特許第6346983号(P6346983)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社NTTデータエンジニアリングシステムズの特許一覧

特許6346983銅合金粉末、積層造形物の熱処理方法、銅合金造形物の製造方法および銅合金造形物
<>
  • 特許6346983-銅合金粉末、積層造形物の熱処理方法、銅合金造形物の製造方法および銅合金造形物 図000010
  • 特許6346983-銅合金粉末、積層造形物の熱処理方法、銅合金造形物の製造方法および銅合金造形物 図000011
  • 特許6346983-銅合金粉末、積層造形物の熱処理方法、銅合金造形物の製造方法および銅合金造形物 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】6346983
(24)【登録日】2018年6月1日
(45)【発行日】2018年6月20日
(54)【発明の名称】銅合金粉末、積層造形物の熱処理方法、銅合金造形物の製造方法および銅合金造形物
(51)【国際特許分類】
   B22F 1/00 20060101AFI20180611BHJP
   C22C 9/00 20060101ALI20180611BHJP
   B22F 3/105 20060101ALI20180611BHJP
   B22F 3/16 20060101ALI20180611BHJP
【FI】
   B22F1/00 L
   C22C9/00
   B22F3/105
   B22F3/16
【請求項の数】7
【全頁数】13
(21)【出願番号】特願2017-169472(P2017-169472)
(22)【出願日】2017年9月4日
【審査請求日】2017年9月4日
【早期審査対象出願】
(73)【特許権者】
【識別番号】517310865
【氏名又は名称】株式会社NTTデータエンジニアリングシステムズ
(74)【代理人】
【識別番号】100167988
【弁理士】
【氏名又は名称】河原 哲郎
(74)【代理人】
【識別番号】100155491
【弁理士】
【氏名又は名称】鎌田 雅元
(72)【発明者】
【氏名】蘇亜拉図
(72)【発明者】
【氏名】酒井 仁史
(72)【発明者】
【氏名】樋口 官男
【審査官】 國方 康伸
(56)【参考文献】
【文献】 特開2017−075386(JP,A)
【文献】 特開2008−081840(JP,A)
【文献】 特開2001−131655(JP,A)
【文献】 特開2005−330583(JP,A)
【文献】 特許第6030186(JP,B1)
(58)【調査した分野】(Int.Cl.,DB名)
B22F 1/00− 9/30
C22C 9/00− 9/10
(57)【特許請求の範囲】
【請求項1】
付加製造用の銅合金粉末であって、
Cr:1.1〜20質量%、Zr:0〜0.2質量%、残部がCuおよび不可避的不純物からなる、
銅合金粉末。
【請求項2】
請求項1に記載された銅合金粉末を用いて付加製造された積層造形物の熱処理方法であって、
前記積層造形物を300〜800℃で保持する、
積層造形物の熱処理方法。
【請求項3】
銅合金からなる積層造形物の熱処理方法であって、
前記銅合金は、Cr:0.1〜20質量%、Zr:0〜0.2質量%、Crの含有量がZrの含有量より多く、残部がCuおよび不可避的不純物からなり、
前記積層造形物を410〜800℃で保持する工程を有する、
積層造形物の熱処理方法。
【請求項4】
請求項1に記載された銅合金粉末の薄層を形成する第1工程と、前記薄層の所定位置に電磁波ビームを照射して前記銅合金粉末を溶融・凝固させる第2工程とを順次繰り返して積層造形物を作製する造形工程と、
前記積層造形物を300〜800℃で保持する熱処理工程とを有する、
銅合金造形物の製造方法。
【請求項5】
