(58)【調査した分野】(Int.Cl.,DB名)
分子内に1つ以上の置換又は非置換のグリシジルエーテル基及び2つ以上の置換又は非置換の2−アルケニル基を有するグリシジルエーテル化合物を、過酸化水素水溶液を酸化剤として用いて、触媒としてタングステン化合物、第四級アンモニウム塩、及び助触媒としてリン酸の存在下、リン酸以外の酸を用いて反応液のpHを1.0〜4.0に制御しながら酸化する多価グリシジル化合物の製造方法において、前記反応液への過酸化水素水溶液の添加工程及びリン酸以外の酸の添加工程を交互に時間を空けて複数回反復する工程を含むことを特徴とする多価グリシジル化合物の製造方法。
前記反復工程における過酸化水素水溶液の添加工程及びリン酸以外の酸の添加工程を、両工程の間を各々0.1〜1時間空けて、反応中に2〜20回反復する請求項1に記載の多価グリシジル化合物の製造方法。
前記反応液への過酸化水素水溶液の添加工程及びリン酸以外の酸の添加工程を反応液の温度が50℃を超えない範囲で実施する請求項1〜3のいずれか一項に記載の多価グリシジル化合物の製造方法。
前記グリシジルエーテル化合物が、分子内に芳香環を含み、芳香環に直結した1つ以上の置換又は非置換のグリシジルエーテル基と芳香環に直結した2つ以上の置換又は非置換の2−アルケニル基を有し、かつ前記置換又は非置換のグリシジルエーテル基に対してオルト位又はパラ位に置換又は非置換の2−アルケニル基が位置する化合物である請求項1〜4のいずれか一項に記載の多価グリシジル化合物の製造方法。
前記グリシジルエーテル化合物が、ビスフェノール−A、ビスフェノール−F、フェノールノボラック、トリフェニルメタンフェノール、ビフェニルアラルキル型フェノール、フェニルアラルキル型フェノール、又は無置換のテトラヒドロジシクロペンタジエン骨格のフェノール若しくは両端に−CH2−が結合した無置換のテトラヒドロジシクロペンタジエン骨格のフェノールのいずれかの基本骨格を有し、OR1に対してR2がオルト位又はパラ位に位置するグリシジルエーテル化合物である請求項6に記載の多価グリシジル化合物の製造方法。
前記タングステン化合物が、タングステン酸ナトリウムとタングステン酸の混合物、タングステン酸ナトリウムと鉱酸の混合物、又はタングステン酸とアルカリ化合物の混合物のいずれかである請求項1〜7のいずれか一項に記載の多価グリシジル化合物の製造方法。
リン酸以外の前記酸が、ポリリン酸、ピロリン酸、スルホン酸、硝酸、硫酸、塩酸、及びホウ酸からなる群から選択される少なくとも一種の鉱酸又はベンゼンスルホン酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、及びトリフルオロ酢酸からなる群から選択される少なくとも一種の有機酸である請求項1〜9のいずれか一項に記載の多価グリシジル化合物の製造方法。
【背景技術】
【0002】
グリシジル(エポキシ)化合物は電気特性、接着性、耐熱性などに優れるために、塗料分野、土木分野、電気分野などの多くの用途で使用されている。特に、ビスフェノールA型ジグリシジルエーテル、ビスフェノールF型ジグリシジルエーテル、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などの芳香族グリシジル(エポキシ)化合物は、耐水性、接着性、機械物性、耐熱性、電気絶縁性、経済性などが優れることから種々の硬化剤と組み合わせて広く使用されている。
【0003】
グリシジル化合物及び硬化剤を含む樹脂の物性を向上させるため、グリシジル化合物は目的物性に合うように分子設計される。例えば、ビスフェノールA型ジグリシジルエーテルにおいては、基本骨格のフェノール部位の芳香環を水素化し、脂肪族シクロヘキサン骨格に誘導することで、硬化物の光学特性(透明性)が向上する、又は硬化時の流動性が向上することが知られている。フェノールノボラック型エポキシ樹脂においては、グリシジル化合物の重合度、分子量分布などを調整することで、硬化時の流動性を変化させたり、硬化物の耐熱性、接着性などを制御したりすることができる。
【0004】
グリシジル化合物及び硬化剤を含む樹脂の硬化物の耐熱性、接着性などを向上させる手法として、グリシジル化合物の多官能化が知られている。樹脂中の反応性官能基の密度(一分子あたりに含まれる官能基の量)を増加させることで、グリシジル化合物と硬化剤の間の反応架橋点を増加することができる。硬化物の単位体積当たりの架橋密度が増加するため、分子のミクロ運動が制御されて硬化物の外部影響に対する耐性が高まる。その結果、硬化物の耐熱性の向上、硬化物への剛性、接着性などの付与が可能となる。
【0005】
グリシジル化合物の多官能化の一つの手法として、芳香環骨格を有するグリシジル化合物の芳香環骨格に2つ以上のグリシジル基を導入し、架橋密度を向上させる方法が知られている。例えば、特許文献1(特開昭63−142019号公報)には、ビスフェノールを基本骨格とする化合物のフェノール部位に結合したグリシジルエーテル基に対し、オルト位又はパラ位にグリシジル基を有する多価グリシジル化合物が金属への良好な接着性、低吸湿性、良好な機械的特性を有することが開示されている。これらの化合物は、ビスフェノール−Fなどのフェノール類を出発原料として、フェノールヒドロキシ基の2−アルケニル化、それによって生じた2−アルケニルエーテル基のクライゼン転位によるオルト位又はパラ位の2−アルケニル化、続くエピクロロヒドリンを用いるグリシジルエーテル化、及び側鎖2−アルケニル基の酸化(グリシジル化)により合成されている。
【0006】
しかしながら、最終段階で行われる酸化(グリシジル化)反応においては、反応点である2−アルケニル基に対し、過酢酸、過ギ酸、m−クロロ過安息香酸、ペルオキソフタル酸などの有機過酸化物、又は過モリブデン酸、過バナジン酸、過タングステン酸などの無機過酸化物を化学当量以上必要とするため、目的物からこれら酸化剤の残渣を除去することが困難である、あるいは酸化剤のコストが高く、工業的に実現性に乏しい場合があった。
【0007】
一方、2−アルケニル基を酸化する手法として、酸化剤に過酸化水素水溶液を用いる方法が知られている(特許文献2:特開昭60−60123号公報)。この手法によれば、微量の金属触媒存在下、フェニルアリルエーテル化合物を効率的に酸化することができる。ビスフェノールを基本骨格とする化合物のフェノール部位に結合したグリシジルエーテル基に対し、オルト位又はパラ位にグリシジル基を有する多価グリシジル化合物は、グリシジルエーテル基に対してオルト位又はパラ位に2−アルケニル基を有する対応する基質を酸化することで得ることができるが、過酸化水素水溶液を酸化剤として用いると、基質にもともと存在するグリシジルエーテル基が加水分解されるという問題がある。また、グリシジルエーテル基の加水分解反応により副生成物としてジオール化合物が生成するが、ジオール化合物は、ヒドロキシル基(親水部)が疎水性の主骨格(芳香環)に結合しているため、反応液中で分子同士が凝集しやすく、ゲル状物質を形成しやすい。これらゲル状物質は、反応後の後処理を煩雑とし、目的物の収率及び純度を低下させる要因となる。このように過酸化水素水溶液を酸化剤に用いて、グリシジルエーテル基に対してオルト位又はパラ位に2−アルケニル基を有する基質の2−アルケニル基をグリシジル化する場合、グリシジルエーテル基の加水分解などの副反応、及び加水分解に伴うゲル化などの制御が必要である。
