特許第6356420号(P6356420)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ スリーエム イノベイティブ プロパティズ カンパニーの特許一覧

特許6356420パターン付き勾配ポリマーフィルム及び方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6356420
(24)【登録日】2018年6月22日
(45)【発行日】2018年7月11日
(54)【発明の名称】パターン付き勾配ポリマーフィルム及び方法
(51)【国際特許分類】
   G02B 5/00 20060101AFI20180702BHJP
   F21S 2/00 20160101ALI20180702BHJP
   F21V 3/00 20150101ALI20180702BHJP
   G02B 5/02 20060101ALI20180702BHJP
   G02B 5/136 20060101ALI20180702BHJP
【FI】
   G02B5/00 Z
   F21S2/00 431
   F21S2/00 491
   F21V3/00 530
   G02B5/02 B
   G02B5/136
【請求項の数】4
【全頁数】41
(21)【出願番号】特願2013-504880(P2013-504880)
(86)(22)【出願日】2010年10月22日
(65)【公表番号】特表2013-524295(P2013-524295A)
(43)【公表日】2013年6月17日
(86)【国際出願番号】US2010053654
(87)【国際公開番号】WO2011129848
(87)【国際公開日】20111020
【審査請求日】2013年10月22日
【審判番号】不服2015-18065(P2015-18065/J1)
【審判請求日】2015年10月2日
(31)【優先権主張番号】61/323,941
(32)【優先日】2010年4月14日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】505005049
【氏名又は名称】スリーエム イノベイティブ プロパティズ カンパニー
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100077517
【弁理士】
【氏名又は名称】石田 敬
(74)【代理人】
【識別番号】100087413
【弁理士】
【氏名又は名称】古賀 哲次
(74)【代理人】
【識別番号】100146466
【弁理士】
【氏名又は名称】高橋 正俊
(74)【代理人】
【識別番号】100173107
【弁理士】
【氏名又は名称】胡田 尚則
(74)【代理人】
【識別番号】100128495
【弁理士】
【氏名又は名称】出野 知
(72)【発明者】
【氏名】ウィリアム ブレイク コルブ
(72)【発明者】
【氏名】マイケル ベントン フリー
(72)【発明者】
【氏名】ブラント ユー.コルブ
(72)【発明者】
【氏名】ルー フェイ
(72)【発明者】
【氏名】ジョン エー.ウィートレイ
【合議体】
【審判長】 中田 誠
【審判官】 樋口 信宏
【審判官】 河原 正
(56)【参考文献】
【文献】 特開2006−124499(JP,A)
【文献】 特開2007−308544(JP,A)
【文献】 特開平11−71476(JP,A)
【文献】 特開2001−83347(JP,A)
【文献】 特開2008−192527(JP,A)
【文献】 特開2009−86436(JP,A)
【文献】 特開2010−3646(JP,A)
【文献】 特開2007−264343(JP,A)
【文献】 特開平4−121701(JP,A)
【文献】 特開平10−111401(JP,A)
【文献】 特開2003−43215(JP,A)
【文献】 特開平4−121701(JP,A)
【文献】 特表2011−516917(JP,A)
【文献】 特開平11−281802(JP,A)
【文献】 特表2003−526811(JP,A)
【文献】 特開2006−86416(JP,A)
【文献】 特開2004−182490(JP,A)
【文献】 国際公開第2009/123596(WO,A1)
【文献】 特開2004−272153(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 5/00
F21S 2/00
F21V 3/00
G02B 5/02
G02B 5/136
(57)【特許請求の範囲】
【請求項1】
バインダーと、
複数のナノボイドであって、その複数のナノボイドの少なくとも60%が70nm以下のボイドのサイズを有するナノボイドと、を備える、勾配ポリマーフィルムであって、ここで、複数のナノボイドの局所的体積分率が前記勾配ポリマーフィルムの横断面にわたって変化し前記勾配ポリマーフィルムの厚さが2000nm以上であり、前記勾配ポリマーフィルムはボイドのネットワークを有し、かつ、前記勾配ポリマーフィルム中の複数のボイドの体積分率が50%以上である、勾配ポリマーフィルム。
【請求項2】
バインダーと、
複数のナノボイドであって、その複数のナノボイドの少なくとも60%が70nm以下のボイドのサイズを有するナノボイドと、を備える勾配ポリマーフィルムであって、ここで、前記勾配ポリマーフィルムの第一領域に近接する複数のナノボイドの第一局所的体積分率が、前記勾配ポリマーフィルムの横断面に沿って、前記第一領域に隣接する第二領域に近接する複数のナノボイドの第二局所的体積分率よりも大きく前記勾配ポリマーフィルムの厚さが2000nm以上であり、前記勾配ポリマーフィルムはボイドのネットワークを有し、かつ、前記勾配ポリマーフィルム中の複数のボイドの体積分率が50%以上である、勾配ポリマーフィルム。
【請求項3】
基材と、
前記基材上に配置される請求項1又は請求項2に記載の勾配ポリマーフィルムと、を備える、光学構造体。
【請求項4】
光ガイド;および
