特許第6354916号(P6354916)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 新日鐵住金株式会社の特許一覧

<>
  • 特許6354916-鋼板及びめっき鋼板 図000012
  • 特許6354916-鋼板及びめっき鋼板 図000013
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6354916
(24)【登録日】2018年6月22日
(45)【発行日】2018年7月11日
(54)【発明の名称】鋼板及びめっき鋼板
(51)【国際特許分類】
   C22C 38/00 20060101AFI20180702BHJP
   C22C 38/58 20060101ALI20180702BHJP
   C21D 9/46 20060101ALN20180702BHJP
【FI】
   C22C38/00 301W
   C22C38/58
   !C21D9/46 T
   !C21D9/46 U
【請求項の数】8
【全頁数】32
(21)【出願番号】特願2017-562103(P2017-562103)
(86)(22)【出願日】2017年8月4日
(86)【国際出願番号】JP2017028472
(87)【国際公開番号】WO2018026013
(87)【国際公開日】20180208
【審査請求日】2017年11月29日
(31)【優先権主張番号】特願2016-155101(P2016-155101)
(32)【優先日】2016年8月5日
(33)【優先権主張国】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000006655
【氏名又は名称】新日鐵住金株式会社
(74)【代理人】
【識別番号】100090273
【弁理士】
【氏名又は名称】國分 孝悦
(72)【発明者】
【氏名】佐野 幸一
(72)【発明者】
【氏名】宇野 誠
(72)【発明者】
【氏名】西山 亮一
(72)【発明者】
【氏名】山口 裕司
(72)【発明者】
【氏名】杉浦 夏子
(72)【発明者】
【氏名】中田 匡浩
【審査官】 静野 朋季
(56)【参考文献】
【文献】 国際公開第2010/137317(WO,A1)
【文献】 特開2009−191360(JP,A)
【文献】 国際公開第2014/014120(WO,A1)
【文献】 特開2009−019265(JP,A)
【文献】 国際公開第2008/056812(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C22C 38/00−38/60
C21D 9/46−9/48
C21D 8/02
(57)【特許請求の範囲】
【請求項1】
質量%で、
C:0.008〜0.150%、
Si:0.01〜1.70%、
Mn:0.60〜2.50%、
Al:0.010〜0.60%、
Ti:0〜0.200%、
Nb:0〜0.200%、
Ti+Nb:0.015〜0.200%、
Cr:0〜1.0%、
B:0〜0.10%、
Mo:0〜1.0%、
Cu:0〜2.0%、
Ni:0〜2.0%、
Mg:0〜0.05%、
REM:0〜0.05%、
Ca:0〜0.05%、
Zr:0〜0.05%、
P:0.05%以下、
S:0.0200%以下、
N:0.0060%以下、かつ
残部:Fe及び不純物、
で表される化学組成を有し、
面積率で、
フェライト:5〜60%
ベイナイト:40〜95%、かつ
残部:10%以下、
で表される組織を有し、
方位差が15°以上の粒界によって囲まれ、かつ円相当径が0.3μm以上である領域を結晶粒と定義した場合に、粒内方位差が5〜14°である結晶粒の全結晶粒に占める割合が面積率で20〜100%であり、
円相当直径が10nm以下のTi(C,N)及びNb(C,N)の析出物密度が1010個/mm3以上であり、
表面から深さ20μmにおける硬度(Hvs)と、板厚中心の硬度(Hvc)との比(Hvs/Hvc)が、0.85以上であり、
平均転位密度が1×1014-2以下であることを特徴とする鋼板。
【請求項2】
引張強度が480MPa以上であり、
前記引張強度と降伏強度との比が0.80以上であり、
前記引張強度と鞍型伸びフランジ試験における限界成形高さとの積が19500mm・MPa以上であり、
疲労強度比が0.45以上であることを特徴とする請求項に記載の鋼板。
【請求項3】
前記化学組成が、質量%で、
Cr:0.05〜1.0%、及び
B:0.0005〜0.10%、
からなる群から選択される1種以上を含むことを特徴とする請求項1又は2に記載の鋼板。
【請求項4】
前記化学組成が、質量%で、
Mo:0.01〜1.0%、
Cu:0.01〜2.0%、及び
Ni:0.01%〜2.0%、
からなる群から選択される1種以上を含むことを特徴とする請求項1乃至のいずれか1項に記載の鋼板。
【請求項5】
前記化学組成が、質量%で、
Ca:0.0001〜0.05%、
Mg:0.0001〜0.05%、
Zr:0.0001〜0.05%、及び
REM:0.0001〜0.05%、
からなる群から選択される1種以上を含むことを特徴とする請求項1乃至のいずれか1項に記載の鋼板。
【請求項6】
請求項1乃至のいずれか1項に記載の鋼板の表面に、めっき層が形成されていることを特徴とするめっき鋼板。
【請求項7】
前記めっき層が、溶融亜鉛めっき層であることを特徴とする請求項に記載のめっき鋼板。
【請求項8】
前記めっき層が、合金化溶融亜鉛めっき層であることを特徴とする請求項に記載のめっき鋼板。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、鋼板及びめっき鋼板に関する。
【背景技術】
【0002】
近年、自動車の燃費向上を目的とした各種部材の軽量化が要求されている。この要求に対し、そのため、Al合金等の軽金属の適用は特殊な用途に限られている。従って、各種部材の軽量化をより安価でかつ広い範囲に適用するために、鋼板の高強度化による薄肉化が要求されている。
【0003】
鋼板を高強度化すると、一般的に成形性(加工性)等の材料特性が劣化する。そのため、高強度鋼板の開発において、材料特性を劣化させずに高強度化を図ることが重要な課題である。
【0004】
例えば、せん断や打ち抜き加工によりブランキングや穴開けが行われた後、伸びフランジ加工やバーリング加工を主体としたプレス成形が施され、良好な伸びフランジ性が求められる。
【0005】
また、自動車が衝突した際の衝突エネルギー吸収能力を高めるためには、鋼材の降伏応力を高めることが有効である。なぜならば、少ない変形量で、効率よくエネルギーを吸収させることができるからである。
【0006】
また、一方で、鋼板を高強度化したとしても、疲労特性が大きく劣化しては、自動車用鋼板として使用することができない。
【0007】
さらに、足回り部材に使用する鋼板などは、雨水などに曝されやすく、薄肉化した場合、腐食による減厚が大きな問題となるため、耐食性も求められる。
【0008】
上記の良好な伸びフランジ性の課題に対して、例えば、特許文献1には、TiCのサイズを制限することにより、延性、伸びフランジ性、材質均一性に優れる鋼板を提供できることが開示されている。また、特許文献2には、酸化物の種類、サイズ及び個数密度を規定することにより、伸びフランジ性と疲労特性に優れる鋼板を提供できることが開示されている。また、特許文献3には、フェライト相の面積率及び第二相との硬度差を規定することにより、強度のばらつきが小さく、かつ延性と穴広げ性とに優れる鋼板を提供できることが開示されている。
【0009】
しかしながら、上記の特許文献1に開示された技術では、鋼板の組織においてフェライト相を95%以上確保する必要がある。そのため、十分な強度を確保するためには、480MPa級(TSが480MPa以上)とする場合でも、Tiを0.08%以上含有させる必要がある。しかしながら、軟質のフェライト相を95%以上有する鋼において、TiCの析出強化によって480MPa以上の強度を確保する場合、延性の低下が問題となる。また、特許文献2に開示された技術では、LaやCeなどの希少金属の添加が必須となる。従って、特許文献2に開示された技術は、いずれも合金元素の制約という課題を有している。
【0010】
また、上述したように、近年、自動車部材には、高強度鋼板の適用の要求が高まっている。高強度鋼板を冷間でプレスして成形する場合、成形中に伸びフランジ成形となる部位のエッジからのき裂が発生しやすくなる。これは、ブランク加工時に打ち抜き端面に導入されるひずみによりエッジ部のみ加工硬化が進んでしまうことによると考えられる。従来、伸びフランジ性の試験評価方法としては、穴広げ試験が用いられている。しかしながら、穴広げ試験では周方向のひずみがほとんど分布せずに破断に至るが、実際の部品の加工では、ひずみ分布が存在するため、破断部周辺のひずみや応力の勾配による破断限界への影響が存在する。したがって、高強度鋼板の場合には、穴広げ試験では十分な伸びフランジ性を示していたとしても、冷間プレスを行った場合には、ひずみ分布によってき裂が発生する場合がある。
