特許第6346913号(P6346913)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ギャラキシーの特許一覧 ▶ 学校法人智香寺学園の特許一覧

<>
  • 特許6346913-バナジウム空気電池 図000003
  • 特許6346913-バナジウム空気電池 図000004
  • 特許6346913-バナジウム空気電池 図000005
  • 特許6346913-バナジウム空気電池 図000006
  • 特許6346913-バナジウム空気電池 図000007
  • 特許6346913-バナジウム空気電池 図000008
  • 特許6346913-バナジウム空気電池 図000009
  • 特許6346913-バナジウム空気電池 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6346913
(24)【登録日】2018年6月1日
(45)【発行日】2018年6月20日
(54)【発明の名称】バナジウム空気電池
(51)【国際特許分類】
   H01M 8/18 20060101AFI20180611BHJP
   H01M 4/86 20060101ALI20180611BHJP
   H01M 8/0247 20160101ALI20180611BHJP
   H01M 8/0213 20160101ALI20180611BHJP
   H01M 8/10 20160101ALN20180611BHJP
【FI】
   H01M8/18
   H01M4/86 M
   H01M8/0247
   H01M8/0213
   !H01M8/10 101
【請求項の数】8
【全頁数】15
(21)【出願番号】特願2016-84042(P2016-84042)
(22)【出願日】2016年4月19日
(65)【公開番号】特開2017-195067(P2017-195067A)
(43)【公開日】2017年10月26日
【審査請求日】2017年11月24日
【早期審査対象出願】
(73)【特許権者】
【識別番号】510205364
【氏名又は名称】株式会社ギャラキシー
(73)【特許権者】
【識別番号】502152126
【氏名又は名称】学校法人智香寺学園
(74)【代理人】
【識別番号】100101340
【弁理士】
【氏名又は名称】丸山 英一
(72)【発明者】
【氏名】草柳 幸治
(72)【発明者】
【氏名】細淵 馨
(72)【発明者】
【氏名】中井 貴之
(72)【発明者】
【氏名】巨 東英
(72)【発明者】
【氏名】松浦 宏昭
(72)【発明者】
【氏名】高橋 和子
【審査官】 前田 寛之
(56)【参考文献】
【文献】 特開平5−242905(JP,A)
【文献】 特表2014−523092(JP,A)
【文献】 特開2010−244972(JP,A)
【文献】 特開2016−51705(JP,A)
【文献】 特開2016−211029(JP,A)
【文献】 特開2006−339089(JP,A)
【文献】 特開2012−49007(JP,A)
【文献】 国際公開第2008/123486(WO,A1)
【文献】 実開昭47−33926(JP,U)
【文献】 特開2013−58336(JP,A)
【文献】 特表2014−517493(JP,A)
【文献】 特開2015−76125(JP,A)
【文献】 特開2011−210398(JP,A)
【文献】 特開2014−130810(JP,A)
【文献】 特開2006−265751(JP,A)
【文献】 特開2006−4916(JP,A)
【文献】 特表2003−504806(JP,A)
【文献】 特開昭57−119479(JP,A)
【文献】 特表2017−532724(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/18
H01M 4/86
H01M 8/0247
H01M 8/0213
H01M 8/10
H01M 12/08
(57)【特許請求の範囲】
【請求項1】
正極活物質として酸素又は空気が供給される正極と、
負極活物質として2価バナジウムを含有する液体が供給される負極と、
前記正極と前記負極との間に設けられた隔膜又はスペーサーとを備え、
前記正極は、櫛歯状に並設された複数の集電壁間の間隙に酸素又は空気が流通可能に充填された集電材により構成されていることを特徴とするバナジウム空気電池。
【請求項2】
前記集電壁間の間隙は5mm以下であることを特徴とする請求項1記載のバナジウム空気電池。
【請求項3】