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は、過酸化水素水溶液を酸化剤として用いて2−アルケニル基を有するグリシジルエーテル化合物の2−アルケニル基を酸化する際に、化合物にもともと存在するグリシジルエーテル基の加水分解などの副反応、加水分解に伴うゲル化などが抑制された、多価グリシジル化合物を安全に、高収率かつ高純度で製造できる方法を提供するものである。
【課題を解決するための手段】
【0010】
本発明者らは、前記課題を解決するために鋭意研究し、実験を重ねた結果、分子内に1つ以上のグリシジルエーテル基及び2つ以上の2−アルケニル基を有するグリシジルエーテル化合物を、触媒としてタングステン化合物、第四級アンモニウム塩、及び助触媒としてリン酸の存在下、リン酸以外の酸を用いて反応液のpHを制御しながら過酸化水素水溶液を酸化剤として用いて酸化(グリシジル化)する際に、反応液への過酸化水素水溶液の添加及び反応液のpHを調整するためのリン酸以外の酸の添加を交互に時間を空けて複数回反復することにより、安全に高収率かつ高純度で分子内に3つ以上のグリシジル基を有する多価グリシジル化合物を得ることができることを見出し、本発明を完成するに至った。
【0011】
すなわち、本発明は以下のとおりのものである。
[1]分子内に1つ以上の置換又は非置換のグリシジルエーテル基及び2つ以上の置換又は非置換の2−アルケニル基を有するグリシジルエーテル化合物を、過酸化水素水溶液を酸化剤として用いて、触媒としてタングステン化合物、第四級アンモニウム塩、及び助触媒としてリン酸の存在下、リン酸以外の酸を用いて反応液のpHを1.0〜4.0に制御しながら酸化する多価グリシジル化合物の製造方法において、前記反応液への過酸化水素水溶液の添加工程及びリン酸以外の酸の添加工程を交互に時間を空けて複数回反復する工程を含むことを特徴とする多価グリシジル化合物の製造方法。
[2]前記反復工程における過酸化水素水溶液の添加工程及びリン酸以外の酸の添加工程を、両工程の間を各々0.1〜1時間空けて、反応中に2〜20回反復する[1]に記載の多価グリシジル化合物の製造方法。
[3]前記反応液への過酸化水素水溶液の総添加量が前記グリシジルエーテル化合物の有する2−アルケニル基の炭素−炭素二重結合に対して0.5当量に達するまでに、前記反復工程における過酸化水素水溶液の添加工程及びリン酸以外の酸の添加工程を少なくとも2回反復する[1]又は[2]のいずれかに記載の多価グリシジル化合物の製造方法。
[4]前記反応液への過酸化水素水溶液の添加工程及びリン酸以外の酸の添加工程を反応液の温度が50℃を超えない範囲で実施する[1]〜[3]のいずれかに記載の多価グリシジル化合物の製造方法。
[5]前記グリシジルエーテル化合物が、分子内に芳香環を含み、芳香環に直結した1つ以上の置換又は非置換のグリシジルエーテル基と芳香環に直結した2つ以上の置換又は非置換の2−アルケニル基を有し、かつ前記置換又は非置換のグリシジルエーテル基に対してオルト位又はパラ位に置換又は非置換の2−アルケニル基が位置する化合物である[1]〜[4]のいずれかに記載の多価グリシジル化合物の製造方法。
[6]前記グリシジルエーテル化合物が、一般式(1):
【化1】
(式中、R
1及びR
2は、各々独立して、下記式(2)又は(3)で表され、Qは、各々独立して、式:−CR
3R
4−で表されるアルキレン基、炭素
原子数3〜12のシクロアルキレン基、炭素
原子数6〜10の単独芳香環からなるアリーレン基若しくは2〜3の炭素
原子数6〜10の芳香環が結合してなるアリーレン基、炭素
原子数7〜12の二価の脂環式縮合環、又はこれらを組み合わせた二価基であり、R
3及びR
4は各々独立して、水素原子、炭素
原子数1〜10のアルキル基、炭素
原子数2〜10のアルケニル基、炭素
原子数3〜12のシクロアルキル基、又は炭素
原子数6〜10のアリール基であり、nは0〜50の整数を表す。式(2)及び(3)中のR
5、R
6、R
7、R
8、R
9及びR
10は、各々独立して、水素原子、炭素
原子数1〜10のアルキル基、炭素
原子数3〜12のシクロアルキル基又は炭素
原子数6〜10のアリール基を表す。但し、複数のR
1の内少なくとも1つは式(2)で表され、複数のR
2の内少なくとも2つは式(3)で表される。)で表される化合物
、又は上記一般式(1)のベンゼン骨格の代わりにナフタレン骨格を有する化合物である[1]〜[5]のいずれかに記載の多価グリシジル化合物の製造方法。
【化2】
【化3】
[7]前記グリシジルエーテル化合物が、ビスフェノール−A、ビスフェノール−F、フェノールノボラック、トリフェニルメタンフェノール、ビフェニルアラルキル型フェノール、フェニルアラルキル型フェノール、又は無置換のテトラヒドロジシクロペンタジエン骨格のフェノール若しくは両端に−CH
2−が結合した無置換のテトラヒドロジシクロペンタジエン骨格のフェノールのいずれかの基本骨格を有し、OR
1に対してR
2がオルト位又はパラ位に位置するグリシジルエーテル化合物である[6]に記載の多価グリシジル化合物の製造方法。
[8]前記タングステン化合物が、タングステン酸ナトリウムとタングステン酸の混合物、タングステン酸ナトリウムと鉱酸の混合物、又はタングステン酸とアルカリ化合物の混合物
のいずれかである[1]〜[7]のいずれかに記載の多価グリシジル化合物の製造方法。
[9]前記第四級アンモニウム塩の窒素原子に結合した置換基の炭素
原子数の合計が6以上50以下である[1]〜[8]のいずれかに記載の多価グリシジル化合物の製造方法。
[10]リン酸以外の前記酸が、ポリリン酸、ピロリン酸、スルホン酸、硝酸、硫酸、塩酸、及びホウ酸からなる群から選択される少なくとも一種の鉱酸又はベンゼンスルホン酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、及びトリフルオロ酢酸からなる群から選択される少なくとも一種の有機酸である[1]〜[9]のいずれかに記載の多価グリシジル化合物の製造方法。
【発明の効果】
【0012】
本発明の多価グリシジル化合物の製造方法によれば、目的物から酸化剤由来残渣の除去が簡便化できるとともに、安価な過酸化水素水溶液を酸化剤として使用するため、製造コストを低減できる。また、反応液のpHを1.0〜4.0に制御しながら、過酸化水素水溶液の添加及びpH制御するために投入するリン酸以外の酸の添加を交互に時間を空けて複数回反復して反応液の温度を制御することで、副生する加水分解物の生成量を低減することができ、安全に高収率かつ高純度で多価グリシジル化合物を得ることができる。
【発明を実施するための形態】
【0013】