Cr:0.1〜20質量%、Zr:0〜0.2質量%、Crの含有量がZrの含有量より多く、残部がCuおよび不可避的不純物からなる銅合金粉末の薄層を形成する第1工程と、前記薄層の所定位置に電磁波ビームを照射して前記銅合金粉末を溶解・凝固させる第2工程とを順次繰り返して積層造形物を作製する造形工程と、
前記積層造形物を410〜800℃で保持する熱処理工程とを有する、
銅合金造形物の製造方法。
【請求項6】
前記電磁波ビームがレーザー光である、
請求項4または5に記載の銅合金造形物の製造方法。
【請求項7】
銅合金の積層構造を有する造形物であって、
前記銅合金はCr:0.1〜20質量%、Zr:0〜0.2質量%、残部がCuおよび不可避的不純物からなり、
室温における電気伝導率が65%IACS以上であるか、または
0.2%耐力が150MPa以上で引張強さが300MPa以上である、
銅合金造形物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は粉末床溶融結合方式による金属の付加製造技術に関し、より詳しくは、原料となる銅合金粉末、付加製造によって作製された積層造形物の熱処理方法、当該熱処理工程を含む銅合金造形物の製造方法、および銅合金造形物に関する。
【背景技術】
【0002】
金属の立体造形物の製造方法として、付加製造技術、いわゆる3Dプリント技術が注目されている。このうち粉末床溶融結合方式による付加製造方法は、原料となる金属粉末を造形ステージに敷き詰め、その所定位置にレーザー光や電子ビームを照射して金属粉末を溶融・凝固させて積層することを繰り返すことにより、立体形状を造形する方法である。代表的な方法として、レーザー焼結法(SLS、Selective Laser Sintering)やレーザー溶融法(SLM、Selective Laser Melting)が挙げられる。この方法により、従来の切削加工等では作れなかった複雑な形状の製品を比較的短時間で製造できるようになった。
【0003】
金属の付加製造における一つの問題点は、銅の優れた電気伝導性・熱伝導性を活かした製品の製造が難しいことであった。その主な原因は、レーザー光の波長(例えばYbファイバーレーザーでは1090nm)に対する銅のエネルギー吸収率が極めて低く融点に到達できないことや、融点に到達できても熱伝導が高いために急速に熱が拡散して十分な溶融が進まないことである。
【0004】
これに対して、特許文献1には、クロムおよび珪素の少なくともいずれかを0.10質量%以上1.00質量%以下含有し、前記クロムおよび前記珪素の合計量が1.00質量%以下であり、残部が銅からなる、積層造形(付加製造)用の銅合金粉末が記載されている。この銅合金粉末を用いることにより、機械強度および導電率(電気伝導率)を両立できる積層造形物が製造可能とされる。また、特許文献1には、積層造形物に熱処理を施すことにより、その機械的性質および導電率を向上させることが記載されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許第6030186号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1の実施例によれば、クロムまたは珪素の配合により、引張強さが186.74〜281.41MPa、導電率が23.59〜60.42%IACSである積層造形まま材が得られている。また、導電率は窒素雰囲気下、300℃×3時間の熱処理によって、26.25〜64.27%IACSまで向上している。
【0007】
しかしながら、特許文献1に記載された造形物では、機械強度および導電率のいずれについても、さらなる改善の余地があった。また、300℃×3時間の熱処理によって導電率がわずかに向上しているが、熱処理の効果は十分ではなかった。また、導電率が高い試料(表5)では引張強さが小さく、引張強さが大きい試料(表6、7)では導電率が23.59〜38.12%と低く、機械強度と電気伝導性をより高いレベルで両立することが望まれた。
【0008】