前記集電壁の側縁と前記隔膜とを直接接触させていることを特徴とする請求項1又は2記載のバナジウム空気電池。
【請求項4】
前記集電壁の側縁と前記隔膜との間に炭素繊維フェルトを介在させていることを特徴とする請求項1又は2記載のバナジウム空気電池。
【請求項5】
前記集電材は、粒状若しくは繊維状のグラファイト質炭素集合体であるか、又は、粒状及び繊維状の混合物からなるグラファイト質炭素集合体であることを特徴とする請求項1〜4の何れかに記載のバナジウム空気電池。
【請求項6】
前記グラファイト質炭素集合体は、表面の顕微ラマン分光分析におけるラマンシフト1590cm−1のピーク高さ(P1)と1350cm−1のピーク高さ(P2)の比(P2/P1)が1以下であり、窒素ガスを用いて測定されるBET比表面積が1m/g以上である活性炭を含むことを特徴とする請求項5記載のバナジウム空気電池。
【請求項7】
前記負極は、櫛歯状に並設された複数の集電壁間の間隙に2価バナジウムを含有する液体が流通可能に充填された集電材により構成されていることを特徴とする請求項1〜6の何れかに記載のバナジウム空気電池。
【請求項8】
前記正極の集電壁と前記負極の集電壁とが複極式仕切板構造により接続されることによって、前記正極及び前記負極からなるセル単位が複数積層されていることを特徴とする請求項7記載のバナジウム空気電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、バナジウム空気電池に関し、より詳しくは、電流密度に優れたバナジウム空気電池に関する。
【背景技術】
【0002】
特許文献1及び非特許文献1、2には、負極活物質としてバナジウムを用い、正極活物質として酸素又は空気を用いたバナジウム空気電池が提案されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平5−242905号公報
【非特許文献】
【0004】
【非特許文献1】Jens Noack et al. "Development and characterization of a 280cm2 vanadium / oxygen fuel cell", Journal of Power Sources, May 2014, Volume 253, Pages 397-403
【非特許文献2】浜本修他, "バナジウム−空気レドックスフロー電池の環境技術への応用", 電気化学協会 第60回大会要旨集(1993)
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、従来のバナジウム空気電池は、実用性の観点で、電流密度の向上に更なる改善の余地があることがわかった。
【0006】
そこで本発明の課題は、電流密度に優れたバナジウム空気電池を提供することにある。
【0007】
また本発明の他の課題は、以下の記載によって明らかとなる。
【課題を解決するための手段】
【0008】
上記課題は、以下の各発明によって解決される。
【0009】
1.
正極活物質として酸素又は空気が供給される正極と、
負極活物質として2価バナジウムを含有する液体が供給される負極と、
前記正極と前記負極との間に設けられた隔膜又はスペーサーとを備え、
前記正極は、櫛歯状に並設された複数の集電壁間の間隙に酸素又は空気が流通可能に充填された集電材により構成されていることを特徴とするバナジウム空気電池。
2.
前記集電壁間の間隙は5mm以下であることを特徴とする前記1記載のバナジウム空気電池。
3.
前記集電壁の側縁と前記隔膜とを直接接触させていることを特徴とする前記1又は2記載のバナジウム空気電池。
4.
前記集電壁の側縁と前記隔膜との間に炭素繊維フェルトを介在させていることを特徴とする前記1又は2記載のバナジウム空気電池。
5.
前記集電材は、粒状若しくは繊維状のグラファイト質炭素集合体であるか、又は、粒状及び繊維状の混合物からなるグラファイト質炭素集合体であることを特徴とする前記1〜4の何れかに記載のバナジウム空気電池。
6.
前記グラファイト質炭素集合体は、表面の顕微ラマン分光分析におけるラマンシフト1590cm−1のピーク高さ(P1)と1350cm−1のピーク高さ(P2)の比(P2/P1)が1以下であり、窒素ガスを用いて測定されるBET比表面積が1m/g以上である活性炭を含むことを特徴とする前記5記載のバナジウム空気電池。
7.
前記負極は、櫛歯状に並設された複数の集電壁間の間隙に2価バナジウムを含有する液体が流通可能に充填された集電材により構成されていることを特徴とする前記1〜6の何れかに記載のバナジウム空気電池。
8.