以下、本発明を詳細に説明する。本発明の多価グリシジル化合物の製造方法は、分子内に1つ以上の置換又は非置換のグリシジルエーテル基及び2つ以上の置換又は非置換の2−アルケニル基を有するグリシジルエーテル化合物を、過酸化水素水溶液を酸化剤として用いて、触媒としてタングステン化合物、第四級アンモニウム塩、及び助触媒としてリン酸の存在下、リン酸以外の酸を用いて反応液のpHを1.0〜4.0に制御しながら酸化する。この際に反応液への過酸化水素水溶液の添加工程及びリン酸以外の酸の添加工程を交互に時間を空けて複数回反復する。詳細は後述するが、本発明では分子内にもともと存在するグリシジルエーテル基の加水分解を最小限に抑制しつつ、2−アルケニル基の炭素−炭素二重結合を酸化(グリシジル化)することで多価グリシジル化合物を製造する。本明細書において「グリシジル基」とは、置換又は非置換のグリシジル基に加えてグリシジル骨格を有する置換又は非置換のグリシジルエーテル基をも含む。例えば、「3つ以上のグリシジル基」とは置換又は非置換のグリシジル基と置換又は非置換のグリシジルエーテル基の総数が3つ以上であることを意味する。本明細書において「グリシジルエーテル基」とは、グリシジルオキシ基を意味する。
【0014】
本発明において酸化反応に用いられる反応基質は、分子内に1つ以上の置換又は非置換のグリシジルエーテル基及び2つ以上の置換又は非置換の2−アルケニル基を有するグリシジルエーテル化合物であれば特に制限はないが、分子内に芳香環を含み、芳香環に直結した1つ以上の置換又は非置換のグリシジルエーテル基と芳香環に直結した2つ以上の置換又は非置換の2−アルケニル基を有し、かつ置換又は非置換のグリシジルエーテル基に対してオルト位又はパラ位に置換又は非置換の2−アルケニル基が位置する化合物が比較的容易に入手できる点で好ましい。例えば、好適なグリシジルエーテル化合物として以下の一般式(1)で表される化合物が挙げられる。
【化4】
式中、R
1及びR
2は、各々独立して、下記式(2)又は(3)で表され、Qは、各々独立して、式:−CR
3R
4−で表されるアルキレン基、炭素
原子数3〜12のシクロアルキレン基、炭素
原子数6〜10の単独芳香環からなるアリーレン基若しくは2〜3の炭素
原子数6〜10の芳香環が結合してなるアリーレン基(例えば、2つの芳香環が結合してなるアリーレン基としてビフェニル骨格を有するアリーレン基が、3つの芳香環が結合してなるアリーレン基としてトリフェニル骨格を有するアリーレン基が挙げられる)、炭素
原子数7〜12の二価の脂環式縮合環、又はこれらを組み合わせた二価基であり、R
3及びR
4は各々独立して、水素原子、炭素
原子数1〜10のアルキル基、炭素
原子数2〜10のアルケニル基、炭素
原子数3〜12のシクロアルキル基、又は炭素
原子数6〜10のアリール基であり、nは0〜50の整数を表す。式(2)及び(3)中のR
5、R
6、R
7、R
8、R
9及びR
10は、各々独立して、水素原子、炭素
原子数1〜10のアルキル基、炭素
原子数3〜12のシクロアルキル基又は炭素
原子数6〜10のアリール基を表す。但し、複数のR
1の内少なくとも1つは式(2)で表され、複数のR
2の内少なくとも2つは式(3)で表される。式(2)及び式(3)中の*は、酸素原子又は芳香環を構成する炭素原子との結合部であることを意味する。
【化5】
【化6】
【0015】
上記一般式(1)で表される具体的なグリシジルエーテル化合物として、R
1及びR
2の好ましいものとしてはR
5〜R
10が全て水素原子の式(2)又は式(3)で表される基が挙げられる。Qの好ましいものとしては、式:−CR
3R
4−で表されるアルキレン基としてR
3及びR
4が各々独立して、水素原子、炭素
原子数が1〜10のアルキル基、フェニル基、又はナフチル基であるものが挙げられる。炭素
原子数3〜12のシクロアルキレン基の好ましいものとしてはシクロヘキシリデン基、炭素
原子数6〜10の単独芳香環からなるアリーレン基若しくは2〜3の炭素
原子数6〜10の芳香環が結合してなるアリーレン基の好ましいものとしてはフェニレン基、及びビフェニルジイル基が挙げられる。炭素
原子数7〜12の二価の脂環式縮合環の好ましいものとしては二価のテトラヒドロジシクロペンタジエン環が挙げられる。これらを組み合わせた二価基の好ましいものとしては、−CH
2−Ph−Ph−CH
2−基(本明細書においてPhは無置換のベンゼン環を意味する)、及び−CH
2−Ph−CH
2−基が挙げられる。好ましい具体的な化合物としては、ビスフェノール−A、ビスフェノール−F、フェノールノボラック、トリフェニルメタンフェノール、例えば−CH
2−Ph−Ph−CH
2−骨格を有するビフェニルアラルキル型フェノール、例えば−CH
2−Ph−CH
2−骨格を有するフェニルアラルキル型フェノール、又は無置換のテトラヒドロジシクロペンタジエン骨格のフェノール若しくは両端に−CH
2−が結合した無置換のテトラヒドロジシクロペンタジエン骨格のフェノールのいずれかの基本骨格を有し、OR
1に対してR
2がオルト位又はパラ位に位置するグリシジルエーテル化合物が挙げられる。また、上記一般式(1)で表されるグリシジルエーテル化合物以外のグリシジルエーテル化合物として、一般式(1)の
ベンゼン骨格の代わりにナフタレン骨格を有する化合物、例えばナフタレンノボラックも挙げられる。
【0016】
本発明の多価グリシジル化合物の製造方法においては、反応基質である上記グリシジルエーテル化合物の2−アルケニル基の炭素−炭素二重結合を、過酸化水素水溶液を酸化剤として用いて酸化(グリシジル化)する。過酸化水素水溶液の濃度には特に制限はないが、一般的には約1〜約80質量%、好ましくは約20〜約60質量%の範囲から選ばれる。工業的な生産性の観点、及び分離の際の操作性及び/又はコストの点からは過酸化水素水溶液は高濃度のほうが好ましいが、一方で過度に高濃度の、及び/又は過剰量の過酸化水素水溶液を用いないほうが経済性、安全性などの観点で好ましい。
【0017】
過酸化水素水溶液を反応液に添加すると、反応液のpHは変化する。本発明者らは、反応液のpHの制御が本発明の課題を解決するために極めて重要であることに着目し、本発明の実施態様では反応液への過酸化水素水溶液の添加工程(以下、「第一の工程」という)と、pHを制御するためのリン酸以外の酸の添加工程(以下、「第二の工程」という)とを、交互に時間を空けて複数回反復する工程を含むことが極めて有効であることを見出した。具体的には、反復回数をn回とし、任意のk(2≦k≦n)回目の工程に着目するとき、(k−1)回目の第一の工程終了後間隔T1を空けて(k−1)回目の第二の工程を実施し、(k−1)回の第二の工程終了後間隔T2を空けてk回目の第一の工程を実施する。(k−1)回目の第一の工程からk回目の第一の工程前までの期間を1回の一連工程とし、これをn回反復する。n回の反復工程における各々の第一の工程、T1、第二の工程及びT2は同一の条件とすることもできるが、異なる条件とすることもできる。
【0018】