本発明は、上記を考慮してなされたものであり、付加製造による従来のものより高い機械強度および/または電気伝導性・熱伝導性を有する銅合金造形物を提供することを目的とする。また、本発明は、かかる銅合金造形物を製造可能とする銅合金粉末、積層造形物の熱処理方法、銅合金造形物の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者らは鋭意研究の結果、以下の知見を得た。銅(Cu)に対するクロム(Cr)の飽和固溶量は小さく、約1070℃の共晶温度で0.7質量%未満、温度低下により急減して500℃や室温では0.1質量未満といわれている。そこで、この0.1質量%以上のCrを含むCu合金を用いて付加製造を行うと、純銅(純Cu)よりも熱伝導率が低いため造形が容易となる。付加製造時の急冷により積層造形まま材はCu相中に過飽和のCrを含む。この積層造形物を適切に熱処理すると、Cuの母相中にCr相が析出し、母相のCr濃度が下がることにより電気伝導性および熱伝導性が向上する。同時に、Cr相析出による析出硬化作用により、造形物の機械強度も向上する。なお、当初のCu合金中のCr濃度がある程度高い場合は、積層造形まま材の段階でCr相が析出するが、この場合でも熱処理によって母相のCr濃度が下がることによって電気伝導性および熱伝導性が向上する。
【0010】
この知見に基づき、本発明では、付加製造と得られた積層造形物の熱処理に適したCu−Cr合金粉末、積層造形物の熱処理方法、付加製造と熱処理を組み合わせた銅合金造形物の製造方法、高い機械強度や電気伝導性・熱伝導性を有する銅合金造形物を提供することが可能となった。
【0011】
具体的には、本発明の銅合金粉末は、積層造形用の銅合金粉末であって、Cr:1.1〜20質量%、Zr:0〜0.2質量%、残部がCuおよび不可避的不純物からなる。
【0012】
本発明の積層造形物熱処理方法は、上記銅合金粉末を用いて付加製造された積層造形物の熱処理方法であって、前記積層造形物を300〜800℃で保持する。
【0013】
本発明の他の積層造形物熱処理方法は、銅合金からなる積層造形物の熱処理方法であって、前記銅合金は、Cr:0.1〜20質量%、Zr:0〜0.2質量%、Crの含有量がZrの含有量より多く、残部がCuおよび不可避的不純物からなり、前記積層造形物を410〜800℃で保持する工程を有する。
【0014】
本発明の銅合金造形物製造方法は、上記本発明の銅合金粉末の薄層を形成する第1工程と、前記薄層の所定位置に電磁波ビームを照射して前記銅合金粉末を溶融・凝固させる第2工程とを順次繰り返して積層造形物を作製する造形工程と、前記積層造形物を300〜800℃で保持する熱処理工程とを有する。
【0015】
本発明の他の銅合金造形物製造方法は、Cr:0.1〜20質量%、Zr:0〜0.2質量%、Crの含有量がZrの含有量より多く、残部がCuおよび不可避的不純物からなる銅合金粉末の薄層を形成する第1工程と、前記薄層の所定位置に電磁波ビームを照射して前記銅合金粉末を溶解・凝固させる第2工程とを順次繰り返して積層造形物を作製する造形工程と、前記積層造形物を410〜800℃で保持する熱処理工程とを有する。
【0016】
上記銅合金造形物製造方法のいずれにおいても、好ましくは、前記電磁波ビームがレーザー光である。
【0017】
本発明の銅合金造形物は、銅合金の積層構造を有する造形物であって、前記銅合金はCr:0.1〜20質量%、Zr:0〜0.2質量%、残部がCuおよび不可避的不純物からなる。そして、室温における電気伝導率が65%IACS以上であるか、または0.2%耐力が150MPa以上で引張強さが300MPa以上である。
【発明の効果】
【0018】
本発明の銅合金粉末はCrを含むことにより、付加製造時には熱伝導率が下がって造形が容易になる。さらに付加製造の凝固時や熱処理時にCr相が析出して、機械強度と電気伝導性・熱伝導性に優れる銅合金造形物が製造可能となる。本発明の積層造形物熱処理方法または銅合金造形物製造方法によれば、適切な銅合金組成と熱処理条件との組み合わせにより、機械強度、電気伝導性・熱伝導性に優れる銅合金造形物が製造可能となる。本発明の銅合金造形物によれば、従来のものより高い機械強度および/または電気伝導性・熱伝導性が得られる。