その光ガイド上に配置された勾配ポリマーフィルムを含むパターン付き光ガイドであって、
前記勾配ポリマーフィルムがバインダーと複数のナノボイドであって、その複数のナノボイドの少なくとも60%が70nm以下のボイドのサイズを有するナノボイドとを備え、ここで、前記勾配ポリマーフィルムの第一領域に近接する複数のナノボイドの第一局所的体積分率が、前記勾配ポリマーフィルムの横断面に沿って、前記第一領域に隣接する第二領域に近接する複数のナノボイドの第二局所的体積分率よりも大きく前記勾配ポリマーフィルムの厚さが2000nm以上であり、前記勾配ポリマーフィルムはボイドのネットワークを有し、かつ、前記勾配ポリマーフィルム中の複数のボイドの体積分率が50%以上である、パターン付き光ガイド。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本願は、参照によって本明細書に組み込まれる2009年4月15日出願の次の米国特許出願、つまり、米国仮特許出願第61/169521号「光学構造体及びそれを組み込んだディスプレイシステム(Optical Construction and Display System Incorporating Same)」(代理人整理番号第65354US002号)、米国仮特許出願第61/169532号「再帰反射光学構造体(Retroreflecting Optical Construction)」(代理人整理番号第65355US002号)、米国仮特許出願第61/169549号「光学的結合を防止するための光学フィルム(Optical Film for Preventing Optical Coupling)」(代理人整理番号第65356US002号)、米国仮特許出願第61/169555号「バックライト及びそのバックライトを組み込んだディスプレイシステム(Backlight and Display System Incorporating Same)」(代理人整理番号第65357US002号)、米国仮特許出願第61/169427号「欠陥を低減させたコーティングのための方法及び装置(Process and Apparatus for Coating with Reduced Defects)」(代理人整理番号第65185US002号)及び米国仮特許出願第61/169429号「ナノボイド物品のための方法及び装置(Process and Apparatus for a Nanovoided Article)」(代理人整理番号第65046US002号)に関するものである。
【0002】
本願はまた、参照によって本明細書に組み込まれる2009年10月23日出願の次の米国特許出願、つまり、米国特許仮出願第61/254674号「勾配ナノボイド物品のための方法(Process for Gradient Nanovoided Article)」(代理人整理番号第65766US002号)、米国特許仮出願第61/254691号「大きな軸外れ反射を有する浸漬反射偏光子(Immersed Reflective Polarizer with High Off-Axis Reflectivity)」(代理人整理番号第65809US002号)、米国特許仮出願第61/254692号「選択された入射面に角閉じ込めを有する、浸漬された反射偏光子(Immersed Reflective Polarizer with Angular Confinement in Selected Planes of Incidence)」(代理人整理番号第65900US002号)、米国特許仮出願第61/254672号「光源及びその光源を組み込んでいるディスプレイ(Light Source and Display System Incorporating Same)」(代理人整理番号第65782US002号)及び米国特許仮出願第61/254673号「勾配低屈折率物品及び方法(Gradient Low Index Article and Method)」(代理人整理番号第65716US002号)に関するものである。
【背景技術】
【0003】
再帰反射システム又はディスプレイシステムなどの光学系は、入射光を調整するために1つ以上の光学層を利用する。多くの場合、光学層は、所望の光透過率、光学ヘイズ、光学的透明度、又は屈折率を有するものである必要がある。多くの用途において、空気層及び拡散層が光学系に組み込まれる。典型的には、空気層は全内部反射を支援し、拡散層は光拡散をもたらす。
【0004】
ナノメートルサイズの細孔又はボイド構造を有する物品は、一部の用途では、ナノボイド含有組成物(nanovoided composition)によってもたらされる光学的、物理的、又は機械的特性に基づく用途に関し有用な場合がある。例えば、ナノボイド含有物品(nanovoided article)は、細孔又はボイドを少なくとも部分的に取り囲む高分子固体ネットワーク又はマトリックスを含む。細孔又はボイドは、空気などの気体で充填される場合が多い。ナノボイド含有物品の中の細孔又はボイドの寸法は、一般に、約1ナノメートル〜約1000ナノメートルまで様々であってよい平均有効径を有しているとして記述することができる。国際純正・応用化学連合(IUPAC:The International Union of Pure and Applied Chemistry)は、ナノ細孔物質の3つのサイズカテゴリ、すなわち、ボイドが2nm未満の微細孔、2nm〜50nmのメソ細孔、及びボイドが50nmを超えるマクロ細孔を規定している。異なるサイズカテゴリのそれぞれは、ナノボイド含有物品に固有の特性をもたらすことができる。
【発明の概要】
【課題を解決するための手段】
【0005】
本開示は、広くは、パターン付き勾配ポリマーフィルム及びその製造方法に関し、より具体的には、その屈折率、ヘイズ、透過率、透明度又はこれらの組み合わせに変化を含む領域を有するパターン付き勾配光学フィルムに関する。一態様では、本開示は、バインダーと、複数のナノボイドと、を備える勾配ポリマーフィルムであって、ここで、複数のナノボイドの局所的体積分率が、勾配ポリマーフィルムの横断面にわたって変化する、勾配ポリマーフィルムを提供する。