前記正極の集電壁と前記負極の集電壁とが複極式仕切板構造により接続されることによって、前記正極及び前記負極からなるセル単位が複数積層されていることを特徴とする前記7記載のバナジウム空気電池。
【発明の効果】
【0010】
本発明によれば、電流密度に優れたバナジウム空気電池を提供することができる。
【図面の簡単な説明】
【0011】
図1】バナジウム空気電池の基本構成を模式的に示す図
図2】バナジウム空気電池の電極構成の一例を示す分解斜視図
図3】顕微ラマン分光ラマンスペクトルの一例
図4】バナジウム空気電池の活物質供給系の一例を示す分解斜視図
図5】正極の寸法を示す要部拡大斜視図
図6】バナジウム空気電池の電極構成の他の例を示す分解斜視図
図7】バナジウム空気電池の電極構成の更なる他の例を示す分解斜視図
図8】実施例のバナジウム空気電池を示す図
【発明を実施するための形態】
【0012】
以下に、図面を参照して本発明を実施するための形態について詳しく説明する。
【0013】
図1はバナジウム空気電池の基本構成を模式的に示す図である。
【0014】
図1において、1は正極、2は負極、3は正極1と負極2との間に設けられた隔膜である。
【0015】
正極1には、正極活物質として酸素又は空気(正極ガスともいう)が供給される。4は正極1に正極ガスを供給する供給ラインであり、5はブロワである。
【0016】
負極2には、負極活物質として2価バナジウムを含有する液体が供給される。6は負極2に2価バナジウムを含有する液体(負極液ともいう)を供給する供給ラインであり、7は負極液を貯留する負極液タンクであり、8はポンプである。また、9は負極2からの負極液を負極液タンク7に返送する返送ラインである。
【0017】
放電時における正極1及び負極2での電極反応は以下のように表すことができる。
【0018】
正極反応: 1/2O + 2H + 2e → H
負極反応: V2+(2価)→ V3+(3価) + e
【0019】
一方、充電時における正極1及び負極2での電極反応は以下のように表すことができる。
【0020】
正極反応: HO → 1/2O + 2H + 2e
負極反応: V3+(3価)+ e → V2+(2価)
【0021】
バナジウム空気電池は上記のようなレドックスフロー方式により充放電を行うことができる。
【0022】
また、バナジウム空気電池の充電は、負極液に生成した3価バナジウムイオンを2価バナジウムイオンに還元するだけでよいため、正極1及び負極2間に通電する方法によらず、種々の方法で充電することができる。
【0023】
本発明のバナジウム空気電池は、特に正極の構成に一つの特徴を有し、具体的には、櫛歯状に並設された複数の集電壁間の間隙に充填された集電材によって正極を構成する。これについて、図2を参照して詳しく説明する。
【0024】
図2はバナジウム空気電池の電極構成の一例を示す分解斜視図である。
【0025】
正極1は、櫛歯状に並設された複数の集電壁10間の間隙に充填された集電材により構成されている。これにより、実質的な反応面積を多く取ることができ、更に内部抵抗を低下することができる。更に、充填された集電材により構成された正極1内を流通する正極ガスの拡散が多次元的になる。これらの結果、電流密度に優れる効果が発揮される。特に酸素の電極反応を行うバナジウム空気電池の正極(空気極)では、反応性を維持することが困難であったが、本発明によれば反応性を顕著に向上できる。
【0026】
図示の例では、複数(7個)の集電壁10は、板状の導電性基材12上に、所定幅の間隙が形成されるように互いに平行に設けられている。即ち、導電性基材12は、櫛型構造における幹部分を構成している。集電壁10と導電性基材12は一体に成形されたものであってもよいし、導電性接着剤等による接着あるいは加熱による融着等よって接合されたものであってもよい。各々の集電壁10は、導電性基材12に対して直交する方向に設けられている。また、各々の集電壁10は、隔膜3に対して直交する方向に設けられている。
【0027】
集電壁10、導電性基材12には導電性材料を用いることができ、例えばグラファイト板、金属板等を挙げることができる。
【0028】
集電材からなる正極1は、7個の集電壁10間に形成される6個の間隙に、正極ガスが流通可能に充填されている。ここでは、集電材からなる正極1は、四方を一対の集電壁10、10、隔膜3及び導電性基材12により囲まれて支持されている。
【0029】