【0011】
特許文献1、2には、光学顕微鏡で観察される組織のみを規定することで、穴広げ性を向上させることが開示されている。しかしながら、ひずみ分布を考慮した場合にも十分な伸びフランジ性を確保できるかどうかは不明である。
【0012】
降伏応力を高める方法としては、例えば、(1)加工硬化させたり、(2)転位密度の高い低温変態相(ベイナイト・マルテンサイト)を主体としたミクロ組織としたり、(3)固溶強化元素を添加したり、(4)析出強化をしたりする方法がある。(1)及び(2)の方法は、転位密度が増加するため、加工性が大幅に劣化してしまう。(3)の固溶強化を行う方法では、その強化量の絶対値に限界が有り、十分と言える程に降伏応力を上昇させることが困難である。従って、高い加工性を得ながら、効率よく降伏応力を上昇させるには、Nb、Ti、Mo、V等の元素を添加し、これらの合金炭窒化物の析出強化を行うことによって、高降伏応力を達成することが望ましい。
【0013】
上記観点より、マイクロアロイ元素の析出強化を利用した高強度鋼板が実用化されつつあるが、この析出強化を利用した高強度鋼板にて、上記の疲労特性と防錆を解決する必要がある。
【0014】
疲労特性に関しては、析出強化を利用した高強度鋼板では、鋼板表層の軟化により疲労強度が劣る現象が存在する。熱間圧延中に圧延ロールと直接接触する鋼板表面において、鋼板と接触したロールの抜熱効果により、鋼板表面のみ温度低下する。鋼板の最表層がAr点を下回ると、ミクロ組織及び析出物の粗大化が起こり、鋼板最表層が軟化する。これが、疲労強度の劣化の主要因である。一般に鋼材の疲労強度は、鋼板最表層が硬化している程、向上する。このため、析出強化を利用した高張力鋼板では、高い疲労強度を得難いのが現状である。そもそも、鋼板の高強度化の目的は、車体重量の軽量化であるため、鋼板強度を上昇させたにも関わらず、疲労強度が低下した場合、板厚を減じることができない。この観点から、疲労強度比は0.45以上であることが望ましく、高強度熱延鋼板においても、引張強度と疲労強度とをバランス良く、高い値に保つことが望ましい。なお、疲労強度比とは、鋼板の疲労強度を引張強度で除した値である。一般に、引張強度の上昇に従い、疲労強度が上昇する傾向にあるが、より高強度な材料では、疲労強度比が低下してくる。このため、引張強度の高い鋼板を用いても、疲労強度が上昇せず、高強度化の目的である車体重量の軽量化を実現できない場合がある。
【先行技術文献】
【特許文献】
【0015】
【特許文献1】国際公開第2013/161090号
【特許文献2】特開2005−256115号公報
【特許文献3】特開2011−140671号公報
【発明の概要】
【発明が解決しようとする課題】
【0016】
本発明は、高強度でありながら、厳しい伸びフランジ性並びに疲労特性と伸びに優れた鋼板及びめっき鋼板を提供することを目的とする。
【課題を解決するための手段】
【0017】
従来の知見によれば、高強度鋼板における伸びフランジ性(穴広げ性)の改善は、特許文献1〜3に示されるように、介在物制御、組織均質化、単一組織化及び/又は組織間の硬度差の低減などによって行われている。言い換えれば、従来、光学顕微鏡によって観察される組織を制御することによって、伸びフランジ性の改善が図られている。
【0018】
しかしながら、光学顕微鏡で観察される組織だけを制御しても、ひずみ分布が存在する場合の伸びフランジ性を向上させることは困難である。そこで、本発明者らは、各結晶粒の粒内の方位差に着目し、鋭意検討を進めた。その結果、結晶粒内の方位差が5〜14°である結晶粒の全結晶粒に占める割合を20〜100%に制御することで、伸びフランジ性を大きく向上させることができることを見出した。
【0019】
また、本発明者らは、円相当直径が10nm以下のTi(C,N)及びNb(C,N)の合計析出物密度が1010個/mm以上であり、表面から深さ20μmにおける硬度(Hvs)と、板厚中心の硬度(Hvc)との比(Hvs/Hvc)が0.85以上であれば、優れた疲労特性が得られることを見出した。
【0020】
本発明は、上述した結晶粒内の方位差が5〜14°である結晶粒の全結晶粒に占める割合に関する新たな知見と、硬度の比に関する新たな知見とに基づき、本発明者らが鋭意検討を重ね、完成に至ったものである。
【0021】
本発明の要旨は以下の通りである。
【0022】
(1)
質量%で、
C:0.008〜0.150%、
Si:0.01〜1.70%、
Mn:0.60〜2.50%、
Al:0.010〜0.60%、
Ti:0〜0.200%、
Nb:0〜0.200%、
Ti+Nb:0.015〜0.200%、
Cr:0〜1.0%、
B:0〜0.10%、
Mo:0〜1.0%、
Cu:0〜2.0%、
Ni:0〜2.0%、
Mg:0〜0.05%、
REM:0〜0.05%、
Ca:0〜0.05%、
Zr:0〜0.05%、
P:0.05%以下、
S:0.0200%以下、
N:0.0060%以下、かつ
残部:Fe及び不純物、
で表される化学組成を有し、
面積率で、
フェライト:5〜60%
ベイナイト:40〜95%、かつ
残部:10%以下、
で表される組織を有し、
方位差が15°以上の粒界によって囲まれ、かつ円相当径が0.3μm以上である領域を結晶粒と定義した場合に、粒内方位差が5〜14°である結晶粒の全結晶粒に占める割合が面積率で20〜100%であり、
円相当直径が10nm以下のTi(C,N)及びNb(C,N)の析出物密度が1010個/mm3以上であり、
表面から深さ20μmにおける硬度(Hvs)と、板厚中心の硬度(Hvc)との比(Hvs/Hvc)が、0.85以上であり、
平均転位密度が1×1014-2以下であることを特徴とする鋼板。
【0024】

引張強度が480MPa以上であり、
前記引張強度と降伏強度との比が0.80以上であり、
前記引張強度と鞍型伸びフランジ試験における限界成形高さとの積が19500mm・MPa以上であり、
疲労強度比が0.45以上であることを特徴とする()に記載の鋼板。
【0025】

前記化学組成が、質量%で、
Cr:0.05〜1.0%、及び
B:0.0005〜0.10%、
からなる群から選択される1種以上を含むことを特徴とする(1)又は(2)に記載の鋼板。
【0026】

前記化学組成が、質量%で、
Mo:0.01〜1.0%、
Cu:0.01〜2.0%、及び
Ni:0.01%〜2.0%、
からなる群から選択される1種以上を含むことを特徴とする(1)〜()のいずれかに記載の鋼板。
【0027】

前記化学組成が、質量%で、
Ca:0.0001〜0.05%、
Mg:0.0001〜0.05%、
Zr:0.0001〜0.05%、及び
REM:0.0001〜0.05%、
からなる群から選択される1種以上を含むことを特徴とする(1)〜()のいずれかに記載の鋼板。
【0028】

(1)〜()のいずれかに記載の鋼板の表面に、めっき層が形成されていることを特徴とするめっき鋼板。
【0029】

前記めっき層が、溶融亜鉛めっき層であることを特徴とする()に記載のめっき鋼板。
【0030】

前記めっき層が、合金化溶融亜鉛めっき層であることを特徴とする()に記載のめっき鋼板。
【発明の効果】
【0031】
本発明によれば、高強度でありながら、厳しい延性および伸びフランジ性が要求される部材への適用が可能で、かつ、疲労特性に優れた鋼板およびめっき鋼板を提供することができる。これにより、衝突特性に優れた鋼板を実現できる。
【図面の簡単な説明】
【0032】
図1A図1Aは、鞍型伸びフランジ試験法で用いられる鞍型成形品を示す斜視図である。
図1B図1Bは、鞍型伸びフランジ試験法で用いられる鞍型成形品を示す平面図である。
【発明を実施するための形態】
【0033】
以下、本発明の実施形態について説明する。
【0034】
「化学組成」
先ず、本発明の実施形態に係る鋼板の化学組成について説明する。以下の説明において、鋼板に含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。本実施形態に係る鋼板は、C:0.008〜0.150%、Si:0.01〜1.70%、Mn:0.60〜2.50%、Al:0.010〜0.60%、Ti:0〜0.200%、Nb:0〜0.200%、Ti+Nb:0.015〜0.200%、Cr:0〜1.0%、B:0〜0.10%、Mo:0〜1.0%、Cu:0〜2.0%、Ni:0〜2.0%、Mg:0〜0.05%、希土類金属(rare earth metal:REM):0〜0.05%、Ca:0〜0.05%、Zr:0〜0.05%、P:0.05%以下、S:0.0200%以下、N:0.0060%以下、かつ残部:Fe及び不純物、で表される化学組成を有する。不純物としては、鉱石やスクラップ等の原材料に含まれるもの、製造工程において含まれるもの、が例示される。
【0035】