【図面の簡単な説明】
【0019】
図1】積層造形物である引張試験片の形状を示す図である。
図2】熱処理による電気伝導率の低下を示す図である。
図3】実施例のCu1.4Cr試料断面の走査電子顕微鏡(SEM)像である。
【発明を実施するための形態】
【0020】
本実施形態の銅合金(Cu合金)粉末は粉末床溶融結合方式による付加製造に用いられる。Cu合金は合金元素としてCrを含む。また、質量%基準で、Cr含有量より少ないZrを含んでいてもよい。そして、残部がCuおよび不可避的不純物である。
【0021】
Crは付加製造過程おける合金融液の凝固時、または後の熱処理工程で析出し、析出硬化によってCu合金の強度を向上させる。Crが析出するためには、Cr含有量は、室温または後の熱処理温度におけるCuへの飽和固溶量より多い必要があり、具体的には0.1質量%以上である。Cr含有量は、好ましくは0.50質量%以上、より好ましくは1.00質量%以上、特に好ましくは1.10質量%以上である。Cr含有量が多いほど熱伝導率が低くなり、付加製造時の造形が容易になるからである。また、Cr含有量は好ましくは20質量%以下である。Cr含有量が多すぎると、熱処理時に析出相が粗大化しやすく、機械特性を損なうからである。一方、電気伝導率に関しては、Cr含有量が小さいほど好ましい。この点からは、Cr含有量は、好ましくは20質量%以下、より好ましくは7.5質量%以下、特に好ましくは5.0質量%以下である。
【0022】
Zrは微量の添加によりCu合金の中間温度脆性が改善させることが知られており、また、熱伝導率を下げる酸素(O)等の不純物と化合物を形成して不純物の影響を抑える目的で使用されることがある。ただし、Zr含有量は質量%基準でCr含有量より小さいことを要する。Crの析出過程に影響を及ぼさないためである。また、Zr含有量は0.20質量%以下である。Zr含有量が0.20質量%以上であると、CrZr等の金属間化合物の粗大な析出物を形成しやすく、機械特性を損なうからである。
【0023】
本実施形態のCu合金粉末は、不可避的不純物として他の元素を含んでいてもよい。しかし、不純物元素が多くなると、Cu合金の導電率が低下し、Crの析出過程に影響するおそれがあり、予期しない析出相を形成して機械特性を損なうおそれがある。したがって、不可避的不純物の含有量は、合計で0.1質量%以下であることが好ましい。
【0024】
Cu合金粉末の粒度は、付加製造方法の方式や要求される造形物の寸法精度等に応じて定めることができる。一般的なSLS法やSLM法に用いる場合、好ましくは、レーザー回折・散乱法によって測定された粒径の体積基準のメジアン値(d50)が5〜200μmである。
【0025】
積層造形物の作製には、種々公知の付加製造技術を用いることができる。例えばSLS法では、Cu合金粉末を造形ステージに敷き詰めて薄層を形成する第1工程と、薄層の所定位置にレーザー光を照射して照射されたCu合金粉末を溶解・凝固させる第2工程とを順次繰り返す。最後に余剰の粉末を除去することにより、Cu合金の積層造形物が得られる。
【0026】
積層造形物の熱処理は、上記積層造形物を所定温度で所定時間保持することによって実施される。熱処理は例えば空気中で行ってもよいし、熱間等方圧加圧法(HIP)によってもよい。熱処理によって、Cu母相中に過飽和に含まれるCr相が析出し、機械強度および電気伝導率・熱伝導率が向上する。
【0027】
熱処理温度は300℃以上、好ましくは350℃以上、より好ましくは400℃以上、さらに好ましくは410℃以上である。熱処理温度が低すぎると効果が得られないからである。熱処理温度は、電気伝導率を向上させるという点からは、特に好ましくは450℃以上であり、機械強度を向上させるという点からは、特に好ましくは500℃以上である。一方、熱処理温度はCuとCrの共晶温度(約1070℃)より低いことを要する。さらに、熱処理温度が共晶温度より低くても、共晶温度の差が小さいと積層造形物が軟化して変形することがあるので、熱処理温度は好ましくは800℃以下である。また、機械強度に関して、熱処理温度はより好ましくは600℃以下、特に好ましくは550℃以下である。熱処理温度が高すぎると析出相が粗大化し、0.2%耐力や引張強さが低下するからである。
