリート論理回路、及び、こうした構成要素の任意の組み合わせの形で、具体化されてよい。術語「プロセッサ」は、概して、単独の、又は、他の論理回路又は任意の他の同等の回路との組み合わせの形の、上述の論理回路のいずれかを意味してよい。ハードウェアを備える制御ユニットも、この開示の方法の1つ又は複数を行ってよい。
【0094】
こうしたハードウェアとソフトウェアとファームウェアは、この開示で説明されている様々な動作と機能をサポートするために、同一の装置内で、又は、別個の装置内で、具体化されてよい。さらに、上述のユニット、モジュール、又は、構成要素はいずれも、個別的であるが相互運用可能な論理デバイスとして、一体的に、又は、個別的に具体化されてよい。モジュール又はユニットとして様々な特徴要素を表現することが、様々な機能的側面を強調することが意図されており、かつ、こうしたモジュール又はユニットが別個のハードウェア又はソフトウェア構成要素によって実現されなければならないということを必ずしも示唆しているわけではない。むしろ、1つ又は複数のモジュール又はユニットに関連付けられている機能性が、別個のハードウェア又はソフトウェア構成要素によって実行されてよく、又は、共通の又は別個のハードウェア又はソフトウェア構成要素の中に一体化されてもよい。
【0095】
この開示で説明されている方法は、さらに、命令を含む、非一時的コンピュータ可読記憶媒体のようなコンピュータ可読媒体において、組み込まれるか又はコード化されてもよい。コンピュータ可読記憶媒体内の組み込まれたか又はコード化された命令が、例えばこの命令が実行される時に、プログラム可能プロセッサ又は他のプロセッサがこの方法を実行することを引き起こしてよい。非一時的コンピュータ可読記憶媒体は、例えば、ランダムアクセス記憶装置(RAM)、読み取り専用記憶装置(ROM)、プログラム可能読み取り専用記憶装置(PROM)、消去可能プログラム可能読み取り専用記憶装置(EPROM)、電子的消去可能プログラム可能読み取り専用記憶装置(EEPROM)、フラッシュメモリ、ハードディスク、CD−ROM、フロッピー(登録商標)ディスク、カセット、磁気メディア、光学メディア、又は、他のコンピュータ可読メディアを含む、揮発性及び/又は不揮発性記憶装置の形態を含んでよい。
【0096】
様々な例を説明してきた。これらの例と他の例が後述の特許請求項の範囲内に含まれている。