「C:0.008〜0.150%」
Cは、Nb、Ti等と結合して鋼板中で析出物を形成し、析出強化により鋼の強度向上に寄与する。C含有量が0.008%未満では、この効果を十分に得られない。このため、C含有量は0.008%以上とする。C含有量は、好ましくは0.010%以上とし、より好ましくは0.018%以上とする。一方、C含有量が0.150%超では、ベイナイト中の方位分散が大きくなりやすく、粒内の方位差が5〜14°の結晶粒の割合が不足する。また、C含有量が0.150%超では、伸びフランジ性にとって有害なセメンタイトが増加し、伸びフランジ性が劣化する。このため、C含有量は0.150%以下とする。C含有量は、好ましくは0.100%以下とし、より好ましくは0.090%以下とする。
【0036】
「Si:0.01〜1.70%」
Siは、溶鋼の脱酸剤として機能する。Si含有量が0.01%未満では、この効果を十分に得られない。このため、Si含有量は0.01%以上とする。Si含有量は、好ましくは0.02%以上とし、より好ましくは0.03%以上とする。一方、Si含有量が1.70%超では、伸びフランジ性が劣化したり、表面疵が発生したりする。また、Si含有量が1.70%超では、変態点が上がりすぎ、圧延温度を高くする必要が生じる。この場合、熱間圧延中の再結晶が著しく促進され、粒内の方位差が5〜14°の結晶粒の割合が不足する。また、Si含有量が1.70%超では、鋼板の表面にめっき層が形成されている場合に表面疵が生じやすい。このため、Si含有量は1.70%以下とする。Si含有量は、好ましくは1.60%以下とし、より好ましくは1.50%以下とし、更に好ましくは1.40%以下とする。
【0037】
「Mn:0.60〜2.50%」
Mnは、固溶強化により、又は鋼の焼入れ性を向上させることにより、鋼の強度向上に寄与する。Mn含有量が0.60%未満では、この効果を十分に得られない。このため、Mn含有量は0.60%以上とする。Mn含有量は、好ましくは0.70%以上とし、より好ましくは0.80%以上とする。一方、Mn含有量が2.50%超では、焼入れ性が過剰になり、ベイナイト中の方位分散の程度が大きくなる。この結果、粒内の方位差が5〜14°の結晶粒の割合が不足し、伸びフランジ性が劣化する。このため、Mn含有量は2.50%以下とする。Mn含有量は、好ましくは2.30%以下とし、より好ましくは2.10%以下とする。
【0038】
「Al:0.010〜0.60%」
Alは、溶鋼の脱酸剤として有効である。Al含有量が0.010%未満では、この効果を十分に得られない。このため、Al含有量は0.010%以上とする。Al含有量は、好ましくは0.020%以上とし、より好ましくは0.030%以上とする。一方、Al含有量が0.60%超では、溶接性や靭性などが劣化する。このため、Al含有量は0.60%以下とする。Al含有量は、好ましくは0.50%以下とし、より好ましくは0.40%以下とする。
【0039】
「Ti:0〜0.200%、Nb:0〜0.200%、Ti+Nb:0.015〜0.200%」
Ti及びNbは、炭化物(TiC,NbC)として鋼中に微細に析出し、析出強化により鋼の強度を向上させる。また、Ti及びNbは、炭化物を形成することによってCを固定して、伸びフランジ性にとって有害なセメンタイトの生成を抑制する。つまり、Ti及びNbは、焼鈍中にTiCを析出し強化させるために重要である。詳細は後述するが、本実施形態におけるTi及びNbの活用方法について、ここでも述べる。製造工程において、熱延段階(熱間圧延から巻取りまでの段階)では、一部、Ti及びNbを固溶状態とする必要があるため、熱間圧延での巻き取り温度を、Ti析出物やNb析出物が発生しにくい620℃以下としている。そして、焼鈍前にスキンパス圧延を施すことにより転位を導入することが重要である。次に、焼鈍段階で、導入された転位上に、Ti(C,N)やNb(C,N)が微細に析出する。特に転位密度の高くなる鋼板表層付近において、その効果(Ti(C,N)やNb(C,N)の微細析出)が顕著となる。この効果により、Hvs/Hvc≧0.85とすることが可能となり、高い疲労特性が達成できる。また、Ti及びNbの析出強化によって、引張強度と降伏強度との比(降伏比)を0.80以上とすることができる。Ti及びNbの合計含有量が0.015%未満では、これらの効果を十分に得ることができない。このため、Ti及びNbの合計含有量は0.015%以上とする。Ti及びNbの合計含有量は、好ましくは0.020%以上とする。Ti及びNbの合計含有量が0.015%未満では、加工性が劣化し、圧延中に割れの頻度が高くなる。また、Ti含有量は、好ましくは0.025%以上とし、より好ましくは0.035%以上とし、更に好ましくは0.025%以上とする。また、Nb含有量は、好ましくは0.025%以上とし、より好ましくは0.035%以上とする。一方、Ti及びNbの合計含有量が0.200%を超えると、粒内の方位差5〜14°の結晶粒の割合が不足し、伸びフランジ性が大きく劣化する。このため、Ti及びNbの合計含有量は0.200%以下とする。Ti及びNbの合計含有量は、好ましくは0.150%以下とする。
【0040】
「P:0.05%以下」
Pは不純物である。Pは、靭性、延性、溶接性などを劣化させるので、P含有量は低いほど好ましい。P含有量が0.05%超であると、伸びフランジ性の劣化が著しい。このため、P含有量は0.05%以下とする。P含有量は、好ましくは0.03%以下とし、より好ましくは0.02%以下とする。P含有量の下限は特に定めないが、過剰な低減は製造コストの観点から望ましくない。このため、P含有量は0.005%以上としてもよい。
【0041】
「S:0.0200%以下」
Sは不純物である。Sは、熱間圧延時の割れを引き起こすばかりでなく、伸びフランジ性を劣化させるA系介在物を形成する。従って、S含有量は低いほど好ましい。S含有量が0.0200%超であると、伸びフランジ性の劣化が著しい。このため、S含有量は0.0200%以下とする。S含有量は、好ましくは0.0150%以下とし、より好ましくは0.0060%以下とする。S含有量の下限は特に定めないが、過剰な低減は製造コストの観点から望ましくない。このため、S含有量は0.0010%以上としてもよい。
【0042】
「N:0.0060%以下」
Nは不純物である。Nは、Cよりも優先的に、Ti及びNbと析出物を形成し、Cの固定に有効なTi及びNbを減少させる。従って、N含有量は低い方が好ましい。N含有量が0.0060%超であると、伸びフランジ性の劣化が著しい。このため、N含有量は0.0060%以下とする。N含有量は、好ましくは0.0050%以下とする。N含有量の下限は特に定めないが、過剰な低減は製造コストの観点から望ましくない。このため、N含有量は0.0010%以上としてもよい。
【0043】
Cr、B、Mo、Cu、Ni、Mg、REM、Ca及びZrは、必須元素ではなく、鋼板に所定量を限度に適宜含有されていてもよい任意元素である。
【0044】
「Cr:0〜1.0%」
Crは、鋼の強度向上に寄与する。Crが含まれていなくても所期の目的は達成されるが、この効果を十分に得るために、Cr含有量は好ましくは0.05%以上とする。一方、Cr含有量が1.0%超では、上記効果が飽和して経済性が低下する。このため、Cr含有量は1.0%以下とする。
【0045】
「B:0〜0.10%」
Bは、焼入れ性を高め、硬質相である低温変態生成相の組織分率を増加させる。Bが含まれていなくても所期の目的は達成されるが、この効果を十分に得るために、B含有量は好ましくは0.0005%以上とする。一方、B含有量が0.10%超では、上記効果が飽和して経済性が低下する。このため、B含有量は0.10%以下とする。
【0046】
「Mo:0〜1.0%」
Moは、焼入性を向上させると共に炭化物を形成して強度を高める効果を有する。Moが含まれていなくても所期の目的は達成されるが、この効果を十分に得るために、Mo含有量は好ましくは0.01%以上とする。一方、Mo含有量が1.0%超では、延性や溶接性が低下することがある。このため、Mo含有量は1.0%以下とする。
【0047】
「Cu:0〜2.0%」
Cuは、鋼板の強度を上げると共に、耐食性やスケールの剥離性を向上させる。Cuが含まれていなくても所期の目的は達成されるが、この効果を十分に得るために、Cu含有量は好ましくは0.01%以上とし、より好ましくは0.04%以上とする。一方、Cu含有量が2.0%超では、表面疵が発生することがある。このため、Cu含有量は2.0%以下とし、好ましくは1.0%以下とする。
【0048】
「Ni:0〜2.0%」
Niは、鋼板の強度を上げると共に、靭性を向上させる。Niが含まれていなくても所期の目的は達成されるが、この効果を十分に得るために、Ni含有量は好ましくは0.01%以上とする。一方、Ni含有量が2.0%超では、延性が低下する。このため、Ni含有量は2.0%以下とする。
【0049】