集電材には導電性材料を用いることができ、粒状若しくは繊維状のグラファイト質炭素集合体であるか、又は、粒状及び繊維状のグラファイト質炭素が混合された集合体であることが好ましい。粒状のグラファイト質炭素集合体としては、例えば、1000℃以上、好ましくは1300℃〜1400℃の温度で再焼成された活性炭を破砕したもの等を挙げることができる。また、繊維状のグラファイト質炭素集合体としては、例えば、1000℃以上、好ましくは1300℃〜1400℃の温度で焼成されたセルロース系、ピッチ系、ポリアクリロニトリル系又はカイノール系等の炭素繊維等を挙げることができる。粒状及び繊維状のグラファイト質炭素が混合された集合体としては、例えば、繊維状のグラファイト質炭素に、粒状のグラファイト質炭素をまぶしたもの等を好ましく挙げることができる。
【0030】
グラファイト質炭素集合体は、表面の顕微ラマン分光分析におけるラマンシフト1590cm−1のピーク高さ(P1)と1350cm−1のピーク高さ(P2)の比(P2/P1)が1以下であることが好ましい。図3は、P2/P1比が1以下である顕微ラマン分光ラマンスペクトルの一例である。P2/P1比の測定には、顕微ラマン分光分析装置(例えばJobin−Yvon社製「U−1000ラマンシステム」等)を用いることができる。P2/P1比は、例えば焼成条件等により調整可能である。例えば、上述したように高温で再焼成された活性炭は、P2/P1比が1以下という条件を満たすことができる。かかる活性炭は、導電性に優れ、正極1を構成する集電材として好適に機能することが確認されている。
【0031】
グラファイト質炭素集合体は、窒素ガスを用いて測定されるBET比表面積が1m/g以上であることが好ましい。
【0032】
正極1には、酸素の電極反応性を高めるための白金触媒等の金属性触媒を用いることもできるが、用いなくてもよい。上述したように本発明によれば正極1における酸素の電極反応性を顕著に向上できるため、正極1に金属性触媒を担持したり、金属性触媒層を設けたりしなくても、電流密度に優れる効果が発揮される。
【0033】
図示の例のように、負極2についても、正極1と同様に、櫛歯状に並設された複数の集電壁11間の間隙に充填された集電材により構成されていることが好ましい。これにより、実質的な反応面積を多く取ることができ、更に内部抵抗を低下することができる。その結果、電流密度に優れる効果が発揮される。
【0034】
集電壁11及び負極2を構成する集電材については、正極1についてした説明を援用することができる。集電材からなる負極2は、集電壁11間の間隙に負極液が流通可能に充填される。
【0035】
隔膜3としては、例えばMF膜等の微多孔膜を用いることができる。隔膜3として、イオン交換膜のようなイオン選択透過性を有する膜を用いることもできるが、イオン選択透過性を有しないものも好ましく用いることができる。
【0036】
隔膜3は、正極1を構成する複数の集電壁10と、負極2を構成する複数の集電壁11とによって挟持されている。
【0037】
図示の例では、正極1を構成する集電壁10の側縁と隔膜3とを直接接触させている。同様に、負極2を構成する集電壁11の側縁と隔膜3とを直接接触させている。正極1を構成する集電壁10の側縁と、負極2を構成する集電壁11の側縁とは、隔膜3を介して互いに対向するように配置され、隔膜3を挟持している。
【0038】
図示の例では、隔膜3を挟んで設けられた一対の正極1及び負極2からなるセル単位を3つ積層してセル積層体を形成している。
【0039】
ここで、1つのセル単位を構成する正極1の集電壁10と、該セル単位に隣接するセル単位を構成する負極2の集電壁11とは、共通の導電性基材12上に設けられている。具体的には、導電性基材12の一面に正極1の集電壁10が複数設けられ、該一面と反対側の面に負極2の集電壁11が複数設けられている。
【0040】
即ち、導電性基材12を複極式仕切板(バイポーラプレートともいう)として機能させて、セル単位を直列に複数積層している。
【0041】
このように、正極1の集電壁10と負極2の集電壁11とが複極式仕切板構造により接続されることによって、正極1及び負極2からなるセル単位が複数積層されることが好ましい。
【0042】
一方、セル積層体の積層方向の一端側及び他端側に配される導電性基材12’、12’は、それぞれ該導電性基材12’の一面のみに集電壁10又は集電壁11が設けられており、エンドプレートとして機能している。エンドプレートとなる導電性基材12’、12’には、図示しない外部回路を接続することができる。