【0006】
別の態様では、本開示は、バインダーと、複数のナノボイドと、を備える勾配ポリマーフィルムであって、ここで、勾配ポリマーフィルムの第一領域に近接する複数のナノボイドの第一局所的体積分率が、勾配ポリマーフィルムの横断面に沿って、第一領域に隣接する第二領域に近接する複数のナノボイドの第二局所的体積分率よりも大きい、勾配ポリマーフィルムを提供する。
【0007】
更に別の態様では、本開示は、基材と、その基材上に配置された勾配ポリマーフィルムと、を備える光学構造体を提供する。更に、この勾配ポリマーフィルムは、バインダーと、複数のナノボイドと、を備え、ここで、複数のナノボイドの局所的体積分率は、勾配ポリマーフィルムの横断面にわたって変化する。更に、この基材は、剥離ライナー、接着剤、体積拡散体、表面拡散体、回折拡散体、屈折拡散体、再帰反射器、吸収偏光子、反射偏光子、繊維偏光子、コレステリック偏光子、多層偏光子、ワイヤグリッド偏光子、部分反射子、体積反射子、多層高分子反射子、金属反射子、金属/誘電体多層反射子、繊維、レンズ、ミクロ構造、中実光ガイド又は中空光ガイドのうちの少なくとも1つを備える。
【0008】
更に別の態様では、本開示は、基材と、その基材上に配置された勾配ポリマーフィルムと、を備える光学構造体を提供する。更に、この勾配ポリマーフィルムは、バインダーと、複数のナノボイドと、を備え、ここで、勾配ポリマーフィルムの第一領域に近接する複数のナノボイドの第一局所的体積分率は、勾配ポリマーフィルムの横断面に沿って、第一領域に隣接する第二領域に近接する複数のナノボイドの第二局所的体積分率よりも大きい。更に、この基材は、剥離ライナー、接着剤、体積拡散体、表面拡散体、回折拡散体、屈折拡散体、再帰反射器、吸収偏光子、反射偏光子、繊維偏光子、コレステリック偏光子、多層偏光子、ワイヤグリッド偏光子、部分反射子、体積反射子、多層高分子反射子、金属反射子、金属/誘電体多層反射子、繊維、レンズ、ミクロ構造、中実光ガイド及び中空光ガイドのうちの少なくとも1つを備える。
【0009】
更に別の態様では、本開示は、勾配ポリマーフィルムのための方法であって、基材上に溶液を配置してコーティングを形成する工程であって、コーティングが重合性バインダーと溶媒とを含む、工程、コーティングの第一部分を選択的に重合して溶媒中に不溶性ポリマーマトリックスを形成する工程、コーティングから溶媒の大部分を除去する工程、第一部分に隣接するコーティングの第二部分を重合する工程と、を含む、勾配ポリマーフィルムのための方法を提供する。
【0010】
上記の概要は、本発明の開示されるそれぞれの実施形態又はすべての実現形態を説明することを目的としたものではない。以下の図面及び詳細な説明により、例示的実施形態をより詳細に例示する。
【図面の簡単な説明】
【0011】
本明細書の全体を通じ、同様の参照符合が同様の要素を示す添付の図面を参照されたい。
図1A】勾配光学フィルムの概略的側面図。
図1B】勾配光学フィルムの概略的上面図。
図1C】勾配光学フィルムの概略的上面図。
図1D】勾配光学フィルムの概略的上面図。
図1E】勾配光学フィルムの概略的上面図。
図1F】勾配光学フィルムの概略的上面図。
図1G】勾配光学フィルムの概略的上面図。
図1H】勾配光学フィルムの概略的上面図。
図1I】勾配光学フィルムの概略的上面図。
図2】光学構造体の概略的側面図。
図3】光学構造体の概略的側面図。
図4】光学構造体の概略的側面図。
図5】概略的方法。
図6A】アンペアvs透過率(%T)のグラフ。
図6B】アンペアvsヘイズ%(%H)のグラフ。
図6C】ボルトvsダウンウェブ位置のグラフ。
図6D】%T及び%H vsダウンウェブ位置のグラフ。
図6E】ボルトvsダウンウェブ位置のグラフ。
図6F】%T及び%H vsダウンウェブ位置のグラフ。
図7A】ボルトvsダウンウェブ位置のグラフ。
図7B】屈折率vsダウンウェブ位置のグラフ。
図8】パターン付き再帰反射器の概略的断面図。
図9】パターン付き光ガイドの概略的断面図。
【0012】
図面は、必ずしも縮尺に従うものではない。図面で用いられる同様の番号は同様の構成要素を示すものとする。ただし、与えられた図の構成要素を示す数字の使用は、同じ数字を付された別の図の構成要素を限定することを意図するものではないことが理解されよう。
【発明を実施するための形態】
【0013】
本開示は、広くはポリマーフィルムに関し、具体的には、いくらかの低屈折率様光学特性を呈するかないしは別の方法で光の透過、散乱、吸収、屈折又は反射と相互作用する光学フィルムに関するが、しかしながら、このポリマーフィルムはそれよりもむしろ、別の箇所に記載のように、フィルム状に生成された構造の結果として、環境と非光学的に相互作用し得ると考えられている。ある特定の実施形態では、光学フィルムは、光学フィルム、すなわち、勾配光学フィルムの横断面に沿って変化する、低屈折率様光学特性を呈することができる。フィルムの横断面は、フィルムの表面のうちの少なくとも1つに平行である面として記載することができる。一部の開示される勾配光学フィルムは、勾配光学フィルムの横断方向に沿って変化する局所的多孔性を呈する。一部の場合には、光学フィルムは、光学フィルムの厚さ方向を通しても変化できる光学特性又は局所的多孔性を呈することができる。一般に、局所的多孔性は、局所的ボイド体積分率により、又は、局所的孔径分布として、あるいは、局所的ボイド体積分率と局所的孔径分布の両方により、説明され得る。
【0014】