「Mg:0〜0.05%、REM:0〜0.05%、Ca:0〜0.05%、Zr:0〜0.05%」
Ca、Mg、Zr及びREMは、いずれも硫化物や酸化物の形状を制御して靭性を向上させる。Ca、Mg、Zr及びREMが含まれていなくても所期の目的は達成されるが、この効果を十分に得るために、Ca、Mg、Zr及びREMからなる群から選択される1種以上の含有量は好ましくは0.0001%以上とし、より好ましくは0.0005%以上とする。一方、Ca、Mg、Zr又はREMのいずれかの含有量が0.05%超では、伸びフランジ性が劣化する。このため、Ca、Mg、Zr及びREMの含有量は、いずれも0.05%以下とする。
【0050】
「金属組織」
次に、本発明の実施形態に係る鋼板の組織(金属組織)について説明する。以下の説明において、各組織の割合(面積率)の単位である「%」は、特に断りがない限り「面積%」を意味する。本実施形態に係る鋼板は、フェライト:5〜60%、かつベイナイト:40〜95%、で表される組織を有する。
【0051】
「フェライト:5〜60%」
フェライトの面積率が5%未満であると、鋼板の延性が劣化し、一般に自動車用部材等で求められる特性の確保が困難となる。このため、フェライトの面積率は5%以上とする。一方、フェライトの面積率が60%超では、伸びフランジ性が劣化したり、十分な強度を得ることが困難となったりする。このため、フェライトの面積率は60%以下とする。フェライトの面積率は、好ましくは50%未満とし、より好ましくは40%未満とし、更に好ましくは30%未満とする。
【0052】
「ベイナイト:40〜95%」
ベイナイトの面積率が40%以上の場合、析出強化による強度の増加を期待できる。すなわち、後述のように、本実施形態に係る鋼板の製造方法では、熱延鋼板の巻取温度を630℃以下とし、鋼板中に固溶Tiや固溶Nbを確保するが、この温度はベイナイト変態温度と近接している。このため、鋼板のミクロ組織には多くのベイナイトが含まれ、変態と同時に導入される変態転位が焼鈍時のTiCやNbCの核生成サイトを増すので、より大きな析出強化が図られる。熱間圧延中の冷却履歴により、その面積率が大きく変化するが、必要とされる材質特性に応じて、ベイナイトの面積率は調整される。ベイナイトの面積率は、好ましくは50%超とし、これによりさらに析出強化による強度増加が大きくなるだけでなく、プレス成形性が劣る粗大なセメンタイトを減少し、プレス成形性も良好に維持される。ベイナイトの面積率は、より好ましくは60%超とし、更に好ましくは70%超とする。ベイナイトの面積率は、95%以下とし、好ましくは80%以下とする。
【0053】
本実施形態に係る鋼板の組織は、残部の組織として、フェライト及びベイナイト以外の金属組織を含んでいてもよい。フェライト及びベイナイト以外の金属組織としては、例えば、マルテンサイト、残留オーステナイト、パーライトなどが挙げられる。しかしながら、残部の組織の分率(面積率)が大きいと、伸びフランジ性の劣化が懸念される。このため、残部の組織は面積率で合計10%以下とすることが好ましい。言い換えれば、組織中のフェライトとベイナイトとの合計が、面積率で90%以上であることが好ましい。より好ましくは、フェライトとベイナイトとの合計が、面積率で100%である。
【0054】
本実施形態に係る鋼板の製造方法では、熱延段階(熱間圧延から巻取りまでの段階)で鋼板中のTi及びNbの一部を固溶状態としておき、熱延後のスキンパス圧延により表層にひずみを導入する。そして、焼鈍段階では、導入されたひずみを核生成サイトとして、表層にTi(C,N)やNb(C,N)を析出させる。以上により疲労特性の改善を行っている。このため、Ti及びNbの析出が進みにくい630℃以下で熱間圧延を完了させることが重要である。すなわち、熱延材を630℃以下の温度で巻き取ることが重要である。熱延材を巻き取ることによって得られる鋼板の組織(熱延段階の組織)において、ベイナイトの分率は、上記の範囲内で、任意でかまわない。特に、製品(高強度鋼板、溶融めっき鋼板、合金化溶融めっき鋼板)の伸びを高めたい場合には、熱間圧延中にフェライトの分率を高くしておくことが有効である。
【0055】
熱延段階の鋼板の組織は、ベイナイトやマルテンサイトを含むため、高い転位密度を有する。しかし、焼鈍中にベイナイトやマルテンサイトが焼き戻されるため、転位密度が低下する。焼鈍時間が不十分であると、転位密度が高いままとなり、伸びが低い。このため、焼鈍後の鋼板の平均転位密度は1×1014−2以下であることが好ましい。後述する式(4)、(5)を満たす条件で焼鈍を行った場合、Ti(C,N)やNb(C,N)が析出すると共に、転位密度の減少が進む。すなわち、十分にTi(C,N)やNb(C,N)の析出が進んだ状態では、鋼板の平均転位密度は減少している。通常、転位密度の減少は、鋼材の降伏応力の低下につながる。しかし、本実施形態では、転位密度の減少と共にTi(C,N)やNb(C,N)が析出するため、高い降伏応力が得られている。本実施形態では、転位密度の測定方法は、CAMP−ISIJ Vol.17(2004)p396に記載の「X線回折を利用した転位密度の評価方法」に準じて行い、(110)、(211)、(220)の半価幅から平均転位密度を算出する。
【0056】
ミクロ組織が、上述した特徴を有することによって、従来技術による析出強化を行った鋼板では達成できなかった高い降伏比と高い疲労強度比を達成できる。すなわち、鋼板表層付近のミクロ組織が、板厚中心部のミクロ組織と異なり、フェライト主体でありかつ粗大な組織を呈していても、鋼板表層付近の硬度は、焼鈍中のTi(C,N)やNb(C,N)の析出により、鋼板中心部と遜色ない硬度に達する。その結果、疲労亀裂の発生が抑制され、疲労強度比が上昇する。
【0057】
各組織の割合(面積率)は、以下の方法により求められる。まず、鋼板から採取した試料をナイタールでエッチングする。エッチング後に光学顕微鏡を用いて板厚の1/4深さの位置において300μm×300μmの視野で得られた組織写真に対し、画像解析を行う。この画像解析により、フェライトの面積率、パーライトの面積率、並びにベイナイト及びマルテンサイトの合計面積率が得られる。次いで、レペラ腐食した試料を用い、光学顕微鏡を用いて板厚の1/4深さの位置において300μm×300μmの視野で得られた組織写真に対し、画像解析を行う。この画像解析により、残留オーステナイト及びマルテンサイトの合計面積率が得られる。さらに、圧延面法線方向から板厚の1/4深さまで面削した試料を用い、X線回折測定により残留オーステナイトの体積率を求める。残留オーステナイトの体積率は、面積率と同等であるので、これを残留オーステナイトの面積率とする。そして、残留オーステナイト及びマルテンサイトの合計面積率から残留オーステナイトの面積率を減じることでマルテンサイトの面積率が得られ、ベイナイト及びマルテンサイトの合計面積率からマルテンサイトの面積率を減じることでベイナイトの面積率が得られる。このようにして、フェライト、ベイナイト、マルテンサイト、残留オーステナイト及びパーライトのそれぞれの面積率を得ることができる。
【0058】
「析出物密度」
優れた降伏比(降伏強度と引張強度との比)を得るためには、マルテンサイトなどの硬質相による変態強化よりも、ベイナイトの焼戻しによって析出するTi(C,N)やNb(C,N)などによる析出強化が非常に重要となる。本実施形態では、析出強化に有効な円相当直径が10nm以下のTi(C,N)及びNb(C,N)の合計析出物密度が1010個/mm以上とする。これにより、0.80以上の降伏比を実現できる。ここで、(長径×短径)の平方根として求められた円相当直径が10nm超の析出物は、本発明において得られる特性に対して影響を与えるものではない。しかし、析出物サイズが微細となる程、有効にTi(C,N)及びNb(C,N)による析出強化が得られ、これにより、含有する合金元素の量を低減できる可能性がある。このため、円相当直径が10nm以下のTi(C,N)及びNb(C,N)の合計析出物密度を規定している。析出物の観察は、特開2004−317203号公報に記載の方法に従って作製されたレプリカ試料を透過型電子顕微鏡にて観察することにより行う。視野は5000倍〜100000倍の倍率で設定し、3視野以上から、10nm以下のTi(C,N)及びNb(C,N)の個数をカウントする。そして、電解前後での重量変化から電解重量を求め、比重7.8ton/mから重量を体積に換算する。そして、カウントした個数を体積で除することによって、合計析出物密度を算出する。
【0059】
「硬度分布」
本発明者らは、疲労特性と伸び及び衝突特性を改善するために、マイクロアロイ元素による析出強化を活用した高強度鋼板において、鋼板表層での硬度と鋼板中心部の硬度との比を0.85以上とすることによって、疲労特性が改善することを見出した。ここで、鋼板表層の硬度とは、鋼板断面において、表面から内部へ深さ20μmの位置での硬度を言い、これをHvsと示す。また、鋼板中心部の硬度とは、鋼板断面における鋼板表面から板厚の1/4内側の位置での硬度を言い、これをHvcと示す。これらの比Hvs/Hvcが0.85未満では、疲労特性が劣化し、一方、Hvs/Hvcが0.85以上では、疲労特性が改善することを本発明者らは見出した。従って、Hvs/Hvcを0.85以上とする。