【0043】
以上に説明したバナジウム空気電池の活物質供給系について、図4を参照して詳しく説明する。
【0044】
図4はバナジウム空気電池の活物質供給系の一例を示す分解斜視図である。
【0045】
図4において、図2と同符号は同構成を指し、図2についてした説明を援用することができる。
【0046】
図4に示すように、図2に示したセル積層体は、枠体13により固定されている。そして、セル積層体の一側面(図中、下側の面)と、該一側面と反対側の他側面(図中、上側の面)には、それぞれ、第一マニホールド形成部材14と、第二マニホールド形成部材21とが積層されている。
【0047】
図示の例では、第一マニホールド形成部材14は、流路形成板15と、板状の蓋体16との積層体からなり、これら流路形成板15と蓋体16との間に、活物質を供給、排出するためのマニホールドを形成している。同様に、第二マニホールド形成部材21は、流路形成板22と、板状の蓋体23との積層体からなり、これら流路形成板22と蓋体23との間に、活物質を供給、排出するためのマニホールドを形成している。
【0048】
まず、第一マニホールド形成部材14について説明する。
【0049】
第一マニホールド形成部材14には、正極ガスを供給するための一次マニホールド17と、二次マニホールド18とが設けられている。
【0050】
まず、正極ガスを供給するための一次マニホールド17は、図示しないブロワから送られる正極ガスを各セル単位に分岐するように構成されている。即ち、一次マニホールド17は、セル単位ごとに設けられた二次マニホールド18に、正極ガスを分岐するように構成されている。
【0051】
正極ガスを供給するための二次マニホールド18は、一次マニホールド17から導入される正極ガスを各櫛歯間隙に充填された正極1に分岐するように構成されている。
【0052】
また、第一マニホールド形成部材14には、負極液を排出するための一次マニホールド19と、二次マニホールド20とが設けられている。
【0053】
負極液を排出するための一次マニホールド19は、各櫛歯間隙に充填された負極2から排出される負極液を合流するように構成されている。一次マニホールド19は、セル単位ごとに設けられている。
【0054】
負極液を排出するための二次マニホールド20は、各セル単位から排出される負極液を合流して外部に排出するように構成されている。即ち、二次マニホールド20は、セル単位ごとに設けられた一次マニホールド19から排出される負極液を合流するように構成されている。
【0055】
次に、第二マニホールド形成部材21について説明する。
【0056】
第二マニホールド形成部材21には、正極ガスを排出するための一次マニホールド24と、二次マニホールド25とが設けられている。
【0057】
正極ガスを排出するための一次マニホールド24は、各櫛歯間隙に充填された正極1から排出される正極ガスを合流するように構成されている。一次マニホールド24は、セル単位ごとに設けられている。
【0058】
正極ガスを排出するための二次マニホールド25は、各セル単位から排出される正極ガスを合流して外部に排出するように構成されている。即ち、二次マニホールド25は、セル単位ごとに設けられた一次マニホールド24から排出される正極ガスを合流するように構成されている。
【0059】
また、第二マニホールド形成部材21には、負極液を供給するための一次マニホールド26と、二次マニホールド27とが設けられている。
【0060】
負極液を供給するための一次マニホールド26は、図示しないポンプから導入される負極液を各セル単位に分岐するように構成されている。即ち、一次マニホールド26は、セル単位ごとに設けられた二次マニホールド27に、負極液を分岐するように構成されている。
【0061】
負極液を供給するための二次マニホールド27は、一次マニホールド26から導入される負極液を各櫛歯間隙に充填された負極2に分岐するように構成されている。
【0062】
以上のようにして、正極1及び負極2に活物質を供給、排出する活物質供給系を構成することができる。
【0063】
放電時において、図示しないブロワから送られる正極ガスは、第一マニホールド形成部材14の一次マニホールド17及び二次マニホールド18を順に流通し、各櫛歯間隙に充填された正極1に供給される。正極ガスが正極1内を流通する過程で上述した電極反応が生じる。正極1での電極反応後の正極ガスは、第二マニホールド形成部材21の一次マニホールド24及び二次マニホールド25を順に流通し、外部に排出される。