本開示はまた、勾配光学特性/多孔性を備えるフィルムを製造するための物品及び方法を記載する。これらのフィルムは、透過率、ヘイズ、透明度、屈折率などのような光学特性の連続クロスウェブ、ダウンウェブ、又は組み合わせた勾配を有することにより特徴付けられる。勾配パターンは、紫外線LED、シャドーマスク、制御紫外線吸収、制御乾燥又はこれらに類するもの又はこれらの組み合わせなどの硬化条件に関する時間又は空間制御により、例えば、記載の方法により作られる多孔質層を光学的にパターン付けすることにより、作り出すことができる。開示されている勾配フィルムは、例えば、中実光ガイド抽出器、中空(空気)光ガイド、繊維及びこれらに類するものなどの光ガイド可変性抽出器、例えば、特にバックライトディスプレイにおける検出及び/又はバルブ非表示に有用な勾配拡散フィルム(すなわち、ヘイズ、透明度又は透過率の変化)、可変性拡散体、可変性吸収体、高反射率反射子(ESR)などの可変性反射子、並びに、これらに類するものといった用途で使用することができる。
【0015】
本開示の勾配光学フィルムの一部分は、光学フィルムの横断面にわたって変化し得る、約5%未満の光学ヘイズ、及び約1.35未満である有効屈折率などの、低光学ヘイズと低有効屈折率とを有することができる。本開示の勾配光学フィルムの一部分は、光学フィルムの横断面をわたって変化もすることができる、例えば、全内部反射を支援する又は全内部反射を強化する能力などの一部の低屈折率様光学特性を明らかにしながら、約50%を超える光学ヘイズなどの高い光学ヘイズ、及び/又は、高い拡散光反射率を有することができる。場合によっては、開示される勾配光学フィルムは、例えば、一般的な照明装置、液晶ディスプレイシステム、又は再帰反射光学系などの種々の光学又はディスプレイシステムに組み込まれて、システムの耐久性を改善し、製造原価を低減し、システムの全体的な厚さを低減すると同時に、例えば、システムの再帰反射性又はシステムによって表示される画像の軸上輝度及びコントラストといった、少なくともいくつかのシステムの光学特性を改善する、維持する、又は実質的に維持することができる。
【0016】
ある特定の実施形態では、本明細書に開示されている勾配光学フィルムは、フィルムの横断面(すなわち、「z」又は厚さ方向に対して互いに垂直である「x」方向及び/又は「y」方向)に沿った光学フィルムの特性における変化を含む。同時係属中の米国特許出願「勾配低屈折率物品及び方法(Gradient Low Index Article and Method)」(米国特許仮出願第61/254673号、代理人整理番号第65716US002号)及び「勾配ナノボイド物品のための方法(Process for Gradient Nanovoided Article)」(米国特許仮出願第61/254674号、代理人整理番号第65766US002号)は、光学フィルムの厚さ方向(すなわち、「z」方向)における特性の変化を広く目的としている。「z」方向の勾配を作るために使用される技術は、「x」方向の勾配及び/又は「y」方向の勾配のための技術と同時に使用することができ、並びに、勾配光学フィルムは、交互に直行する方向の1つ、2つ又は3つすべてにおいて変化を備えるように加工することができると理解される。
【0017】
勾配光学フィルムは、典型的にはバインダー中に分散された、複数のナノボイド、相互接続したボイド又は一般にはボイドのネットワークを含む。複数又はネットワーク中の少なくとも一部のボイドは、中空トンネル又は中空トンネル様通路を介して互いにつながっている。ボイドは、必ずしも物質及び/又は微粒子を全く含まないものである必要はない。例えば、場合によっては、ボイドは、例えば、バインダー及び/又はナノ粒子を含む1つ以上の小さい繊維状又は紐状の物体を含んでもよい。一部の場合では、ボイドは、バインダーに取り付けられ得るか又はボイド内で遊離し得る、粒子又は粒子凝集体を含んでもよい。一部の開示される勾配光学フィルムは、集合的な複数の相互接続したボイド又は集合的なボイドのネットワークを含み、複数又はネットワークのそれぞれの中のボイドは相互接続されている。場合によっては、集合的な複数の相互接続したボイドに加えて、開示される勾配光学フィルムは、複数の閉鎖した又は連続していないボイドを含む。すなわち、ボイドはトンネルを介して他のボイドに接続されていない。
【0018】
場合によっては、勾配光学フィルムは、勾配構造を有していない同様の光学フィルムの部分的な耐久性を改善することができる。場合によっては、勾配光学フィルムの一表面の部分は、例えば、フィルム表面の一領域内の高密度化表面又は強化表面に起因して摩耗に耐え得る。場合によっては、封止又は高密度化表面は、汚染物質が勾配光学フィルムの内部に入るのを防止することができるので、勾配光学フィルムは改善された環境安定性を呈し得る。場合によっては、内部細孔内に混入した粒子は、機械的な力によりそれらを取り除くことができなくなるように捕捉される可能性があるので、封止又は高密度化表面は、勾配光学フィルムの清浄度を高めることができる。
【0019】
ある特定の実施形態では、勾配光学フィルムは、勾配光学フィルムの横断面に沿って変化する局所的体積分率又は局所的孔径分布を有する、ナノボイドなどの、複数の相互接続されたボイド又はボイドのネットワークを含むことができる。本明細書で使用するとき、「局所的体積分率」は、局所的スケールで測定される構成要素の体積分率(例えば、複数の相互接続されたボイド又はナノボイド)を意味し、「局所的孔径分布」は、局所的スケールで測定される構成要素の孔径分布(例えば、ナノボイド又は相互接続されたボイドのサイズ分布)を意味する。ある特定の実施形態では、すなわち、別の箇所に記載の厚さ勾配では、局所的スケールは、例えば、勾配光学フィルムの厚さ全体の約10%未満又は約5%未満又は約3%未満又は約1%未満の領域であることができる。ある特定の実施形態では、すなわち、本明細書に記載の横断面に沿った勾配では、局所的スケールは、例えば、勾配光学フィルムの幅又は長さの小さい方の約10%未満又は約5%未満又は約3%未満又は約1%未満の領域であることができる。
【0020】