【0060】
本実施形態に係る鋼板では、方位差が15°以上の粒界によって囲まれ、かつ円相当径が0.3μm以上である領域を結晶粒と定義した場合に、粒内方位差が5〜14°である結晶粒の全結晶粒に占める割合が面積率で20〜100%である。粒内の方位差は、結晶方位解析に多く用いられる電子ビーム後方散乱回折パターン解析(electron back scattering diffraction:EBSD)法を用いて求められる。粒内の方位差は、組織において、方位差が15°以上である境界を粒界とし、この粒界によって囲まれる領域を結晶粒と定義した場合の値である。
【0061】
粒内の方位差が5〜14°である結晶粒は、強度と加工性とのバランスが優れる鋼板を得るために有効である。粒内の方位差が5〜14°である結晶粒の割合を多くすることで、所望の鋼板強度を維持しつつ、伸びフランジ性を向上させることができる。粒内方位差が5〜14°である結晶粒の全結晶粒に占める割合が面積率で20%以上であると、所望の鋼板強度と伸びフランジ性が得られる。粒内の方位差が5〜14°である結晶粒の割合は、高くても構わないため、その上限は100%である。
【0062】
後述するように、仕上げ圧延の後段3段の累積ひずみを制御すると、フェライトやベイナイトの粒内に結晶方位差が生じる。この原因を以下のように考える。累積ひずみを制御することによって、オーステナイト中の転位が増え、オーステナイト粒内に高密度で転位壁ができ、いくつかのセルブロックが形成される。これらのセルブロックは、異なる結晶方位をもつ。このように高い転位密度で、かつ異なる結晶方位のセルブロックが含まれるオーステナイトから変態することによって、フェライトやベイナイトも、同じ粒内であっても、結晶方位差があり、かつ転位密度も高くなるものと考えられる。したがって、粒内の結晶方位差は、その結晶粒に含まれる転位密度と相関があると考えられる。一般的に、粒内の転位密度の増加は、強度の向上をもたらす一方、加工性を低下させる。しかし、粒内の方位差が5〜14°に制御された結晶粒では、加工性を低下させることなく強度を向上させることができる。そのため、本実施形態に係る鋼板では、粒内の方位差が5〜14°の結晶粒の割合を20%以上とする。粒内の方位差が5°未満の結晶粒は、加工性に優れるが高強度化が困難である。粒内の方位差が14°超の結晶粒は、結晶粒内で変形能が異なるので、伸びフランジ性の向上に寄与しない。
【0063】
粒内の方位差が5〜14°である結晶粒の割合は、以下の方法で測定できる。まず、鋼板表面から板厚tの1/4深さ位置(1/4t部)の圧延方向垂直断面について、圧延方向に200μm、圧延面法線方向に100μmの領域を0.2μmの測定間隔でEBSD解析して結晶方位情報を得る。ここでEBSD解析は、サーマル電界放射型走査電子顕微鏡(JEOL製JSM−7001F)とEBSD検出器(TSL製HIKARI検出器)で構成された装置を用い、200〜300点/秒の解析速度で実施する。次に、得られた結晶方位情報に対して、方位差15°以上かつ円相当径で0.3μm以上の領域を結晶粒と定義して、結晶粒の粒内の平均方位差を計算し、粒内の方位差が5〜14°である結晶粒の割合を求める。上記で定義した結晶粒や粒内の平均方位差は、EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」を用いて算出できる。
【0064】
本実施形態おける「粒内方位差」とは、結晶粒内の方位分散である「Grain Orientation Spread(GOS)」を表す。粒内方位差の値は「EBSD法及びX線回折法によるステンレス鋼の塑性変形におけるミスオリエンテーションの解析」、木村英彦他、日本機械学会論文集(A編)、71巻、712号、2005年、p.1722−1728に記載されているように、同一結晶粒内において基準となる結晶方位と全ての測定点間のミスオリエンテーションの平均値として求められる。本実施形態において、基準となる結晶方位は、同一結晶粒内の全ての測定点を平均化した方位である。GOSの値は、EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)Version 7.0.1」を用いて算出できる。
【0065】
本実施形態に係る鋼板において、フェライトやベイナイトなどの光学顕微鏡組織で観察される各組織の面積率と、粒内の方位差が5〜14°である結晶粒の割合とは、直接関係するものではない。言い換えれば、例えば、同一のフェライトの面積率及びベイナイトの面積率を有する鋼板があったとしても、粒内の方位差が5〜14°である結晶粒の割合が同一であるとは限らない。従って、フェライトの面積率及びベイナイトの面積率を制御しただけでは、本実施形態に係る鋼板に相当する特性を得ることはできない。
【0066】
本実施形態において、伸びフランジ性は鞍型成形品を用いた、鞍型伸びフランジ試験法で評価する。図1A及び図1Bは、本実施形態における鞍型伸びフランジ試験法で用いられる鞍型成形品を示す図であり、図1Aは斜視図、図1Bは平面図である。鞍型伸びフランジ試験法では、具体的には、図1A及び図1Bに示すような直線部と円弧部とからなる伸びフランジ形状を模擬した鞍型成形品1をプレス加工し、そのときの限界成形高さを用いて伸びフランジ性を評価する。本実施形態における鞍型伸びフランジ試験法では、コーナー部2の曲率半径Rを50〜60mm、コーナー部2の開き角θを120°とした鞍型成形品1を用いて、コーナー部2を打ち抜く際のクリアランスを11%としたときの限界成形高さH(mm)を測定する。ここで、クリアランスとは、打ち抜きダイスとパンチの間隙と試験片の厚さとの比を示す。クリアランスは、実際には打ち抜き工具と板厚の組み合わせによって決まるので、11%とは、10.5〜11.5%の範囲を満足することを意味する。限界成形高さHの判定は、成形後に目視にて板厚の1/3以上の長さを有するクラックの存在の有無を観察し、クラックが存在しない限界の成形高さとする。
【0067】
従来、伸びフランジ成形性に対応した試験法として用いられている穴広げ試験は、周方向のひずみがほとんど分布せずに破断に至る。このため、実際の伸びフランジ成形時とは破断部周辺のひずみや応力勾配が異なる。また、穴広げ試験は、板厚貫通の破断が発生した時点での評価となるなど、本来の伸びフランジ成形を反映した評価になっていない。一方、本実施形態で用いた鞍型伸びフランジ試験では、ひずみ分布を考慮した伸びフランジ性を評価できるため、本来の伸びフランジ成形を反映した評価が可能である。
【0068】
本実施形態に係る鋼板によれば、480MPa以上の引張強度が得られる。つまり、優れた引張強度が得られる。引張強度の上限は、特に限定されない。ただし、本実施形態における成分範囲において、実質的な引張強度の上限は1180MPa程度である。引張強度は、JIS−Z2201に記載の5号試験片を作製し、JIS−Z2241に記載の試験方法に従って引張試験を行うことによって、測定することができる。
【0069】
本実施形態に係る鋼板によれば、380MPa以上の降伏強度が得られる。つまり、優れた降伏強度が得られる。降伏強度の上限は、特に限定されない。ただし、本実施形態における成分範囲において、実質的な降伏強度の上限は900MPa程度である。降伏強度も、JIS−Z2201に記載の5号試験片を作製し、JIS−Z2241に記載の試験方法に従って引張試験を行うことによって、測定することができる。
【0070】
本実施形態に係る鋼板によれば、0.80以上の降伏比(引張強度と降伏強度との比)が得られる。つまり、優れた降伏比が得られる。降伏比の上限は、特に限定されない。ただし、本実施形態における成分範囲において、実質的な降伏比の上限は0.96程度である。
【0071】
本実施形態に係る鋼板によれば、19500mm・MPa以上の引張強度と鞍型伸びフランジ試験における限界成形高さとの積が得られる。つまり、優れた伸びフランジ性が得られる。この積の上限は、特に限定されない。ただし、本実施形態における成分範囲において、実質的なこの積の上限は25000mm・MPa程度である。
【0072】
本実施形態の鋼板の表面に、めっき層が形成されていてもよい。つまり、本発明の他の実施形態としてめっき鋼板が挙げられる。めっき層は、例えば電気めっき層、溶融めっき層又は合金化溶融めっき層である。溶融めっき層及び合金化溶融めっき層としては、例えば、亜鉛及びアルミニウムの少なくともいずれか一方からなる層が挙げられる。具体的には、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、溶融アルミニウムめっき層、合金化溶融アルミニウムめっき層、溶融Zn−Alめっき層、及び合金化溶融Zn−Alめっき層などが挙げられる。特に、めっきのし易さや防食性の観点から、溶融亜鉛めっき層及び合金化溶融亜鉛めっき層が好ましい。