【0028】
熱処理時間は好ましくは5分以上である。熱処理時間が5分未満では十分な効果が得られないからである。また、熱処理時間は、機械強度の点からは、より好ましくは10分以上であり、電気伝導率の点からは、より好ましくは30分以上である。一方、熱処理時間が長すぎるとコスト要因となるので、熱処理時間は好ましくは10時間以下である。また、機械強度の点からは、熱処理時間が長すぎると0.2%耐力や引張強さが低下するので、熱処理時間はより好ましくは5時間以下である。なお、電気伝導率に関しては、熱処理時間が長いほどCu母相のCr含有量が下がるので好ましい。
【0029】
熱処理の効果は理論的には熱処理温度と熱処理時間の組み合わせで決まるが、合金中のCrの拡散速度は温度上昇に対して指数関数的に大きくなるので、実用的には熱処理温度を適切に設定することがより重要である。
【0030】
以上の工程によって本実施形態のCu合金造形物が得られる。Cu合金造形物の組織は、Cu合金の積層構造を有する造形物であって、かつCuの母相中にCr相が析出した構造を有する。
【実施例】
【0031】
次に、いくつかの実験結果によって、上記実施形態をより詳細に説明する。
【0032】
表1に、実験に用いたCu−Cr合金粉末の組成を、比較のための純CuおよびCu−Ni合金粉末とともに示す。分析はICP発光分光分析法により行った。成分のうちZrとTiは他の不純物を除去する目的で、熱処理効果を阻害しない範囲で、微量を添加したものである。表中に示した元素以外の残部はCuおよび意図しない不可避的不純物である。
【0033】
【表1】
【0034】
各Cu合金を用いて、SLS法により、後述する各種特性測定用の試験片を作製した。作製はYbファイバーレーザーを用いた粉末積層造形システム(EOS GmbH、M290)を用い、積層厚0.02〜0.06mm、レーザー出力200〜400Wの条件で行った。ただし、比較のための純Cuの試験片は、同様なSLM法により作製した。
【0035】
電気伝導率測定用の試験片は、3mm×3mm×80mmの角柱状で、厚さ3mmの方向に積層して作製した。電気伝導率は、電気抵抗測定装置(株式会社アグネ技術センター、ARC−TER−1型)を用い、直流四端子法で測定した電気抵抗率から算出した。測定は室温で、または後述する各設定温度に保持しながら、アルゴン(Ar)雰囲気中で行った。なお、本明細書中で、電気伝導率は焼鈍標準軟銅に対する比(%IACS)で示す。焼鈍標準軟銅の電気抵抗率は、1.7241×10−2μΩ・mである。
【0036】
熱伝導率測定用の試験片は、直径10mm、厚さ3mmのコイン型で、1つの直径の方向に積層して作製した。熱伝導率の測定は、レーザーフラッシュ法を用いて真空中で行った。いくつかの試料については、熱伝導率から下記ウィーデマン・フランツの法則を用いて電気伝導率を推算した。
【0037】
金属の電気伝導率と熱伝導率の間には次式の関係があり、ウィーデマン・フランツの法則として知られている。
K/σ=LT
ここで、K:熱伝導率、σ:電気伝導率、L:ローレンツ数、T:絶対温度。ローレンツ数(L)は理論的には次式で与えられる。
L=(π/3)・(k/e)
=2.44×10−8WΩK−2
ここで、k:ボルツマン定数、e:電気素量。
【0038】
機械特性測定用の試験片は、図2に示した形状を有し、その長手方向に積層して作製した。機械特性の測定は、オートグラフを用い、室温で、ひずみ速度0.001/sの引張試験により行った。ひずみ測定はビデオ式非接触伸び計(株式会社島津製作所、TRView X120S)を用いて行った。
【0039】