本明細書で使用するとき、ナノボイドの局所的体積分率及びナノボイドの局所的孔径分布は、総じて、勾配フィルムの「局所的モルホロジー」と称される。概して、勾配フィルムの局所的モルホロジーにおける変化は、所望の光学的、物理的(例えば、熱、電気、音響、輸送、表面エネルギー)又は機械的特性を作り出す。場合によっては、ナノボイドの局所的体積分布は横断面に沿って一定を維持することができ、ナノボイドの局所的孔径分布は横断面に沿って変化させることができる。場合によっては、ナノボイドの局所的体積分布は横断面に沿って変化させることができ、ナノボイドの局所的孔径分布は横断面に沿って一定を維持することができる。場合によっては、ナノボイドの局所的体積分布は横断面に沿って変化させることができ、ナノボイドの局所的孔径分布も横断面に沿って変化させることができる。同様の方法で、ナノボイドの局所的体積分率及びナノボイドの局所的孔径分布の各々は、別の箇所に記載のように、厚さ(又は「z」方向)全体を通して変化させること又は一定を維持することのいずれかを行うことができる。
【0021】
ある特定の実施形態では、局所的体積分率は、フィルムの第一領域に近接する局所的体積分率が勾配光学フィルムの横断面に沿って第一領域に隣接するフィルムの第二領域に近接する局所的体積分率よりも大きく又は小さくなり得るように、勾配光学フィルムの横断面にわたって変化させることができる。相互接続したボイドの嵩体積分率は、光学フィルムの全体積に対する光学フィルム内のボイドの体積の比率であり、同様の方法で、嵩孔径分布は、光学フィルムの全体積に占める孔径分布の平均である。
【0022】
場合によっては、局所的体積分率は非常に少数のナノボイドを有することができ、このフィルムはフィルムのその領域にボイドを本質的に含まないと言うこともできる。場合によっては、局所的体積分率は、勾配光学フィルムの横断面に沿う局所的体積分率の単調増加又は減少のいずれかのような、フィルムの横断面に沿った連続的なやり方で変化させることができる。場合によっては、局所的体積分率は、勾配光学フィルムの横断面にわたって局所的最大又は局所的最小を経ることができる。場合によっては、局所的体積分率は、例えば、相互接続したボイドの局所的体積分率又は局所的孔径分布又は両方における階段状変化といった、勾配光学フィルムの横断面に沿った不連続的なやり方で変化させることができる。
【0023】
局所的モルホロジーの制御は、例えば、材料が勾配光学フィルムの表面上にコーティングされる場合といった複数の用途において有用であり得る。場合によっては、コーティングされた材料は、溶媒又はその他の高移動性の構成要素(例えば、勾配光学フィルムの相互接続したボイドに浸透することができる低分子量の硬化性材料など)を含んでもよい。場合によっては、コーティングされた材料は、熱可塑性固形物又はゲル状材料(例えば、温度サイクリング又は熱エージングすると相互接続したボイドの多孔性構造に浸透し得る転写接着剤又は感圧接着剤(PSA)など)を含んでもよい。勾配光学フィルムの相互接続したボイドの中への材料の浸透は、フィルムの特性を変更する(例えば、浸透領域内の屈折率を増加させる)ことができる。
【0024】
ある特定の実施形態では、局所的モルホロジーを変化させることで、勾配光学フィルムの一領域に近接する浸透が制御される一方で、勾配光学フィルムの隣接領域に近接した相互接続したボイドの所望の局所的体積分率を維持することができる。場合によっては、勾配光学フィルムの一領域に近接した局所的体積分率は、嵩体積分率よりも低くてもよく、更に、勾配光学フィルムの隣接領域に近接した局所的体積分率よりも低くてもよい。場合によっては、局所的体積分率は、限定的な注入のみが起こり得るように低くすることができる。勾配光学フィルムを形成するための材料注入を制限することは、例えば、相互接続したボイドの高い嵩体積分率を有する脆弱な光学フィルムの表面を強化するのに有用であってもよい。場合によっては、勾配光学フィルム中の相互接続したボイドの低い体積分率は、構造的一体性、つまり、光学フィルムの耐久性を改善することができる。
【0025】
場合によっては、局所的体積分率を、ゼロに近い相互接続したボイド局所的体積分率まで低下させて、表面の第一領域を効果的に封止することができる。局所的モルホロジーの制御は、例えば、勾配光学フィルムの一つ以上の領域の硬化の速度及び程度、ボイドの一部分を少なくとも部分的に充填するための材料の注入及びこれらに類するものなどの技術を含むことができる。広くは、局所的モルホロジーの制御は、例えば、同時係属中の米国特許仮出願第61/254674号(代理人整理番号第65766US002号)表題「勾配ナノボイド物品のための方法(Process for Gradient Nanovoided Article)」(2009年10月23日出願)などの別の箇所に記載の技術により、達成することができる。
【0026】
一部の開示される勾配光学フィルムは、複数のボイドを含めることによって、全内部反射(TIR)を支援する又は内部反射(EIR)を強化する。光学的に透明な非多孔性媒体の中を進行する光が、高い多孔性を有する層に入射すると、この入射光の反射率は、垂直入射よりも入射角が傾いている場合にはるかに高くなる。ヘイズがないか又は低ヘイズのボイドフィルムの場合、臨界角を超える斜角における反射率は、約100%近くになる。このような場合、入射光は全内部反射(TIR)される。ヘイズが大きいボイドフィルムの場合、斜角における反射率は、たとえ光がTIRを受ける可能性がないとしても、同様の範囲の入射角にわたって100%近くなる。ヘイズが大きいフィルムのこの増強反射率は、TIRと同様であり、増強内部反射率(Enhanced Internal Reflectivity)(EIR)として表わされる。本明細書で使用される場合、多孔性又はボイド勾配光学フィルムの増強内部反射率(EIR)とは、フィルム又はフィルム積層体のボイド層と非ボイド層の境界の反射率が、ボイドを有さない場合よりもボイドを有する方が高いことを意味する。
【0027】