本反応系は、有機溶媒又はグリシジルエーテル化合物自体に基づく有機相と、添加された過酸化水素水溶液に基づく水相との2相系であり、反応液の攪拌に伴い、通常エマルジョン様となる。反応液に過酸化水素水溶液又はリン酸以外の酸を添加する場合、反応初期では反応液中の水相の相対比率が低く、測定対象を水溶液とするpH分析計では、真のpH値が観測できない。そのため、溶液の一部をサンプリングし、水を用いて2〜10倍程度に希釈して水分比率を高めた上で計測して得られた観測値から反応液のpH値を推定することができる。本発明によれば、過酸化水素水溶液(酸化剤)の添加とリン酸以外の酸(pH調整剤)の添加の間隔を空けることで、反応系内のpHが急激に低下することを防ぐことができる。このようにして、直接的に反応液のpHを観測することが難しい反応初期においても、反応液のpHを精度よく制御することができる。例えば、1回目の過酸化水素水溶液の添加及びリン酸以外の酸の添加後の反応液のpHは見かけ上約5程度に観測されるが、10倍に希釈後のエマルジョンを測定して得られた値から真のpH値は約4と推定される。
【0019】
本発明の実施態様では、はじめに基質、触媒などを仕込んだ反応液中に過酸化水素水溶液を添加するが、助触媒として反応液中にリン酸が含まれるためこの段階で反応液のpHが1.0〜4.0の範囲外となることはない。実際、リン酸以外の酸を添加する前に、溶液の一部を分取し、水を用いて希釈後、水層部分のpHを計測し、実測値から算出された推定pH値は4.0以下である。リン酸以外の酸を添加することでpHは徐々に低下するが、pHが1.0より低くならないように添加量を調整する。
【0020】
反応液のpHをpH分析計で直接測定できるような段階となると、反応液中に過酸化水素、リン酸、リン酸以外の酸(好ましくは硫酸)、及びタングステン化合物が共存することにより緩衝作用を示すようになる。このような段階になると、残りの過酸化水素水溶液及びリン酸以外の酸の添加を一度に行っても反応液の大きなpH変化は起こらない。
【0021】
本発明の好ましい実施態様では、上記第一の工程及び第二の工程を、両工程の間を各々0.1〜1時間空けて、反応中に複数回、例えば2〜20回反復する。より具体的な一例としては、反応液中に添加する過酸化水素水溶液の添加量がグリシジルエーテル化合物の有する2−アルケニル基の炭素−炭素二重結合に対して0.05〜0.3当量の範囲で初回の過酸化水素水溶液の添加(第一の工程)を行い、添加終了後0.1〜1時間(上記T1に相当)反応を継続した後、初回の第二の工程としてリン酸以外の酸を反応液のpHが1.0〜4.0の範囲を保持する範囲内(例えば総添加量の5〜30質量%の範囲内)で添加し、添加終了後0.1〜1時間(上記T2に相当)反応を継続する。すなわち、初回の第一の工程終了後第二の工程開始まで0.1〜1時間空け、初回の第二の工程終了後2回目の第一の工程開始まで0.1〜1時間空ける。このような工程とすることで、反応液のpHが急激に低下することを防止し、過酸化水素の残存蓄積量も調整することができる。第一の工程及び第二の工程では反応液を撹拌しながら断続的又は連続的に少量ずつ添加を行うことが好ましく、0.1〜1.5時間かけて添加することがより好ましい。両工程間(T1及びT2)も反応液の撹拌を継続することが好ましい。続いて反応液中に添加する過酸化水素水溶液の総添加量(1回目と2回目の合計量)がグリシジルエーテル化合物の有する2−アルケニル基の炭素−炭素二重結合に対して0.1〜0.5当量となる範囲で2回目の過酸化水素水溶液の添加(第一の工程)を行い、添加終了後0.1〜1時間(上記T1に相当)反応を継続した後、2回目の第二の工程としてリン酸以外の酸を反応液のpHが1.0〜4.0の範囲を保持する範囲内(例えば総添加量の5〜30質量%の範囲内)で添加し、添加終了後0.1〜1時間(上記T2に相当)反応を継続する。
【0022】
反復回数nは2以上であればよいが、反応時間、反応効率、手間などを考慮すると、nは3〜20であることが好ましく、nは4〜15であることがより好ましく、nは5〜10であることがさらに好ましい。
【0023】
本発明の好ましい実施態様では、反応液への過酸化水素水溶液の総添加量がグリシジルエーテル化合物の有する2−アルケニル基の炭素−炭素二重結合に対して0.5当量に達するまでに、少なくとも2回の反復工程を実施する。このときnは3〜20であることが好ましい。別の好ましい実施態様では、反応液への過酸化水素水溶液の総添加量がグリシジルエーテル化合物の有する2−アルケニル基の炭素−炭素二重結合に対して0.4当量に達するまでに、少なくとも2回の反復工程を実施する。このときnは4〜15であることが好ましい。さらに別の好ましい実施態様では、反応液への過酸化水素水溶液の総添加量がグリシジルエーテル化合物の有する2−アルケニル基の炭素−炭素二重結合に対して0.3当量に達するまでに少なくとも2回の反復工程を実施する。このときnは5〜10であることが好ましい。第一の工程及び第二の工程を複数回交互に反復し、1回当たりの添加量を少量に抑えることで、両工程を同時にまとめて実施する場合に比べて反応中の反応液のpH制御が容易となり(すなわちpHの変動を小さくすることができ)、反応の急激な進行及びそれに伴う温度上昇が抑制され、酸化反応を安全かつ効率的に進行させることができる。
【0024】
過酸化水素水溶液の添加時間が長くなる(添加速度が遅い)と、系内の過酸化水素濃度が低下し、酸化反応の効率が低下するとともに、加水分解が競合して起こるおそれがある。なお、反応初期に反応液に多量の過酸化水素水溶液を一度にまとめて添加すると反応が急激に進行し危険な場合があるため、過酸化水素水溶液は反応液を撹拌しながら反応液の過酸化水素濃度について反応で消費されているのを確認しつつ連続的又は断続的に添加することが好ましい。過酸化水素水溶液の総添加量は、グリシジルエーテル化合物の有する2−アルケニル基の炭素−炭素二重結合に対して1.0〜5.0当量であり、好ましくは1.1〜3.0当量、より好ましくは1.2〜2.0当量である。1.0当量未満では理論上2−アルケニル基の炭素−炭素二重結合の全てを酸化することができない。5.0当量より多いと過剰な酸化剤をクエンチするための還元剤が多量に必要となり、後処理工程が煩雑となる。
【0025】
上記反復工程終了後も反応を継続することが好ましい。グリシジルエーテル化合物の有する2−アルケニル基の炭素−炭素二重結合の1.0当量となる過酸化水素水溶液量から反復工程において添加された過酸化水素水溶液量を引いた残りの過酸化水素水溶液量と同量以上の過酸化水素水溶液の添加、及びその後の反応を、反応液を撹拌しながら継続することが好ましい。この段階で必要に応じて反応液のpHを調整するためにリン酸以外の酸を添加することができる。リン酸以外の酸の添加は過酸化水素水溶液の添加後間隔を空けてから行わなくてもよく、過酸化水素水溶液の添加と同時に行うこともできる。
【0026】