積層造形物への熱処理の影響を調べるため、電気伝導率測定用のサンプルを用いて、温度を段階的に50℃ずつ上げながら、Ar雰囲気中で電気抵抗率を測定した。各設定温度間の昇温速度は60℃/分とし、各設定温度に到達後、試料内の温度分布が一様になるまで数分〜10分待って測定を行った。結果を表2に導電率(%IACS)に換算して示す。温度は表2の上から下に向かって600℃まで変化させ、最後に室温(最下段)に冷却した。また、同じ結果を図2にプロットして示す。図2では測定された電気抵抗率をそのまま示した。
【0040】
【表2】
【0041】
表2と図2において、純Cuの電気抵抗率は温度上昇とともに直線的に大きくなっている。Cu−Cr合金の試料ではいずれも、室温からの温度上昇とともに電気抵抗率が大きくなるが、300℃以上で傾きが小さくなって熱処理の効果が認められた。400℃以上では、熱処理の効果が明確であった。特にCu0.6CrとCu1.4Crの試料では、500℃で純Cuと同等の電気抵抗率が得られた。Cu2.4Niでは、温度上昇とともに電気抵抗率が直線的に高くなり続け、600℃までの範囲では熱処理の効果が見られなかった。
【0042】
合金元素としてのCrとNiの違いは、CuへのCrの飽和固溶量が小さいのに対して、CuとNiは全域で固溶体を形成することである。そのためCu2.4Niでは、熱処理をしても析出相が形成されなかったためと考えられる。
【0043】
また、特許文献1では合金元素としてSiを用いても同様の効果があるとされる。特許文献1はどのようなメカニズムによって特性が改善されるのかを説明しないが、SiのCuへの飽和固溶量が4〜5質量%であることを考慮すると、本実施例とはメカニズムが異なると思われる。
【0044】
次に、熱処理の他の特性への効果を見るために、3種類の試験片を準備して、熱処理前(積層造形まま材)と、500℃で2時間、Ar気流中で保持した後に電気伝導率測定、熱伝導率測定および引張試験を行った。結果を表3に示す。
【0045】
【表3】
【0046】
表3から、Cu−Cr合金の試料ではいずれも、500℃×2時間の熱処理によって電気伝導率および熱伝導率が向上したことが分かる。また、0.2%耐力と引張強さが大きくなるとともに破断伸びが小さくなっており、機械特性の変化が析出硬化によることが示唆された。Cu−Ni合金では、Cu2.4Niの電気伝導率が熱処理によって向上しないことを表2および図2の結果で説明したが、Cu20Niについても、500℃×2時間の熱処理によって機械強度が向上しないことが確認できた。なお、純Cuの熱処理は行わなかったが、市販の焼鈍材の引張強さは約200MPaである。
【0047】
次に、熱処理温度の影響を見るために、Cu1.4Crについて、熱処理温度を400、500、600、800℃と変えて、熱伝導率と機械特性の測定を行った。処理時間はいずれも2時間である。結果を表4に示す。表4には参考のために、ウィーデマン・フランツの法則を用いて熱伝導率から算出した電気伝導率を併せて示した。表4の最も左の欄は熱処理しない試料(積層造形まま材)の結果である。表4の最も右の欄は、800℃で2時間熱の処理後、水冷し、さらに500℃で2時間熱処理した試料の結果である。
【0048】
【表4】
【0049】
表4から、熱伝導率は400〜800℃×2時間の熱処理によって顕著に向上し、特に600℃×2時間の熱処理では、積層造形まま材の約4倍に向上した。0.2%耐力は400〜600℃×2時間の熱処理によって顕著に向上し、特に500℃×2時間の熱処理では、積層造形まま材の約3倍に向上した。引張強さは400〜800℃×2時間の熱処理によって顕著に向上し、特に500℃×2時間の熱処理では、積層造形まま材の約2.5倍に向上した。破断伸びは、熱処理によって小さくなっており、これらの機械特性の変化が析出硬化によることが示唆された。800℃×2時間+500℃×2時間の熱処理を行った試料は、機械特性は800℃×2時間の熱処理と同様の値を示し、熱伝導率は最も高い値を示した。なお、熱伝導率から算出した電気伝導率の計算値は、実測値とよく一致した。
【0050】