【0073】
溶融めっき鋼板や合金化溶融めっき鋼板は、前述した本実施形態に係る鋼板に対して溶融めっき又は合金化溶融めっきを施すことによって製造される。ここで、合金化溶融めっきとは、溶融めっきを施して表面に溶融めっき層を形成し、次いで、合金化処理を施して溶融めっき層を合金化溶融めっき層とすることを言う。溶融めっき鋼板や合金化溶融めっき鋼板は、本実施形態に係る鋼板を有し、かつ表面に溶融めっき層や合金化溶融めっき層が設けられているため、本実施形態に係る鋼板の作用効果と共に、優れた防錆性が達成できる。めっきを施す前に、プレめっきとして、Ni等を表面につけてもよい。
【0074】
本発明の実施形態に係るめっき鋼板は、鋼板の表面にめっき層が形成されているので、優れた防錆性を有する。したがって、例えば、本実施形態のめっき鋼板を用いて、自動車の部材を薄肉化した場合に、部材の腐食により自動車の使用寿命が短くなることを防止できる。
【0075】
次に、本発明の実施形態に係る鋼板を製造する方法について説明する。この方法では、熱間圧延、第1の冷却、第2の冷却、第1のスキンパス圧延、焼鈍及び第2のスキンパス圧延をこの順で行う。
【0076】
「熱間圧延」
熱間圧延は、粗圧延と仕上げ圧延とを含む。熱間圧延では、上述した化学成分を有するスラブ(鋼片)を加熱し、粗圧延を行う。スラブ加熱温度は、下記式(1)で表されるSRTmin℃以上1260℃以下とする。
SRTmin=[7000/{2.75−log([Ti]×[C])}−273)+10000/{4.29−log([Nb]×[C])}−273)]/2・・・(1)
ここで、式(1)中の[Ti]、[Nb]、[C]は、質量%でのTi、Nb、Cの含有量を示す。
【0077】
スラブ加熱温度がSRTmin℃未満であると、Ti及び/又はNbが十分に溶体化しない。スラブ加熱時にTi及び/又はNbが溶体化しないと、Ti及び/又はNbを炭化物(TiC、NbC)として微細析出させて、析出強化により鋼の強度を向上させることが困難となる。また、スラブ加熱温度がSRTmin℃未満であると、炭化物(TiC、NbC)の形成によってCを固定して、バーリング性にとって有害なセメンタイトの生成を抑制することが困難となる。また、スラブ加熱温度がSRTmin℃未満であると、粒内の結晶方位差が5〜14°の結晶粒の割合が不足しやすい。このため、スラブ加熱温度はSRTmin℃以上とする。一方、スラブ加熱温度が1260℃超であると、スケールオフにより歩留が低下する。このため、スラブ加熱温度は1260℃以下とする。
【0078】
仕上げ圧延により熱延鋼板が得られる。粒内の方位差が5〜14°である結晶粒の割合を20%以上にするために、仕上げ圧延において後段3段(最終3パス)での累積ひずみを0.5〜0.6とした上で、後述する冷却を行う。これは、以下に示す理由による。粒内の方位差が5〜14°である結晶粒は、比較的低温にてパラ平衡状態で変態することにより生成する。このため、熱間圧延において変態前のオーステナイトの転位密度をある範囲に限定するとともに、その後の冷却速度をある範囲に限定することによって、粒内の方位差が5〜14°である結晶粒の生成を制御できる。
【0079】
すなわち、仕上げ圧延の後段3段での累積ひずみ及びその後の冷却を制御することで、粒内の方位差が5〜14°である結晶粒の核生成頻度及びその後の成長速度を制御できる。その結果、冷却後に得られる鋼板における粒内の方位差が5〜14°である結晶粒の面積率を制御できる。より具体的には、仕上げ圧延によって導入されるオーステナイトの転位密度が主に核生成頻度に関わり、圧延後の冷却速度が主に成長速度に関わる。
【0080】
仕上げ圧延の後段3段の累積ひずみが0.5未満では、導入されるオーステナイトの転位密度が十分でなく、粒内の方位差が5〜14°である結晶粒の割合が20%未満となる。このため、後段3段の累積ひずみは0.5以上とする。一方、仕上げ圧延の後段3段の累積ひずみが0.6を超えると、熱間圧延中にオーステナイトの再結晶が起こり、変態時の蓄積転位密度が低下する。この結果、粒内の方位差が5〜14°である結晶粒の割合が20%未満となる。このため、後段3段の累積ひずみは0.6以下とする。
【0081】
仕上げ圧延の後段3段の累積ひずみ(εeff.)は、以下の式(2)によって求められる。
εeff.=Σεi(t,T)・・・(2)
ここで、
εi(t,T)=εi0/exp{(t/τR)2/3}、
τR=τ0・exp(Q/RT)、
τ0=8.46×10−9
Q=183200J、
R=8.314J/K・mol、であり、
εi0は圧下時の対数ひずみを示し、tは当該パスでの冷却直前までの累積時間を示し、Tは当該パスでの圧延温度を示す。
【0082】
圧延終了温度をAr℃未満にすると、変態前のオーステナイトの転位密度が過度に高まり、粒内の方位差が5〜14°である結晶粒を20%以上とすることが困難となる。このため、仕上げ圧延の終了温度はAr℃以上とする。
【0083】
仕上げ圧延は、複数の圧延機を直線的に配置し、1方向に連続圧延して所定の厚みを得るタンデム圧延機を用いて行うことが好ましい。また、タンデム圧延機を用いて仕上げ圧延を行う場合、圧延機と圧延機との間で冷却(スタンド間冷却)を行って、仕上げ圧延中の鋼板温度がAr℃以上〜Ar+150℃以下の範囲となるように制御する。仕上げ圧延時の鋼板の最高温度がAr+150℃を超えると、粒径が大きくなりすぎるために靭性が劣化することが懸念される。
【0084】
上記のような条件の熱間圧延を行うことで、変態前のオーステナイトの転位密度範囲を限定し、粒内の方位差が5〜14°である結晶粒を所望の割合で得ることができる。
【0085】
Arは、鋼板の化学成分に基づき、圧下による変態点への影響を考慮した下記式(3)で算出する。
Ar=970−325×[C]+33×[Si]+287×[P]+40×[Al]−92×([Mn]+[Mo]+[Cu])−46×([Cr]+[Ni])・・・(3)
ここで、[C]、[Si]、[P]、[Al]、[Mn]、[Mo]、[Cu]、[Cr]、[Ni]は、それぞれ、C、Si、P、Al、Mn、Mo、Cu、Cr、Niの質量%での含有量を示す。含有されていない元素については、0%として計算する。
【0086】
「第1の冷却、第2の冷却」
この製造方法では、仕上げ圧延の完了後、熱延鋼板の第1の冷却及び第2の冷却をこの順で行う。第1の冷却では、10℃/s以上の冷却速度で600〜750℃の第1の温度域まで熱延鋼板を冷却する。第2の冷却では、30℃/s以上の冷却速度で450〜630℃の第2の温度域まで熱延鋼板を冷却する。第1の冷却と第2の冷却との間には、第1の温度域に熱延鋼板を0秒超10秒以下保持する。
【0087】
第1の冷却の冷却速度が10℃/s未満であると、粒内の結晶方位差が5〜14°の結晶粒の割合が不足する。また、第1の冷却の冷却停止温度が600℃未満であると、面積率で5%以上のフェライトを得ることが困難となるとともに、粒内の結晶方位差が5〜14°の結晶粒の割合が不足する。また、第1の冷却の冷却停止温度が750℃超であると、面積率で40%以上のベイナイトを得ることが困難となるとともに、粒内の結晶方位差が5〜14°の結晶粒の割合が不足する。高いベイナイト分率を得るという観点から、第1の冷却の冷却停止温度は、750℃以下とし、好ましくは740℃以下とし、より好ましくは730℃以下とし、さらに好ましくは720℃以下とする。
【0088】
600〜750℃での保持時間が10秒を超えると、バーリング性に有害なセメンタイトが生成しやすくなる。また、600〜750℃での保持時間が10秒を超えると、面積率で40%以上のベイナイトを得ることが困難となる場合が多く、さらに粒内の結晶方位差が5〜14°の結晶粒の割合が不足する。高いベイナイト分率を得るという観点から、保持時間は、10.0秒以下とし、好ましくは9.5秒以下とし、より好ましくは9.0秒以下とし、さらに好ましくは8.5秒以下とする。600〜750℃での保持時間が0秒であると、フェライトを面積率で5%以上得ることが困難になるとともに、粒内の結晶方位差が5〜14°の結晶粒の割合が不足する。
【0089】
第2の冷却の冷却速度が30℃/s未満であると、バーリング性に有害なセメンタイトが生成しやすくなるとともに、粒内の結晶方位差が5〜14°の結晶粒の割合が不足する。第2の冷却の冷却停止温度が450℃未満であると、面積率で5%以上のフェライトを得ることが困難となるとともに、粒内の結晶方位差が5〜14°の結晶粒の割合が不足する。一方、第2の冷却の冷却停止温度が630℃超であると、粒内の方位差が5〜14°である結晶粒の割合が不足したり、面積率で40%以上のベイナイトを得ることが困難となったりする場合が多い。高いベイナイト分率を得るという観点から、第2の冷却の冷却停止温度は、630℃以下とし、好ましくは610℃以下とし、より好ましくは590℃以下とし、さらに好ましくは570℃以下とする。