開示される勾配光学フィルム中のボイドは、屈折率n及び誘電率εを有し、n=εであり、結合剤は、屈折率n及び誘電率εを有し、n=εである。広くは、勾配光学フィルムと光(例えば、勾配光学フィルムに入射する又はこれを伝播する光など)の相互作用は、例えば、フィルムの厚さ、バインダーの屈折率、ボイド又は細孔の屈折率、細孔の形状及びサイズ、細孔の空間分布、並びに光の波長などの多くのフィルム特性に依存する。場合によっては、勾配光学フィルムに入射する又はこの中を伝播する光は、実効誘電率εeff及び有効屈折率neff「に出会い」又は「を経験し」、この場合、neffは、ボイド屈折率n、バインダー屈折率n、及びボイドの多孔性又は体積分率「f」を用いて表すことができる。このような場合、光が単一又は分離したボイドの形状及び形体を分解する恐れがないように、勾配光学フィルムは十分に厚く、ボイドは十分に小さい。このような場合、ボイドの少なくとも60%又は70%又は80%又は90%など、少なくともボイドの大多数のサイズは、約λ/5以下、又は約λ/6以下、又は約λ/8以下、又は約λ/10以下、又は約λ/20以下であり、ここでλは光の波長である。
【0028】
ある場合には、開示される勾配光学フィルムに入射する光は可視光であり、すなわち、その光の波長は、電磁スペクトルの可視域にある。このような場合、可視光は、約380nm〜約750nm、約400nm〜約700nm、又は約420nm〜約680nmの範囲の波長を有する。このような場合、ボイドの少なくとも60%、70%、80%、又は90%といった少なくとも大多数のボイドのサイズが、約70nm以下、約60nm以下、約50nm以下、約40nm以下、約30nm以下、約20nm以下、又は約10nm以下である場合、勾配光学フィルムは有効屈折率を有し、複数のボイドを含んでいる。
【0029】
場合によっては、開示される勾配光学フィルムは十分に厚く、そのため、勾配光学フィルムは、ボイド及びバインダーの屈折率、並びにボイド又は細孔の体積分率又は多孔率で表現され得る有効屈折率を合理的に有することができる。このような場合、勾配光学フィルムの厚さは、約100nm以上、約200nm以上、約500nm以上、約700nm以上、又は約1,000nm以上である。
【0030】
開示される勾配光学フィルム中のボイドが十分に小さく、勾配光学フィルムが十分に厚い場合、勾配光学フィルムは、次のように表すことができる実効誘電率εeffを有する。
【0031】
εeff=fε+(1−f)ε (1)
このような場合、勾配光学フィルムの有効屈折率neffは次のように表わすことができる。
【0032】
eff=fn+(1−f)n (2)
細孔の屈折率とバインダーの屈折率との差が十分に小さいなど、場合によっては、勾配光学フィルムの有効屈折率は次の式で近似され得る。
【0033】
eff=fn+(1−f)n (3)
このような場合、勾配光学フィルムの有効屈折率は、ボイドとバインダーの屈折率から測定された容積平均(volume weighted average)となる。例えば、ボイド体積分率が約50%である勾配光学フィルムと、屈折率が約1.5であるバインダーは、約1.25の有効屈折率を有する。
【0034】
図1Aは、ボイドのネットワーク又は複数の相互接続したボイド320と、バインダー310の中に分散した複数の粒子340と、を含む、勾配光学フィルム300Aの概略側面図である。勾配光学フィルム300Aは、勾配光学フィルム内にボイドのネットワーク320が存在することで多孔性内部を有する。広くは、勾配光学フィルムは、相互接続細孔又はボイドの1つ以上のネットワークを含むことができる。例えば、ボイドのネットワーク320は、相互接続したボイド又は細孔320A〜320Cを含むと考えることができる。
【0035】
場合によっては、例えば、相互接続したボイド370Aの第一局所的体積分率、及び相互接続したボイド375Aの第二体積分率といった局所的モルホロジーは、勾配光学フィルム300A内の厚さt方向(「z」方向とも呼ばれる)に沿って変化させることができる。図1Aでは、例えば、相互接続したボイド370Aの第一局所的体積分率は、相互接続したボイド375Aの第二体積分率よりも大きいものとして描かれている。相互接続したボイドの局所的体積分率及び孔径分布は、例えば、「勾配ナノボイド物品のための方法(Process for Gradient Nanovoided Article)」(米国特許仮出願第61/254674号、代理人整理番号第65766US002号)及び「勾配低屈折率物品及び方法(Gradient Low Index Article and Method)」(米国特許仮出願第61/254673号、代理人整理番号第65716US002号)に記載のような複数の方法で厚さ方向に沿って変化させることができる。
【0036】
場合によっては、例えば、相互接続したボイド372の第三局所的体積分率、相互接続したボイド374の第四局所的体積分率及び相互接続したボイド376の第五局所的体積分率といった、相互接続したボイドの局所的体積分率は、勾配光学フィルム300A内の横断面「L」の方向に沿って(すなわち、「x」及び/又は「y」方向にほぼ沿って)変化させることができる。図1Aでは、例えば、相互接続したボイド376の第五局所的体積分率は、相互接続したボイド372の第三局所的体積分率又は相互接続したボイド374の第四局所的体積分率のいずれかよりも大きいものとして描写されている。相互接続したボイドの局所的体積分率及びボイドサイズ分布は、別の箇所に記載のように複数の方法で厚さ方向に沿って変化させることもできる。場合によっては、勾配光学フィルムは、ボイド320のネットワークがそれぞれ第一主表面330と第二主表面332の間に1つ以上の通路を形成する内容の多孔質フィルムである。場合によっては、相互接続したボイドの局所的体積分率は、「x」方向、「y」方向及び「z」方向の任意の組み合わせに沿って変化させることができる。
【0037】