次に、熱処理時間の影響を見るために、Cu1.4Crについて、熱処理温度を500℃として、時間を5分から10時間まで変えて、熱伝導率と機械特性の測定を行った。結果を表5に示す。表5には参考のために、ウィーデマン・フランツの法則を用いて熱伝導率から算出した電気伝導率を併せて示した。表5の最も左の欄は熱処理しない試料(積層造形まま材)の結果である。
【0051】
【表5】
【0052】
表5から、5分間の熱処理によって、すでに効果が表れている。熱伝導率は500℃×5分〜10時間の熱処理によって顕著に向上し、30分で約3倍に達し、熱処理時間が長くなるほど向上している。0.2%耐力は500℃×5分〜10時間の熱処理によって顕著に向上し、特に500℃×30分の熱処理では、積層造形まま材の3倍以上に向上した。引張強さは500℃×5分〜10時間の熱処理によって顕著に向上し、特に500℃×30分の熱処理では、積層造形まま材の2.5倍以上に向上した。破断伸びは、熱処理によって小さくなっており、熱処理による機械特性の変化が析出硬化によることが示唆された。
【0053】
次に、Cu5Cr、Cu10Cr、Cu20Crについて、熱処理の機械特性への影響を調べた。結果を表6〜表8に示す。それぞれ最も左の欄は熱処理しない試料(積層造形まま材)の結果である。また、それぞれの最も右の欄は、800℃で2時間熱の処理後、水冷し、さらに500℃で2時間熱処理した試料の結果である。
【0054】
【表6】
【0055】
【表7】
【0056】
【表8】
【0057】
表6〜8の結果をCu0.6CrおよびCu1.4Crと比較すると、Cr含有量が多い試料は、積層造形まま材の段階ですでに高い機械強度を有している。これは、Cr含有量が多いと、付加製造過程における合金融液の凝固時に、すでにCr相が析出するためと考えられる。また、表6〜8のいずれにおいても、500℃での熱処理によって機械強度は0.2%耐力、引張強さともに向上するが、800℃での熱処理によって機械強度はむしろ低下している。一方、破断伸びは800℃での熱処理によって少し大きくなっている。800℃×2時間+500℃×2時間の熱処理後の機械特性が800℃×2時間の熱処理後と変わらなかったことは、Cu1.4Crについての表4の結果と同様である。Cu5Cr、Cu10Cr、Cu20Crのいずれも同様の傾向を示しており、付加製造と熱処理により同じメカニズムで機械特性が変化したものと考えられる。したがって、この熱処理方法は幅広い組成範囲に適用できることが分かった。
【0058】
次に、いくつかの試料について、断面の走査電子顕微鏡(SEM)像を撮影した。図3に、Cu1.4CrのSEM像を示す。各像の下にある白いバーの長さが100nmである。
【0059】
図3より、積層造形まま材では析出物が観察されず、500℃×5分でCr相が析出している。このことは表5の結果と整合する。また、積層造形まま材の組織は、純Cu(図示せず)のそれとよく似ていた。また、Cu5Crでは、積層造形まま材でも径が数十〜100nm程度の析出物が観察された(図示せず)。
【0060】
本発明は、上記の実施形態や実施例に限定されるものではなく、その技術的思想の範囲内で変形が可能である。
【0061】
例えば、上記実施形態と実施例では付加製造時の熱源がレーザー光であったが、熱源として電子ビームを用いてもよい。
【要約】
【課題】より高い機械強度および/または電気伝導性・熱伝導性を有する銅合金造形物、およびかかるかかる銅合金造形物を製造可能とする銅合金粉末を提供する。
【解決手段】付加製造用の銅合金粉末であって、Cr:1.1〜20質量%、Zr:0〜0.2質量%、残部がCuおよび不可避的不純物からなる銅合金粉末である。また、銅合金の積層構造を有する造形物であって、前記銅合金はCr:0.1〜20質量%、Zr:0〜0.2質量%、残部がCuおよび不可避的不純物からなり、室温における電気伝導率が65%IACS以上であるか、または0.2%耐力が150MPa以上で引張強さが300MPa以上である銅合金造形物である。
【選択図】図2
図1
図2
図3