【0064】
一方、図示しないポンプから送られる負極液は、第二マニホールド形成部材21の一次マニホールド26及び二次マニホールド27を順に流通し、各櫛歯間隙に充填された負極2に供給される。負極液が負極2内を流通する過程で上述した電極反応が生じる。負極2での電極反応後の負極液は、第一マニホールド形成部材14の一次マニホールド19及び二次マニホールド20を順に流通し、外部に排出される。
【0065】
バナジウム空気電池は、これら正極1及び負極2での電極反応によって放電することができる。
【0066】
各櫛歯間隙に充填された正極1及び負極2が、流体(正極ガス及び負極液)の流れによって分解されることを防止する観点で、これら電極と、該電極の上下に配置されるマニホールドとの間に、図示しない分解防止部材を介在させることができる。分解防止部材としては、例えばネットや孔付き板等が挙げられる。
【0067】
次に、集電壁10間の間隙に充填された集電材からなる正極1の好ましい寸法について、図5を参照して説明する。
【0068】
図5は、正極1の寸法を示す要部拡大斜視図である。
【0069】
正極1の幅Wは格別限定されないが、5mm以下であることが好ましい。これにより、内部抵抗を更に低下でき、電流密度を更に向上できる効果が得られる。正極1の幅Wの下限は格別限定されないが、例えば1mm以上とすることができる。正極1の幅Wは、集電壁10間の間隙の幅に対応する。
【0070】
正極1の長さLは格別限定されず、例えば5mm以上100mm以下とすることができる。正極1の長さLは、集電壁10からなる櫛歯の長さに対応する。
【0071】
幅Wを小さくすること、及び又は、長さLを大きくすることは好ましいことである。例えば、長さLを幅Wよりも大きく設定することができる。具体的には、例えば、長さLを、幅Wの2倍以上、5倍以上、更には10倍以上に設定することができる。
【0072】
正極1の高さHは格別限定されず、例えば3mm以上30mm以下とすることができる。
【0073】
集電壁10間の間隙に充填された集電材からなる正極1の孔隙率は、十分な接触による導電性を確保する観点で例えば50%程度以下とすることができ、また、正極ガスの流通(透過性)を好適に行う観点で例えば10%程度以上とすることができる。なお、孔隙率は、集電材を充填する部分の容積に対する、孔隙(集電材が存在しない部分の体積)の割合である。
【0074】
以上、正極1についてした好ましい寸法及び充填密度の説明は、負極2にも援用することができる。
【0075】
次に、図4及び図5を参照して、正極1における正極ガスの流通方向について説明する。
【0076】
図4の例では、正極1に正極ガスを供給する二次マニホールド18を、櫛歯間隙に充填された正極1の一端側(ここでは櫛歯基端側)に配置し、正極1から正極ガスを排出する一次マニホールド24を、正極1の他端側(ここでは櫛歯先端側)に配置している。
【0077】
そのため、正極1内において、正極ガスは、図5に示した高さH方向に流通すると共に、長さL方向にも流通する。更に、この流通過程で上述した多次元的な拡散が生じるため、電流密度を顕著に向上することができる。
【0078】
正極ガスの流通方向は上記の例に限定されず、櫛歯間隙に充填された正極1の他端側から一端側に流通させてもよい。正極ガス供給部(ここでは供給マニホールド)と正極ガス排出部(ここでは排出マニホールド)とを、正極1に対して高さH方向、長さL方向及び幅W方向の何れか1以上の方向に偏在して配置することにより、正極ガスを正極1に流通することができる。
【0079】
以上、正極1における正極ガスの流通方向の説明は、負極2における負極液の流通方向にも援用することができる。
【0080】
以上の説明では、正極1を構成する集電壁10の側縁と隔膜3とを直接接触させ、負極2を構成する集電壁11の側縁と隔膜3とを直接接触させる場合について主に示したが、これに限定されない。例えば、集電壁10及び又は集電壁11の側縁と、隔膜3との間に炭素繊維フェルトを介在させることも好ましいことである。以下に、炭素繊維フェルトを介在させる一例について、図6を参照して説明する。
【0081】
図6はバナジウム空気電池の電極構成の他の例を示す分解斜視図である。
【0082】