上記反復工程を含めて撹拌には磁気撹拌子又は撹拌翼を有するスターラーを用いることが好ましい。撹拌速度は一般に100〜2000rpmの範囲であり、好ましくは300〜1500rpmの範囲である。反応液は、反応基質であるグリシジルエーテル化合物単体、又は有機溶媒に溶解させたグリシジルエーテル化合物を含む有機相と、過酸化水素を含む水相の二相系であり、この二相がエマルジョン様となるよう撹拌することが望ましい。2−アルケニル基の炭素−炭素二重結合の酸化(グリシジル化)反応の進行に伴い、反応液の粘性は高まる。反応基質であるグリシジルエーテル化合物及び/又は生成物である多価グリシジル化合物のグリシジル基の加水分解及びゲル状物の副生を防ぐため、過酸化水素水溶液の添加終了後、2〜30時間の範囲で反応を継続した後、撹拌及び加熱を停止して酸化反応を完了する。2時間未満で反応を停止すると、反応基質のグリシジルエーテル化合物が多く含まれ、目的物の収率が低い。30時間より長く反応を継続すると、加水分解物が主生成物となり、場合によってはゲル状物が生成することから、反応液の後処理工程が煩雑となり、目的物の収率が大幅に低下する。
【0027】
過酸化水素水溶液を用いた酸化(グリシジル化)は、触媒としてタングステン化合物、第四級アンモニウム塩、及び助触媒としてリン酸の存在下で、リン酸以外の酸を用いて反応液のpHを制御しながら実施することができる。これらの化合物は比較的安価であるため、過酸化水素を酸化剤として用いたグリシジルエーテル化合物の2−アルケニル基の炭素−炭素二重結合の酸化を低コストで行うことができる。
【0028】
触媒として用いるタングステン化合物としては、水中でタングステン酸アニオンを生成する化合物が好適であり、例えば、タングステン酸、三酸化タングステン、三硫化タングステン、六塩化タングステン、リンタングステン酸、タングステン酸アンモニウム、タングステン酸カリウム二水和物、タングステン酸ナトリウム二水和物などが挙げられるが、タングステン酸、三酸化タングステン、リンタングステン酸、タングステン酸ナトリウム二水和物などが好ましい。これらタングステン化合物類は単独で使用しても2種以上を混合使用してもよい。
【0029】
これらの水中でタングステン酸アニオンを生成する化合物の触媒活性は、タングステン酸アニオン1モルに対して、約0.2〜約0.8モルの対カチオンが存在したほうが高い。このようなタングステン組成物の調製法としては、例えばタングステン酸とタングステン酸のアルカリ金属塩を、タングステン酸アニオンと対カチオンが前記比率となるように混合してもよいし、タングステン酸をアルカリ化合物(アルカリ金属又はアルカリ土類金属の水酸化物、炭酸塩など)と混合するか、タングステン酸のアルカリ金属塩又はアルカリ土類金属塩とリン酸、硫酸などの鉱酸のような酸性化合物を組み合わせてもよい。これらの好ましい具体例としては、タングステン酸ナトリウムとタングステン酸の混合物、タングステン酸ナトリウムと鉱酸の混合物、又はタングステン酸とアルカリ化合物の混合物が挙げられる。
【0030】
タングステン化合物の触媒としての使用量は、タングステン原子として、反応基質であるグリシジルエーテル化合物の2−アルケニル基の炭素−炭素二重結合に対して、約0.0001〜約20モル%、好ましくは約0.01〜約20モル%の範囲から選ばれる。
【0031】
触媒として用いる第四級アンモニウム塩としては、その窒素原子に結合した置換基の炭素
原子数の合計が6以上50以下、好ましくは10以上40以下の第四級有機アンモニウム塩が、酸化(グリシジル化)反応の活性が高くて好ましい。
【0032】
第四級アンモニウム塩としては、塩化トリオクチルメチルアンモニウム、塩化トリオクチルエチルアンモニウム、塩化ジラウリルジメチルアンモニウム、塩化ラウリルトリメチルアンモニウム、塩化ステアリルトリメチルアンモニウム、塩化ラウリルジメチルベンジルアンモニウム、塩化トリカプリルメチルアンモニウム、塩化ジデシルジメチルアンモニウム、塩化テトラブチルアンモニウム、塩化ベンジルトリメチルアンモニウム、塩化ベンジルトリエチルアンモニウムなどの塩化物;臭化トリオクチルメチルアンモニウム、臭化トリオクチルエチルアンモニウム、臭化ジラウリルジメチルアンモニウム、臭化ラウリルトリメチルアンモニウム、臭化ステアリルトリメチルアンモニウム、臭化ラウリルジメチルベンジルアンモニウム、臭化トリカプリルメチルアンモニウム、臭化ジデシルジメチルアンモニウム、臭化テトラブチルアンモニウム、臭化ベンジルトリメチルアンモニウム、臭化ベンジルトリエチルアンモニウムなどの臭化物;ヨウ化トリオクチルメチルアンモニウム、ヨウ化トリオクチルエチルアンモニウム、ヨウ化ジラウリルジメチルアンモニウム、ヨウ化ラウリルトリメチルアンモニウム、ヨウ化ステアリルトリメチルアンモニウム、ヨウ化ラウリルジメチルベンジルアンモニウム、ヨウ化トリカプリルメチルアンモニウム、ヨウ化ジデシルジメチルアンモニウム、ヨウ化テトラブチルアンモニウム、ヨウ化ベンジルトリメチルアンモニウム、ヨウ化ベンジルトリエチルアンモニウムなどのヨウ化物;リン酸水素化トリオクチルメチルアンモニウム、リン酸水素化トリオクチルエチルアンモニウム、リン酸水素化ジラウリルジメチルアンモニウム、リン酸水素化ラウリルトリメチルアンモニウム、リン酸水素化ステアリルトリメチルアンモニウム、リン酸水素化ラウリルジメチルベンジルアンモニウム、リン酸水素化トリカプリルメチルアンモニウム、リン酸水素化ジデシルジメチルアンモニウム、リン酸水素化テトラブチルアンモニウム、リン酸水素化ベンジルトリメチルアンモニウム、リン酸水素化ベンジルトリエチルアンモニウムなどのリン酸水素化物;硫酸水素化トリオクチルメチルアンモニウム、硫酸水素化トリオクチルエチルアンモニウム、硫酸水素化ジラウリルジメチルアンモニウム、硫酸水素化ラウリルトリメチルアンモニウム、硫酸水素化ステアリルトリメチルアンモニウム、硫酸水素化ラウリルジメチルベンジルアンモニウム、硫酸水素化トリカプリルメチルアンモニウム、硫酸水素化ジデシルジメチルアンモニウム、硫酸水素化テトラブチルアンモニウム、硫酸水素化ベンジルトリメチルアンモニウム、硫酸水素化ベンジルトリエチルアンモニウムなどの硫酸水素化物などが挙げられる。
【0033】
これらの第四級アンモニウム塩は、単独で使用しても2種以上を混合使用してもよい。その使用量は反応基質のグリシジルエーテル化合物の2−アルケニル基の炭素−炭素二重結合に対して約0.0001〜約10モル%が好ましく、より好ましくは約0.01〜約10モル%の範囲から選ばれる。
【0034】
本発明の多価グリシジル化合物の製造方法においては、助触媒としてリン酸を用いる。リン酸は、酸素原子が触媒金属であるタングステン金属中心に配位することで、活性種を生成する。また、リン酸以外の酸を併用することで反応液のpHを1.0〜4.0に制御する。反応液のpHは1.2〜3.8であることが好ましく、1.4〜3.5であることがより好ましい。反応液のpHが4.0より高いと反応速度が低下するため生産性が低下し、一方、1.0より低い場合、グリシジル基の加水分解が進行して収率が低下する傾向がある。さらに、反応液のpHが1.0より低い場合、触媒活性種が急激に生成することに由来すると考えられる反応熱の発生が顕著となり、加熱を行わなくても反応熱により徐々に反応液内温が上昇し、熱暴走を引き起こす可能性がある。リン酸の使用量は反応基質のグリシジルエーテル化合物の2−アルケニル基の炭素−炭素二重結合に対して約0.01〜約10モル%が好ましく、より好ましくは約0.1〜約10モル%の範囲から選ばれる。