【0090】
第1の冷却及び第2の冷却における冷却速度の上限は、特に限定しないが、冷却設備の設備能力を考慮して200℃/s以下としてもよい。
【0091】
第2の冷却後に熱延鋼板を巻き取る。巻取温度を630℃以下とすることにより、鋼板の段階(熱間圧延から巻取りまでの段階)での合金炭窒化物の析出を抑制する。
【0092】
以上のように、熱延の加熱から、冷却履歴や、さらに巻取温度を高度に制御することによって、所望の熱延原板を達成できる。
【0093】
この熱延原板は、面積率で、5〜60%のフェライト及び40〜95%のベイナイトを含む組織を有し、方位差が15°以上の粒界によって囲まれ、かつ円相当径が0.3μm以上である領域を結晶粒と定義した場合に、粒内方位差が5〜14°である結晶粒の全結晶粒に占める割合が面積率で20〜100%である。
【0094】
この製造方法では、熱間圧延の条件を制御することにより、オーステナイトに加工転位を導入する。そうした上で、冷却条件を制御することにより、導入された加工転位を適度に残すことが重要である。すなわち、すなわち、熱間圧延の条件又は冷却の条件を単独で制御したとしても、所望の熱延原板を得ることはできず、熱間圧延及び冷却の条件の両方を適切に制御することが重要である。上記以外の条件については、例えば、第2の冷却の後に公知の方法で巻き取るなど、公知の方法を用いればよく、特に限定しない。
【0095】
「第1のスキンパス圧延」
第1のスキンパス圧延では、熱延鋼板を酸洗し、酸洗後の鋼板に対して0.1〜5.0%の伸び率でスキンパス圧延を施す。鋼板にスキンパス圧延を施すことにより、鋼板表面にひずみを付与することができる。後工程の焼鈍中に、このひずみを介して転位上に合金炭窒化物が核生成し易くなり、表層が硬化する。スキンパス圧延の伸び率が0.1%未満の場合、十分なひずみを付与できず、表層硬度Hvsが上昇しない。一方、スキンパス圧延の伸び率が5.0%を超える場合、表層のみでなく鋼板中央部でもひずみが付与され、鋼板の加工性が劣る。通常の鋼板であれば、その後の焼鈍によりフェライトが再結晶し、伸びや穴広げ性が改善する。しかし、本実施形態における化学組成を有し、かつ630℃以下で巻き取りが行われた熱延鋼板中には、Ti、Nb、Mo、Vが固溶しており、これらが焼鈍によるフェライト再結晶を著しく遅延させ、焼鈍後の伸びと穴広げ性が改善しない。このため、スキンパス圧延の伸び率は5.0%以下とする。このスキンパス圧延の伸び率に応じてひずみが付与され、疲労特性の改善の観点からは、鋼板表層の歪量に応じて焼鈍中の鋼板表層付近での析出強化が進行する。このため、伸び率は0.4%以上とすることが好ましい。また、鋼板の加工性の観点からは、鋼板内部へのひずみの付与による加工性の劣化を防ぐために、伸び率は2.0%以下とすることが好ましい。スキンパス圧延の伸び率が0.1〜5.0%の場合、Hvs/Hvcが改善し、0.85以上となることが分かる。また、スキンパス圧延を行わない場合(スキンパス圧延の伸び率が0%)又はスキンパス圧延の伸び率が5.0%超を超える場合、Hvs/Hvc<0.85となることが分かる。
【0096】
第1のスキンパス圧延の伸び率が0.1〜5.0%の場合、優れた伸びが得られる。また、第1のスキンパス圧延の伸び率が5.0%を超える場合、伸びが劣り、プレス成形性が劣る。第1のスキンパス圧延の伸び率が0%又は5%を超える場合、疲労強度比が劣る。
【0097】
第1のスキンパス圧延の伸び率が0.1〜5.0%の場合、引張強度がほぼ同じであれば、ほぼ同じ伸びと疲労強度比が得られることが分かる。第1のスキンパス圧延の伸び率が5%を超える場合(高スキンパス領域)、引張強度が490MPa以上であっても、伸びが低く、さらに疲労強度比も低いことが分かる。
【0098】
「焼鈍」
第1のスキンパス圧延を施した後に、鋼板を焼鈍する。なお、形状矯正を目的にレベラー等を使用しても構わない。焼鈍を行う目的は、硬質相の焼き戻しを行うことではなく、鋼板中に固溶していたTi、Nb、Mo、Vを合金炭窒化物として析出させることである。従って、焼鈍工程での最高加熱温度(Tmax)及び保持時間の制御が重要となる。最高加熱温度及び保持時間を所定の範囲内に制御することにより、引張強度と降伏応力を高めるだけでなく、表層硬度を向上させ、疲労特性と衝突特性の改善を行う。焼鈍中の温度と保持時間が不適であると、炭窒化物が析出しないか、あるいは析出炭窒化物の粗大化が起こるため、最高加熱温度及び保持時間を以下のように限定する。
【0099】
焼鈍中の最高加熱温度は600〜750℃の範囲内に設定する。最高加熱温度が600℃未満では、合金炭窒化物の析出に要する時間が非常に長くなり、連続焼鈍設備において製造することが困難となる。このため、最高加熱温度は600℃以上とする。また、最高加熱温度が750℃超では、合金炭窒化物の粗大化が起こり、析出強化による強度増加が十分には得られない。また、最高加熱温度がAc1点以上の場合、フェライトとオーステナイトとの2相域となり、析出強化による強度増加が十分に得られなくなる。このため、最高加熱温度は750℃以下とする。上記のように、この焼鈍の主目的は、硬質相の焼き戻しを行うことではなく、鋼板中に固溶していたTiやNbを析出させることにある。この際、最終的な強度は、鋼材の合金成分や鋼板のミクロ組織中の各相の分率により決定されるが、表層硬化による疲労特性の改善と降伏比の向上は、鋼材の合金成分や鋼板のミクロ組織中の各相の分率になんら影響されるものではない。
【0100】
本発明者らは、鋭意実験を行った結果、焼鈍中の600℃以上での保持時間(t)が、焼鈍中の最高加熱温度(Tmax)に対して以下の式(4)、(5)の関係を満たすことにより、高い降伏応力と0.85以上のHvs/Hvcを満足できることを見出した。
530−0.7×Tmax ≦ t ≦ 3600−3.9×Tmax・・・(4)
t>0・・・(5)
【0101】
最高加熱温度が600〜750℃の範囲内の場合、Hvs/Hvcが0.85以上となる。本実施形態に係る鋼板は、いずれも600℃以上での保持時間(t)が式(4)、(5)の範囲を満たす条件で製造されている。本実施形態に係る鋼板は、保持時間(t)が式(4)、(5)の範囲を満たす場合、Hvs/Hvcが0.85以上となる。本実施形態に係る鋼板は、Hvs/Hvcが0.85以上の場合、疲労強度比が0.45以上となる。最高加熱温度が600〜750℃の範囲内である場合、析出強化により表層が硬化し、Hvs/Hvcが0.85以上となる。最高加熱温度及び600℃以上での保持時間を上記した範囲内に設定することによって、鋼板中心部の硬度に比べて、表層が十分硬化する。これにより、本実施形態に係る鋼板は疲労強度比が0.45以上となる。これは、表層の硬化により、疲労亀裂の発生を遅らせることが出来るからであり、表層硬度が高い程、その効果は大きくなる。
【0102】
「第2のスキンパス圧延」
焼鈍後には、鋼板に対して第2のスキンパス圧延を施す。これにより、疲労特性をさらに改善できる。第2のスキンパス圧延では、伸び率を0.2〜2.0%とし、好ましくは0.5〜1.0%とする。伸び率が0.2%未満では、十分な表面粗度の改善と表層のみの加工硬化が得られず、疲労特性が十分に改善しない場合がある。このため、第2のスキンパス圧延の伸び率は0.2%以上とする。一方、伸び率が2.0%を超えると、鋼板が加工硬化し過ぎて、プレス成形性が劣る場合がある。このため、第2のスキンパス圧延の伸び率は2.0%以下とする。
【0103】
このようにして本実施形態に係る鋼板を得ることができる。つまり、合金元素を含む成分組成と製造条件を詳細に制御することによって、従来では達成できなかった優れた成形性、疲労特性及び衝突安全性を有し、かつ引張強度が480MPa以上の高強度鋼板を製造できる。
【0104】
なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
【実施例】
【0105】
次に、本発明の実施例について説明する。実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
【0106】
表1及び表2に示す化学組成を有する鋼を溶製して鋼片を製造し、得られた鋼片を表3及び表4に示す加熱温度に加熱して粗圧延を行い、引き続いて、表3及び表4に示す条件で仕上げ圧延を行った。仕上げ圧延後の熱延鋼板の板厚は、2.2〜3.4mmであった。表2中の空欄は、分析値が検出限界未満であったことを意味する。表1及び表2中の下線は、その数値が本発明の範囲から外れていることを示し、表4中の下線は、本発明の鋼板の製造に適した範囲から外れていることを示す。
【0107】
【表1】
【0108】
【表2】
【0109】
【表3】
【0110】
【表4】
【0111】
Ar(℃)は表1及び表2に示した成分より式(3)を用いて求めた。
Ar=970−325×[C]+33×[Si]+287×[P]+40×[Al]−92×([Mn]+[Mo]+[Cu])−46×([Cr]+[Ni])・・・(3)