ボイドのネットワークは、複数の相互接続したボイドを含んでいると考えることができる。一部のボイドは勾配光学フィルムの表面の位置にあってもよく、表面ボイドであると考えることができる。例えば、例示的な勾配光学フィルム300Aでは、ボイド320D及び320Eは、勾配光学フィルムの第二主表面332の位置にあり、表面ボイド320D及び320Eであると考えることができ、また、ボイド320F及び320Gは勾配光学フィルムの第一主表面330の位置にあり、表面ボイド320F及び320Gであると考えることができる。例えば、ボイド320B及び320Cといった一部のボイドは、勾配光学フィルムの内部内にあって勾配光学フィルムの外面から離れており、たとえ内部ボイドが、例えば、他のボイドを介して主表面につながることができるとしても、内部ボイド320B及び320Cであると考えることができる。
【0038】
ボイド320はサイズdを有し、このサイズは、通常、好適な組成物及び作製技術(例えば、様々なコーティング条件、乾燥条件、及び硬化条件など)を選択することによって制御され得る。広くは、dは、任意の所望の範囲の値のうちの任意の所望の値であってよい。例えば、場合によっては、ボイドの少なくとも60%、70%、80%、90%、又は95%といった少なくとも大多数のボイドは、所望の範囲であるサイズを有する。例えば、場合によっては、ボイドの少なくとも60%、70%、80%、90%、又は95%といった少なくとも大多数のボイドは、約10マイクロメートル以下、約7マイクロメートル以下、約5マイクロメートル以下、約4マイクロメートル以下、約3マイクロメートル以下、約2マイクロメートル以下、約1マイクロメートル以下、約0.7マイクロメートル以下、又は約0.5マイクロメートル以下であるサイズを有する。
【0039】
場合によっては、複数の相互接続したボイド320は、約5マイクロメートル以下、約4マイクロメートル以下、約3マイクロメートル以下、約2マイクロメートル以下、約1マイクロメートル以下、約0.7マイクロメートル以下、又は約0.5マイクロメートル以下である平均ボイドサイズ又は細孔径を有する。
【0040】
場合によっては、一部のボイドは、その主要な光学的効果が有効屈折率を低下させることであるように十分に小さくてよく、一部の他のボイドは有効屈折率を低減し、光を散乱させることができ、なおかつ一部の他のボイドは、その主要な光学的効果が光を散乱させることであるように十分に大きくてよい。
【0041】
粒子340は、任意の所望の範囲の値のうちの任意の所望の値であってよいサイズdを有する。例えば、場合によっては、粒子の少なくとも60%、70%、80%、90%、又は95%といった少なくとも大多数の粒子は、所望の範囲であるサイズを有する。例えば、場合によっては、粒子の少なくとも60%又は70%又は80%又は90%又は95%など、粒子の少なくとも大部分が、約5マイクロメートル以下、又は約3マイクロメートル以下、又は約2マイクロメートル以下、又は約1マイクロメートル以下、又は約700nm以下、又は約500nm以下、又は約200nm以下、又は約100nm以下、又は約50nm以下、又は更には約20nm以下のサイズを有する。
【0042】
場合によっては、複数の粒子340は、約5マイクロメートル以下、約3マイクロメートル以下、約2マイクロメートル以下、約1マイクロメートル以下、約700nm以下、約500nm以下、約200nm以下、約100nm以下、又は約50nm以下である平均粒度を有する。
【0043】
場合によっては、一部の粒子は十分に小さいため、主に有効屈折率に影響をもたらすことができ、一方、別の一部の粒子は、有効屈折率及び散乱光に影響をもたらすことができ、一方、更に別の一部の粒子は十分に大きいため、その主な光学的効果は光を散乱させることである。
【0044】
場合によっては、d及び/又はdは、ボイド及び粒子の主要な光学的効果が勾配光学フィルム300Aの有効屈折率に影響を与えることであるように、十分に小さい。例えば、このような場合、d及び/又はdは約λ/5以下、又は約λ/6以下、又は約λ/8以下、又は約λ/10以下、又は約λ/20以下であり、ここにおいてλは光の波長である。別の例として、このような場合には、d及びdは、約70nm以下、約60nm以下、約50nm以下、約40nm以下、約30nm以下、約20nm以下、又は約10nm以下である。このような場合、ボイド及び粒子は光も散乱させるが、ボイド及び粒子の主要な光学的効果は、有効屈折率を有する勾配光学フィルム中の有効媒質を定義することである。有効屈折率は、ある程度、ボイド、バインダー、及び粒子の屈折率に依存する。場合によっては、有効屈折率は低減された有効屈折率である。すなわち、有効屈折率は、バインダーの屈折率及び粒子の屈折率よりも小さい。
【0045】
ボイド及び/又は粒子の主要な光学的効果が屈折率に影響を与えることである場合には、ボイド320及び粒子340の少なくとも約60%、少なくとも約70%、少なくとも約80%、少なくとも約90%、又は少なくとも約95%といった相当な部分が有効屈折率を低減するという主要な光学的効果を有するように、d及びdは十分に小さい。このような場合には、ボイド及び/又は粒子の少なくとも約60%、少なくとも約70%、少なくとも約80%、少なくとも約90%、又は少なくとも約95%といった相当な部分は、約1nm〜約200nm、約1nm〜約150nm、約1nm〜約100nm、約1nm〜約50nm、又は約1nm〜約20nmの範囲のサイズを有する。
【0046】
場合によっては、粒子340の屈折率nは、バインダー310の屈折率nに十分に近くてよく、そのため、有効屈折率は、粒子の屈折率に依存せず、又はほとんど依存しない。このような場合、nとnとの差は、約0.01以下、約0.007以下、約0.005以下、約0.003以下、約0.002以下、又は約0.001以下である。場合によっては、粒子340は十分に小さく、それらの屈折率はバインダーの屈折率に十分に近く、そのため、粒子は基本的には光を散乱させず又は屈折率に影響を与えない。このような場合、粒子の主要な効果は、勾配光学フィルム300Aの強度を高めることであってよい。場合によっては、粒子340は、勾配光学フィルムの製造方法を更に改善することができるが、粒子を用いずに勾配光学フィルム300Aを製造することが可能である。