【0035】
リン酸以外の酸としては鉱酸又は有機酸のいずれも用いることができる。鉱酸の例としては、ポリリン酸、ピロリン酸、スルホン酸、硝酸、硫酸、塩酸、及びホウ酸が挙げられる。有機酸の例としては、ベンゼンスルホン酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、及びトリフルオロ酢酸が挙げられる。その使用量は反応基質のグリシジルエーテル化合物の2−アルケニル基の炭素−炭素二重結合に対して約0.001〜約10モル%が好ましく、より好ましくは約0.01〜約10モル%の範囲から選ばれる。これらの酸の中でも緩衝効果が大きくpHを1.0〜4.0の範囲に保持しやすいため硫酸が好ましい。
【0036】
グリシジル化反応において、有機溶媒を用いないか、必要に応じて有機溶媒を用いて、過酸化水素水溶液と前記した触媒とを混合し、反応基質のグリシジルエーテル化合物のグリシジル化反応を進行させることができる。溶媒を用いる場合には、反応速度が遅くなり、溶媒によっては加水分解反応などの望ましくない反応が進行しやすくなることがあるため、適切に選択する必要がある。反応基質のグリシジルエーテル化合物の粘度があまりに高い場合や固体である場合には必要最小限の有機溶媒を用いてもよい。用いることができる有機溶媒としては、芳香族炭化水素、脂肪族炭化水素、又は脂環式炭化水素が好ましく、例えばトルエン、キシレン、ヘキサン、オクタン、シクロヘキサンなどが挙げられる。濃度については必要最小限の使用に留めた方が製造コストなどの点で有利であり、有機溶媒の使用量はグリシジルエーテル化合物100質量部に対して好ましくは約300質量部以下、より好ましくは約100質量部以下である。
【0037】
また、酸化(グリシジル化)反応において、工業的に安定に生産を行うことを考えると、触媒と基質を最初に反応器に仕込み、反応温度を極力一定に保ちつつ、過酸化水素水溶液については反応で消費されているのを確認しながら、徐々に加えていった方がよい。このような方法を採れば、反応器内で過酸化水素が異常分解して酸素ガスが発生したとしても、過酸化水素の蓄積量が少なく圧力上昇を最小限に留めることができる。
【0038】
反応温度があまりに高いと副反応が多くなり、低すぎる場合には過酸化水素の消費速度が遅くなり、反応液中に蓄積することがあるので、反応温度は、好ましくは約20℃以上、約70℃以下、より好ましくは約25℃以上、約60℃以下、さらに好ましくは約30℃以上、約50℃以下の範囲で制御する。第一の工程及び第二の工程の反復工程及び反復工程終了後の反応のいずれも上記温度範囲で行うことが好ましい。反応温度を約70℃より高く設定すると、熱暴走が起こりやすくなり、また、添加した過酸化水素自体の熱分解反応が競合し、可燃性の酸素ガスが発生することがある。好ましい一実施態様では、第一の工程及び第二の工程を反応液の温度が50℃を超えない範囲で実施する。
【0039】
反応終了後は、水層と有機層の比重差がほとんど無い場合があるが、その場合には水層に無機化合物の飽和水溶液を混合して、有機層と比重差をつけることにより有機抽出溶媒を使用しなくても二層分離を行うことができる。特にタングステン化合物の比重は重いので、水層を下層に持って来るために、本来触媒として必要な前記した使用量を超えるタングステン化合物を用いてもよい。この場合、水層からのタングステン化合物を再使用して、タングステン化合物の利用効率を高めることが望ましい。
【0040】
また、逆に基質によっては有機層の比重が1.2近くとなるものもあるので、このような場合には水を追添して、水層の比重を1に近づけることにより、上層に水層、下層に有機層を持って来ることもできる。また、反応液の抽出にトルエン、シクロヘキサン、ヘキサン、塩化メチレンなどの有機溶媒を用いて抽出を実施することもでき、状況に応じて最適な分離方法を選択することができる。
【0041】
このようにして水層と分離した有機層を濃縮後、蒸留、クロマト分離、再結晶、昇華などの通常の方法によって、得られた多価グリシジル化合物を取り出すことができる。
【実施例】
【0042】
以下、実施例により本発明を具体的に説明するが、本発明は以下の実施例に制限されるものではない。
【0043】
合成例1:基質(4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェニルジグリシジルエーテル])の合成
5L三口丸底フラスコに、式(4)で表される4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェノール](大和化成株式会社製)1000g(3.25mol)、エピクロロヒドリン(東京化成工業株式会社製)2700g(20.9mol)、及びメタノール(純正化学株式会社製)156g(4.87mol)を入れ、溶解させた。70℃まで昇温した後、水酸化ナトリウム(和光純薬株式会社製)312g(7.80mol)を粒状のまま3時間かけて添加し、添加終了後、80℃で3時間撹拌(撹拌速度400rpm)した。反応終了後、反応液を室温まで冷却した後、析出した塩がすべて溶解するまで純水を加え、分液処理した。有機層を分離し、有機溶媒を留去(70℃、50mmHg、2時間)した。得られた粗生成物を、メチルエチルケトン(東京化成工業株式会社製)2700gに溶解し、70℃まで昇温した後、水酸化ナトリウム(和光純薬株式会社製)389g(9.73mol)を粒状のまま添加し、1時間撹拌(撹拌速度400rpm)した。反応終了後、反応液を室温まで冷却した後、析出した塩がすべて溶解するまで純水を加え、分液処理した。有機層を分離し、有機溶媒を留去(70℃、50mmHg、2時間)し、式(5)で表される4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェニルジグリシジルエーテル](1300g、3.09mol、95%収率)を主成分とする褐色液体を得た。この褐色液体のエポキシ当量(JIS−K7236規格に基づく)は220であり、
1H−NMR測定した結果、式(5)で表される化合物を主成分として含むことを確認した。式(5)で表される化合物に帰属する測定データは以下のとおりである。
1H−NMR{400MHz,CDCl
3,27℃},δ1.64(6H,s,CH
3),δ2.75(2H,dd,PhOCH
2CHC
HHO),δ2.89(2H,dd,PhOCH
2CHCH
HO),δ3.35(6H,m,PhOCH
2C
HCH
2O,PhC
H2CH=CH
2),δ3.95(2H,dd,PhOC
HHCHCH
2O),δ4.19(2H,dd,PhOCH
HCHCH
2O),δ5.05(4H,m,PhCH
2CH=C
H2),δ5.97(2H,m,PhCH
2C
H=CH
2),δ6.71(d,2H,aromatic),δ6.90−7.08(m,2H,aromatic),δ7.12−7.30(2H,m,aromatic).