図6の例では、正極1を構成する集電壁10の側縁と隔膜3との間に炭素繊維フェルト28を介在させている。ここで、炭素繊維フェルトを介在させること自体は従来の空気極の装着手法であるが、本発明では集電壁10間に充填された集電材からなる正極1が存在するため、相乗効果によって高出力の空気極を構成することが可能になる。
【0083】
本発明の一態様においては、空気極としての実質的な電極面積が、従来型の空気極と比べて、場合によっては一桁程度大きくなる。そのため、バナジウム空気電池を二次電池として使用して充電反応を行うときに、電極のグラファイト面を劣化するような電流密度をかける必要がなく、長寿命の空気二次電池として使用することができる。実際に見かけの電流密度を数百mA/cm程度として稼働させるのであれば、集電材等の電極に金属触媒を担持する必要はなく、グラファイトの活性面において、酸素との反応や、酸素発生反応が進行する。
【0084】
図6の例のように、負極2についても、該負極2を構成する集電壁11の側縁と隔膜3との間に、炭素繊維フェルト28を介在させることができる。
【0085】
以上の説明では、複数の集電壁を導電性基材上に形成する場合について主に示したがこれに限定されない。例えば、スペーサーを介して複数の集電壁を積層することも好ましいことである。スペーサーを用いた集電壁の構成例について、図7を参照して説明する。
【0086】
図7はバナジウム空気電池の電極構成の更なる他の例を示す分解斜視図である。
【0087】
図7の例では、正極1を構成する集電壁10が、スペーサー29を介して複数積層されている。スペーサー29は、櫛歯状に並設された集電壁10間の間隙を所定幅(上述した正極1の幅W)に設定するように設けられている。この例では、スペーサー29が、櫛型構造における幹部分を構成している。スペーサー29には、樹脂や金属等を用いることができ、導電性を有しても、有しなくてもよい。
【0088】
図7の例では、互いに隣接するセル単位間で、正極1を構成する集電壁10と、負極2を構成する集電壁11とが、一枚の板状に一体化されている。これにより、複極式仕切板構造を形成している。
【0089】
一方、セル積層体の積層方向の一端側及び他端側に配される集電壁10’、11’には、図示しない外部回路を接続することができる。即ち、集電壁10’、11’自体をエンドプレートとして機能させることができる。あるいは、複数の集電壁10’、11’のそれぞれに対して、図示しないエンドプレートを接触させて、該エンドプレートから外部回路に接続することもできる。
【0090】
以上の説明では、バナジウム空気電池が3つのセル単位を積層してなるセル積層体により構成される場合について示したが、これに限定されず、2又は4以上のセル単位を適宜積層することができる。また、バナジウム空気電池は、1つのセル単位のみ(シングルセル)により構成されてもよい。
【0091】
以上の説明では、櫛歯状に並設された7個の集電壁間に形成される6個の間隙にそれぞれ集電材を充填して正極あるいは負極を形成する場合について主に示したが、櫛歯状に並設される集電壁の数、及び、該集電壁間に形成される間隙の数は、これに限定されない。櫛歯状に並設される集電壁の数は、複数であれば格別限定されず、例えば2個〜200個の範囲に設定することができる。
【0092】
以上の説明では、正極と同様に負極についても櫛歯状に並設された複数の集電壁間の間隙に形成する場合について主に示したが、これに限定されない。少なくとも正極について、櫛歯状に並設された複数の集電壁間の間隙に形成されていれば、本発明の効果を発揮することができる。負極については、例えばバナジウムレドックスフロー電池の負極と同様の構成を付与することができる。
【0093】
以上の説明では、正極及び負極に対してマニホールド構造を介して正極ガス及び負極液を供給、排出する場合について主に示したが、これに限定されない。例えば、正極及び負極に対して供給ライン、排出ラインを個別に設けて、正極ガス及び負極液を供給、排出することもできる。また、特に正極からの正極ガスの排出は、排出ライン等を設けず、正極から直接、大気開放するようにしてもよい。
【0094】
以上の説明では、正極と負極の間に隔膜を設ける場合について主に示したが、これに限定されない。例えば、隔膜に代えて、ネット等のスペーサーを用いてもよい。隔膜又はスペーサーの厚さは格別限定されないが、例えば5mm以下とすることができる。
【0095】