【0112】
仕上げ3段の累積ひずみは式(2)より求めた。
εeff.=Σεi(t,T)・・・(2)
ここで、
εi(t,T)=εi0/exp{(t/τR)2/3}、
τR=τ0・exp(Q/RT)、
τ0=8.46×10−9
Q=183200J、
R=8.314J/K・mol、であり、
εi0は圧下時の対数ひずみを示し、tは当該パスでの冷却直前までの累積時間を示し、Tは当該パスでの圧延温度を示す。
【0113】
次いで、表5及び表6に示す条件で熱延鋼板の第1の冷却、第1の温度域での保持、第2の冷却、第1のスキンパス圧延、焼鈍及び第2のスキンパス圧延を行い、試験No.1〜46の熱延鋼板を得た。焼鈍の昇温速度を5℃/sとし、最高加熱温度からの冷却速度を5℃/sとした。また、いくつかの実験例については、焼鈍に引き続き、溶融亜鉛めっき、及び合金化処理を行い、溶融亜鉛めっき鋼板(GIと記載)や合金化溶融亜鉛めっき鋼板(GAと記載)を製造した。なお、溶融亜鉛めっき鋼板を製造する場合、第2のスキンパスは、溶融亜鉛めっきの後に行い、合金溶融亜鉛めっき鋼板を製造する場合、第2のスキンパスは、合金化処理の後に行った。表6中の下線は、本発明の鋼板の製造に適した範囲から外れていることを示す。
【0114】
【表5】
【0115】
【表6】
【0116】
そして、各鋼板について、以下に示す方法により、フェライト、ベイナイト、マルテンサイト、パーライトの組織分率(面積率)、粒内の方位差が5〜14°である結晶粒の割合、析出物密度及び転位密度を求めた。その結果を表7及び表8に示す。マルテンサイト及び/またパーライトが含まれる場合、表中の「残部組織」の欄に記載した。表8中の下線は、その数値が本発明の範囲から外れていることを示す。
【0117】
「フェライト、ベイナイト、マルテンサイト、パーライトの組織分率(面積率)」
まず、鋼板から採取した試料をナイタールでエッチングした。エッチング後に光学顕微鏡を用いて板厚の1/4深さの位置において300μm×300μmの視野で得られた組織写真に対し、画像解析を行った。この画像解析により、フェライトの面積率、パーライトの面積率、並びにベイナイト及びマルテンサイトの合計面積率を得た。次いで、レペラ腐食した試料を用い、光学顕微鏡を用いて板厚の1/4深さの位置において300μm×300μmの視野で得られた組織写真に対し、画像解析を行った。この画像解析により、残留オーステナイト及びマルテンサイトの合計面積率を得た。さらに、圧延面法線方向から板厚の1/4深さまで面削した試料を用い、X線回折測定により残留オーステナイトの体積率を求めた。残留オーステナイトの体積率は、面積率と同等であるので、これを残留オーステナイトの面積率とした。そして、残留オーステナイト及びマルテンサイトの合計面積率から残留オーステナイトの面積率を減じることでマルテンサイトの面積率を得、ベイナイト及びマルテンサイトの合計面積率からマルテンサイトの面積率を減じることでベイナイトの面積率を得た。このようにして、フェライト、ベイナイト、マルテンサイト、残留オーステナイト及びパーライトのそれぞれの面積率を得た。
【0118】
「粒内の方位差が5〜14°である結晶粒の割合」
鋼板表面から板厚tの1/4深さ位置(1/4t部)の圧延方向垂直断面について、圧延方向に200μm、圧延面法線方向に100μmの領域を0.2μmの測定間隔でEBSD解析して結晶方位情報を得た。ここで、EBSD解析は、サーマル電界放射型走査電子顕微鏡(JEOL製JSM−7001F)とEBSD検出器(TSL製HIKARI検出器)で構成された装置を用い、200〜300点/秒の解析速度で実施した。次に、得られた結晶方位情報に対して、方位差15°以上かつ円相当径で0.3μm以上の領域を結晶粒と定義し、結晶粒の粒内の平均方位差を計算し、粒内の方位差が5〜14°である結晶粒の割合を求めた。上記で定義した結晶粒や粒内の平均方位差は、EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」を用いて算出した。
【0119】
「析出物密度」
特開2004−317203号公報に記載の方法に従って作製されたレプリカ試料を透過型電子顕微鏡にて観察することにより、析出物を観察した。視野は5000倍〜100000倍の倍率で設定し、3視野以上から、10nm以下のTi(C,N)及びNb(C,N)の個数をカウントした。そして、電解前後での重量変化から電解重量を求め、比重7.8ton/mから重量を体積に換算し、カウントした個数を体積で除することによって、合計析出物密度を算出した。
【0120】
「転位密度」
CAMP−ISIJ Vol.17(2004)p396に記載の「X線回折を利用した転位密度の評価方法」に準じて転位密度を測定し、(110)、(211)、(220)の半価幅から平均転位密度を算出した。
【0121】
【表7】
【0122】
【表8】
【0123】
次に、引張試験において、降伏強度と引張強度とを求め、鞍型伸びフランジ試験によって、限界成形高さを求めた。また、引張強度(MPa)と限界成形高さ(mm)との積を伸びフランジ性の指標として評価を行い、積が19500mm・MPa以上の場合に、伸びフランジ性に優れると判断した。
【0124】
引張試験は、JIS5号引張試験片を圧延方向に対して直角方向から採取し、この試験片を用いて、JISZ2241に準じて試験を行った。引張強さの強度レベルに応じた伸びの合格範囲を下記の式(6)により定め、伸び(EL)を評価した。具体的には、伸びの合格範囲は、引張強さとのバランスを考慮して下記の式(6)の右辺の値以上の範囲とした。
伸び[%]≧30−0.02×引張強度[MPa]・・・(6)
【0125】
また、鞍型伸びフランジ試験は、コーナー部の曲率半径Rを60mm、コーナー部の開き角θを120°とした鞍型成型品を用いて、コーナー部を打ち抜く際のクリアランスを11%として行った。また、限界成形高さは、成形後に目視にて板厚の1/3以上の長さを有するクラックの存在の有無を観察し、クラックが存在しない限界の成形高さとした。
【0126】
硬度の評価に関し、株式会社明石製作所製MVK−Eマイクロビッカース硬度計を用いて、鋼板の断面硬度を測定した。鋼板表層の硬度(Hvs)として、表面から内部へ深さ20μmの位置の硬度を測定した。また、鋼板中心部の硬度(Hvc)として、鋼板表面から板厚の1/4内側の位置での硬度を測定した。それぞれの位置にて、硬度測定を3回行い、測定値の平均値を硬度(Hvs、Hvc)とした(n=3の平均値)。なお、負荷荷重を50gfに設定した。
【0127】
疲労強度は、JIS−Z2275に準拠し、シェンク式平面曲げ疲労試験機を用いて測定した。測定時の応力負荷は、両振りで試験の速度を30Hzとして設定した。また、前記条件に従い、シェンク式平面曲げ疲労試験機により、107サイクルでの疲労強度を測定した。そして、107サイクルでの疲労強度を、前述した引張試験により測定された引張強度で除して疲労強度比を算出した。疲労強度比は、0.45以上を合格とした。
【0128】
これらの結果を表9及び表10に示す。表10中の下線は、その数値が望ましい範囲から外れていることを示す。
【0129】
【表9】
【0130】
【表10】
【0131】
本発明例(試験No.1〜21)では、480MPa以上の引張強度、0.80以上の降伏比(引張強度と降伏強度との比)、19500mm・MPa以上の引張強度と鞍型伸びフランジ試験における限界成形高さとの積、及び0.45以上の疲労強度比が得られた。
【0132】
試験No.22〜27は、化学成分が本発明の範囲外の比較例である。試験No.22〜24は、伸びフランジ性の指標が目標値を満足しなかった。試験No.25は、Ti及びNbの合計含有量並びにC含有量が少ないため、伸びフランジ性の指標及び引張強度が目標値を満足しなかった。試験No.26は、Ti及びNbの合計含有量が多いため、加工性が劣化し、圧延中に割れが発生した。試験No.27は、Ti及びNbの合計含有量が多いため、伸びフランジ性の指標が目標値を満足しなかった。
【0133】
試験No.28〜46は、製造条件が望ましい範囲から外れた結果、光学顕微鏡で観察される組織、粒内の方位差が5〜14°である結晶粒の割合、析出物密度、硬度比のいずれか1つ又は複数が本発明の範囲を満たさなかった比較例である。試験No.28〜40は、粒内の方位差が5〜14°である結晶粒の割合が少ないため、伸びフランジ性の指標や疲労強度比が目標値を満足しなかった。試験No.41、43〜46は、析出物密度が少なかったり、硬度比が低かったりするため、疲労強度比が目標値を満足しなかった。
【産業上の利用可能性】
【0134】
本発明によれば、高強度でありながら厳しい伸びフランジ性が要求される部材への適用が可能な、伸びフランジ性および疲労特性に優れた高強度の鋼板を提供することができる。これらの鋼板は、自動車の燃費向上等に寄与するため、産業上の利用可能性が高い。
図1A
図1B