【化7】
【化8】
【0044】
実施例1:2,2−ビス(3−グリシジル−4−グリシジルオキシフェニル)プロパンの合成
5L三口丸底フラスコに、上記合成例1で得られた4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェニルジグリシジルエーテル]811g(1.93mol)、タングステン酸ナトリウム二水和物(日本無機化学工業株式会社製)25.5g(77.1mmol)、リン酸(和光純薬工業株式会社製)30.3g(309mmol)、及び硫酸水素化トリオクチルメチルアンモニウム(MTOAHS、旭化学工業株式会社製)81.4g(174mmol)を入れ、トルエン(純正化学株式会社製)120gに溶解させた。40℃まで昇温した後、35質量%過酸化水素水溶液(菱江化成株式会社製)81g(835mmol)を0.1時間かけて撹拌しながら添加し、その後0.1時間撹拌、保持した後、35質量%希硫酸(濃硫酸(和光純薬工業株式会社製)を純水で希釈し、35質量%に調整し使用)8.1g(29mmol)を0.1時間かけて加え、その後0.1時間撹拌、保持した。この過酸化水素水溶液の添加工程と硫酸の添加工程を交互に各々5回、計2時間かけて行った。pHが1.8になったことを確認した後、過酸化水素水溶液を総添加量が563g(5.8mol)となるように2時間かけて滴下した。滴下終了後、40℃で16時間撹拌(撹拌速度400rpm)を継続した。滴下終了後、1時間の時点での反応液のpHは1.1であり、さらに6時間反応後の反応液のpHは2.4であり、反応終了時(16時間後)のpHは2.5であった。反応開始から終了まで撹拌は撹拌速度400rpmで行った。反応終了後、反応液を室温まで冷却した後、トルエン1200gを加え分液処理した。有機層を分離し、亜硫酸ナトリウム(和光純薬工業株式会社製)を純水に溶解して調製した10質量%亜硫酸ナトリウム水溶液2000gを加えて洗浄することで残存する過酸化水素を還元した。水層を除き、純水750gを加えて再度洗浄した。有機層を単離し、有機溶媒(トルエン)を留去することにより、エポキシ化合物の相対含有率(EP ratio(%)=(理論エポキシ当量/実測によるエポキシ当量)×100)が95.6%である生成物783g(1.73mol、収率89.9%)を得た。収率は、(上記後処理後、目的とするエポキシ化合物を含む混合物の取得量/反応率100%で酸化反応が進行した際に得られる物質量)×100)として算出した。生成物のエポキシ当量が式(6)で表される化合物の理論エポキシ当量と近いことから、生成物中にグリシジル基の加水分解物を殆ど含まないことが示唆される。この生成物を
1H−NMR測定した結果、式(6)で表される化合物を主成分として含むことを確認した。式(6)で表される化合物に帰属する測定データは以下のとおりである。
1H−NMR{400MHz,CDCl
3,27℃},δ1.64(6H,s,CH
3),δ2.54(2H,m,PhCH
2CHC
HHO),δ2.7−2.8(6H,m,PhC
H2CHCHHO,PhCH
2CHCH
HO),δ2.90(4H,m,PhOC
H2CHCH
2O),δ3.17(2H,m,PhOCH
2CHC
HHO),δ3.35(2H,m,PhOCH
2CHCH
HO),δ3.95(2H,m,PhCH
2C
HCH
2O),δ4.24(2H,dd,PhOCH
2C
HCH
2O),δ6.74(d,2H,aromatic),δ7.02−7.05(m,4H,aromatic).
【化9】
【0045】
合成例2:基質(オルト位又はパラ位にアリル基を有するフェノールノボラック型グリシジルエーテル(BRG−556−ALEPと略記)の合成
2Lの三口反応容器に、炭酸カリウム(日本曹達株式会社製)428g(3.1mol)を純水389gに溶解した溶液、式(7)で表されるフェノールノボラック(ショウノール(登録商標)BRG−556、o=2〜7、平均値:5.1)(昭和電工株式会社製)250g、及び炭酸ナトリウム(関東化学株式会社製)164g(1.55mol、固体のまま)を仕込み、反応容器を窒素ガス置換し85℃に加熱した。窒素ガス気流下、酢酸アリル(昭和電工株式会社製)421g(4.2mol)、トリフェニルホスフィン(北興化学工業株式会社製)12.3g(45.8mmol)、及び50%含水5%−Pd/C−STDタイプ(エヌ・イーケムキャット株式会社製)3.98g(Pd原子として0.94mmol)を入れ、窒素ガス雰囲気中、105℃に昇温して4時間反応させた後、酢酸アリル42.1g(0.42mol)を追添し、加熱を12時間継続した。その後撹拌を停止し、静置することで有機層と水層の二層に分離した。析出している塩が溶解するまで、純水(500g)を添加した後、トルエン500gを加え、80℃以上の温度に保持して白色沈殿が析出していないことを確認した後、Pd/Cを濾過(1ミクロンのメンブランフィルター(アドバンテック社製KST−142−JAを用いて加圧(0.3MPa))により回収した。この濾滓をトルエン250gで洗浄するとともに、水層を分離した。50℃以上で有機層を純水500gで2度洗浄し、水層が中性であることを確認した。有機層を分離後、減圧下、濃縮し、褐色油状物を得た(343g、定量的)。この褐色油状物を
1H−NMR測定した結果、式(8)で表されるフェノールノボラックアリルエーテル体(以下、BRG−556−ALと略記)を主成分として含むことを確認した。式(8)で表される化合物に帰属する測定データは以下のとおりである。
1H−NMR{400MHz,CDCl
3,27℃},δ3.6−4.0(4H,m,PhCH
2Ph),δ4.4−4.8(2H,m,C
H2CH=CH
2),δ5.1−5.3(1H,m,CH
2CH=CH
H),δ5.3−5.5(1H,m,CH
2CH=C
HH),δ5.8−6.2(1H,m,CH
2C
H=CH
2),δ6.6−7.3(12H,m,aromatic).