また、正極側に導入する空気は、セルの内部抵抗を更に低く抑える観点で、外気温における相対湿度100%の空気を導入してもよい。バナジウム空気電池を二次電池として使用する場合には、正極側で酸素の発生に伴う水の消費があり、それを空気から賄うときは、相対湿度100%を超えてより多くの給水量とすることが好ましい。例えば、電極面積300cm×300mm程度の単セルに空気を送る電池では、絶対量として3g/min程度の水が必要になり、それに見合った加湿空気を送風することが好ましい。
【実施例】
【0096】
以下に、本発明の実施例について説明するが、本発明はかかる実施例により限定されない。
【0097】
(実施例1)
1.バナジウム空気電池の作製
まず、図8に示すバナジウム空気電池(シングルセル)を作製した。図8(a)はバナジウム空気電池の平面図であり、図8(b)は断面図である。
【0098】
図8に示すように、バナジウム空気電池の正極1は、グラファイト板からなる2つの集電壁10、10間に挟持された集電材により構成されている。集電材には、1400℃で再焼成された平均粒径3〜5mmの活性炭を平均粒径1mm以下に破砕してなる粒状のグラファイト質炭素電極を用いた。
【0099】
集電材からなる正極1の上下面には、樹脂製の押え板30、30が設けられている。また、正極1の一端側(図中、右側)には発泡スチレンからなるスペーサー29が設けられ、他端側(図中、左側)には隔膜3が設けられている。隔膜3には、厚さ0.2μmのMF膜(ユアサメンブレンシステム社製)を用いた。
【0100】
正極ガス(空気;22℃)の正極1への供給は、スペーサー29が備える貫通孔に挿通された送風チューブ31を介して行った。送風量は300ml/minに設定した。正極ガスの正極1からの排出は、正極1の上面に設けた押え板30が備える貫通孔32を介する大気開放により行った。
【0101】
一方、負極2は、グラファイト板からなる2つの集電壁11、11間に挟持された集電材により構成されている。集電材には、正極1と同様の粒状のグラファイト質炭素電極を用いた。
【0102】
集電材からなる負極2の上下面には、樹脂製の押え板30’、30’が設けられている。また、負極2の一端側(図中、左側)には発泡スチレンからなるスペーサー29’が設けられ、他端側(図中、右側)は上述した隔膜3を介して正極1と対向している。
【0103】
負極液には、バナジウムイオン濃度2M、硫酸(HSO)濃度5Mの水溶液(22℃)を用いた。2価バナジウムイオンを活物質とする負極液(負極活物質液)としての充電状態(SOC;State of Charge)は50%に調製した。
【0104】
負極液の負極2への供給は、スペーサー29’が備える貫通孔に挿通された流入チューブ33を介して行った。送液量は1ml/minに設定した。負極液の負極2からの排出は、スペーサー29’が備える貫通孔に挿通された流出チューブ34を介して行った。
【0105】
2.試験方法
上記バナジウム空気電池として、正極1の幅W=3mm、長さL=50mmに設定したものを用い、正極ガス及び負極液を供給して放電を行い、出力1.0Vにおける電流密度を測定した。結果を表1に示す。
【0106】
(実施例2)
実施例1において、バナジウム空気電池における正極1の長さL=25mmに設定したものを用いたこと以外は、実施例1と同様の試験を行って電流密度を測定した。結果を表1に示す。
【0107】
(実施例3)
実施例1において、バナジウム空気電池における正極1の長さL=10mmに設定したものを用いたこと以外は、実施例1と同様の試験を行って電流密度を測定した。結果を表1に示す。
【0108】
(実施例4)
実施例1において、バナジウム空気電池における正極1の長さL=5mmに設定したものを用いたこと以外は、実施例1と同様の試験を行って電流密度を測定した。結果を表1に示す。
【0109】
(実施例5)
実施例3において、バナジウム空気電池における正極1の幅W=5mmに設定したものを用いたこと以外は、実施例3と同様の試験を行って電流密度を測定した。結果を表1に示す。
【0110】
【表1】
【0111】
3.評価
表1より、実施例1〜5の何れにおいても良好な電流密度が達成されることがわかる。特に、幅Wを小さくする、及び又は、長さLを大きくすることによって、電流密度を更に向上できることがわかる。
【符号の説明】
【0112】
1:正極
2:負極
3:隔膜
10、11:集電壁
図1
図2
図3
図4
図5
図6
図7
図8