【化10】
【化11】
【0046】
300mLのナスフラスコに磁気撹拌子と、上記合成で得られたフェノールノボラックアリルエーテル体100gを入れ、窒素ガス雰囲気下、190℃で加熱した。3時間後、冷却し、黒色固体を得た(98g、定量的)。この黒色固体を
1H−NMR測定した結果、式(9)で表されるフェノールノボラックアリル置換体(以下、BRG−556−CLと略記)を主成分として含むことを確認した。式(9)で表される化合物に帰属する測定データは以下のとおりである。
1H−NMR{400MHz,CDCl
3,27℃},δ3.2−3.4(2H,m,C
H2CH=CH
2),δ3.6−4.0(5H,m,PhCH
2Ph,OH),δ4.6−5.0(1H,m,CH
2CH=CH
H),δ5.0−5.3(1H,m,CH
2CH=C
HH),δ5.8−6.1(1H,m,CH
2C
H=CH
2),δ6.6−7.2(12H,m,aromatic).
【化12】
【0047】
合成例1における4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェノール]を上記合成で得られたフェノールノボラックアリル置換体(BRG−556−CL)に変更した以外は合成例1同様にエピクロロヒドリンを用いてオルト位又はパラ位にアリル基を有するフェノールノボラック型グリシジルエーテルを合成し茶褐色油状物を得た(収率96%)。この茶褐色油状物を
1H−NMR測定した結果、式(10)で表されるオルト位又はパラ位にアリル基を有するフェノールノボラック型グリシジルエーテル(以下、BRG−556−ALEPと略記)を主成分として含むことを確認した。式(10)で表される化合物に帰属する測定データは以下のとおりである。
1H−NMR{400MHz,CDCl
3,27℃},δ2.5−3.0(2H,m,PhOC
H2CHCH
2O),δ3.2−3.4(2H,m,C
H2CH=CH
2),δ3.4−3.6(2H,m,PhOCH
2CHC
H2O),δ3.6−4.0(5H,m,PhCH
2Ph,PhOCH
2C
HCH
2O),δ4.9−5.1(2H,m,CH
2CH=C
HH),δ5.8−6.1(1H,m,CH
2C
H=CH
2),δ6.6−7.2(12H,m,aromatic).
【化13】
【0048】
実施例2:フェノールノボラック型多価グリシジル化合物の合成
5L三口丸底フラスコに、上記合成例2で得られたオルト位又はパラ位にアリル基を有するフェノールノボラック型グリシジルエーテル(BRG−556−ALEP)750g(2−アルケニル基の炭素−炭素二重結合約3.7mol含有(式(10)の繰り返し単位の分子量に基づき算出))、タングステン酸ナトリウム二水和物24.4g(73.8mmol)、リン酸14.5g(148mmol)、及びMTOAHS77.9g(166mmol)を入れ、トルエン(純正化学株式会社製)1120gに溶解させた。40℃まで昇温した後、35質量%過酸化水素水溶液35g(360mmol)を0.1時間かけて撹拌しながら添加し、0.1時間撹拌、保持した後、35%希硫酸7.5g(26.8mmol)を0.1時間かけて加え、その後0.1時間撹拌、保持した。この過酸化水素水溶液の添加工程と硫酸の添加工程を交互に各々5回、計2時間かけて行った。pHが1.2になったことを確認した後、過酸化水素水溶液を総添加量が538g(5.55mol)となるように2時間かけて添加した。添加終了後、40℃で16時間撹拌を継続した。反応開始から終了まで撹拌は撹拌速度400rpmで行った。添加終了後、1時間の時点での反応液のpHは1.0であり、さらに2時間反応後の反応液のpHは1.7であった。反応終了後、反応液を室温まで冷却した後、トルエン1000gを加え分液処理した。有機層を分離し、亜硫酸ナトリウム水溶液(10質量%)2000gを加えて洗浄することで残存する過酸化水素を還元した。水層を除き、純水1000gを加えて再度洗浄した。有機層を単離し、有機溶媒(トルエン)を留去した。エポキシ当量が131、EP ratioが83.6%である茶色高粘性油状生成物を702g(1.6mol、収率86.8%)得た。この生成物を
1H−NMR測定した結果、式(11)で表されるフェノールノボラック型多価グリシジル化合物を主成分として含むことを確認した。式(11)で表される化合物に帰属する測定データは以下のとおりである。
1H−NMR{400MHz,CDCl
3,27℃},δ2.5−2.8(2H,m,PhOC
H2CHCH
2O),δ2.8−3.0(4H,m,PhC
H2CHCH
2O,PhCH
2CHC
H2O),δ3.1−3.4(2H,m,PhOCH
2CHC
H2O),δ3.6−4.0(6H,m,PhCH
2Ph,PhOCH
2C
HCH
2O,PhCH
2C
HCH
2O),δ6.6−7.2(12H,m,aromatic).
【化14】
【0049】
比較例1
過酸化水素水溶液の添加とリン酸以外の酸の添加を交互に行わず、反応開始時に一度に添加(過酸化水素水溶液添加量:563g(5.8mol)、硫酸添加量:40.5g(145mmol)、反応時間:18時間)した以外は実施例1と同様にしてグリシジル化反応を行い、エポキシ当量が199、EP ratioが55.1%である生成物327g(収率40.4%)を得た。反応開始直後より、反応液温度が上昇し、最終的に100℃を超え、突沸が起きた。ゲル状物が生成するとともに、褐色に着色した。目的物の取得収率が下がり、
EP ratioも
低下した。
【0050】
比較例2
硫酸の添加工程における硫酸の添加量を全ての工程で2倍(16.2g(58mmol))にした以外は実施例1と同様にしてグリシジル化反応を行った。硫酸をすべて加えた際の反応溶液のpHが0.8になったことを確認した。反応終了後、エポキシ当量が159、EP ratioが69.2%である生成物401g(収率49.6%)を得た。反応開始直後より、反応液温度が上昇し、最終的に100℃を超え、突沸が起きた。ゲル状物が生成するとともに、褐色に変色
した。目的物の取得収率が下がり、
EP ratioも
低下した。加水分解物と考えられる褐色状のゲル状物が多量に析出(800g、含水状)し、目的物を反応液から抽出することは困難であった。反応液は全体がゲル化し、粘稠なスポンジ状となった。ゲル状物をろ取して、酢酸エチル(500mL)、メタノール(500mL)で順次洗浄後、ろ紙で挟み溶媒分を吸収後、固形分を減圧下乾燥し、褐色固体を得た。加水分解物に帰属されると推察できる信号データは以下のとおりである。
1H−NMR{400MHz,DMSO−d
6,27℃}δ1.60(6H,s,CH
3),δ3.3−3.5(2H,brm,PhCH
2CH(O
H)CH
2(O
H),PhOCH
2CH(O
H)CH
2(O
H)),δ3.6(2H,brm,PhCH
2CH(OH)C
H2(OH)),δ3.8(2H,m,PhOCH
2CH(OH)C
H2(OH)),δ3.9(2H,brm,PhOCH
2C
H(OH)CH
2(OH)),δ4.4(2H,brm,PhCH
2C
H(OH)CH
2(OH)),δ4.6(2H,brm,PhOC
H2CH(OH)CH
2(OH)),δ4.9(2H,brm,PhC
H2CH(OH)CH
2(OH)),δ6.8(brm,2H,aromatic),δ6.9−7.1(m,4H,aromatic).