【0047】
ボイドのネットワーク320及び粒子340の主要な光学的効果が有効屈折率に影響を与えることであり、例えば、光を散乱させることでない場合には、ボイド320及び粒子340に起因する勾配光学フィルム300Aの光学ヘイズは、約5%以下、約4%以下、約3.5%以下、約4%以下、約3%以下、約2.5%以下、約2%以下、約1.5%以下、又は約1%以下である。このような場合、勾配光学フィルムの有効媒質の有効屈折率は、約1.35以下、約1.3以下、約1.25以下、約1.2以下、約1.15以下、約1.1以下、又は約1.05以下である。
【0048】
勾配光学フィルム300Aが低減した有効屈折率を合理的に有することができる場合には、勾配光学フィルムの厚さは、約100nm以上、約200nm以上、約500nm以上、約700nm以上、約1,000nm以上、約1500nm以上、又は約2000nm以上である。
【0049】
場合によっては、その主要な光学的効果が光を散乱させ、光学ヘイズを生じさせることであるように、d及び/又はdは十分に大きい。このような場合には、d及び/又はdは、約200nm以上、約300nm以上、約400nm以上、約500nm以上、約600nm以上、約700nm以上、約800nm以上、約900nm以上、又は約1000nm以上である。このような場合、ボイド及び粒子は屈折率にも影響し得るが、多くの場合、その主な光学的効果は光を散乱させることである。このような場合、勾配光学フィルムに入射する光は、ボイド及び粒子の両方によって散乱され得る。
【0050】
勾配光学フィルム300Aは、多くの光学用途で使用することができる。例えば、場合によっては、勾配光学フィルムは、全内部反射(TIR)を支援又は促進するため、あるいは内部反射を強化するために使用することができる。すなわち、反射は、屈折率nを有する材料が作り出すものよりも大きい。このような場合、勾配光学フィルム300Aは、勾配光学フィルムの表面で全内部反射を受ける光線のエバネセントテールが、勾配光学フィルムの厚さにわたって光学的に結合しないか、又はほとんど光学的に結合しないように、又は更には制御されて結合するように、十分に厚い。このような場合、勾配光学フィルム300Aの厚さtは、約1マイクロメートル以上、約1.1マイクロメートル以上、約1.2マイクロメートル以上、約1.3マイクロメートル以上、約1.4マイクロメートル以上、約1.5マイクロメートル以上、約1.7マイクロメートル以上、又は約2マイクロメートル以上である。十分に厚い勾配光学フィルム300Aは、勾配光学フィルムの厚さにわたって、光学モードのエバネセントテールの望ましくない光結合を防止すること又は低減することができる。勾配光学フィルムのTIR特性は、別の箇所に記載のように、横断面に沿ってフィルムの異なる領域で変化させることができる。
【0051】
場合によっては、勾配光学フィルム300Aの部分は、低い光学ヘイズを有する。このような場合、勾配光学フィルムの光学ヘイズは、約5%以下、約4%以下、約3.5%以下、約4%以下、約3%以下、約2.5%以下、約2%以下、約1.5%以下、又は約1%以下である。このような場合、勾配光学フィルムは、約1.35以下、約1.3以下、約1.2以下、約1.15以下、約1.1以下、又は約1.05以下である低い有効屈折率を有することができる。勾配光学フィルム300Aに垂直に入射する光について、本明細書で使用される場合、光学ヘイズは、垂直方向から4度を超えて偏向している透過光と全透過光の比として定義される。本明細書で開示されているヘイズ値は、ASTM D1003に記載の手順に従い、Haze−Gard Plusヘイズ計(BYK−Gardner(Silver Springs,Md.))を使用して測定された。勾配光学フィルムのヘイズ特性は、別の箇所に記載のように、横断面に沿ってフィルムの異なる領域で変化させることができる。
【0052】
場合によっては、勾配光学フィルム300Aの部分は、高い光学ヘイズを有する。このような場合、勾配光学フィルムのヘイズは、約40%以上、約50%以上、約60%以上、約70%以上、約80%以上、約90%以上、又は約95%以上である。場合によっては、勾配光学フィルム300Aは、中程度の光学ヘイズ、例えば、約5%〜約50%の光学ヘイズを有することができる。
【0053】
場合によっては、勾配光学フィルム300Aの部分は、高い拡散光反射率を有する。このような場合、勾配光学フィルムの拡散光反射率は、約30%以上、約40%以上、約50%以上、又は約60%以上である。勾配光学フィルムの拡散光反射率は、別の箇所に記載のように、横断面に沿ってフィルムの異なる領域で変化させることができる。
【0054】
場合によっては、勾配光学フィルム300Aの部分は、高い光学的透明度を有する。勾配光学フィルム300Aに垂直入射する光の場合、本明細書で使用される場合、光学的透明度は、比(T−T)/(T+T)を指すものであり、Tは、垂直方向から1.6度〜2度偏向する透過光であり、Tは、垂直方向から0度〜0.7度にある透過光である。本明細書で開示する透明度は、BYK−Gardnerより販売されるHaze−Gard Plusヘイズ計を使用して測定されたものである。勾配光学フィルム300Aが高い光学的透明度を有する場合、その透明度は、約40%以上、約50%以上、約60%以上、約70%以上、約80%以上、約90%以上、又は約95%以上である。勾配光学フィルムの光学的透明度は、別の箇所に記載のように、横断面に沿ってフィルムの異なる領域で変化させることができる。
【0055】
場合によっては、勾配光学フィルム300Aの部分は、低い光学的透明度を有する。このような場合、勾配光学フィルムの光学的透明度は、約40%以下、又は約20%以下、又は約10%以下、又は約7%以下、又は約5%以下、又は約4%以下、又は約3%以下、又は約2%以下、又は約1%以下である。
【0056】
広くは、勾配光学フィルムは、ある用途で望ましい場合のある任意の多孔性、孔径分布又はボイド体積分率を有することができる。場合によっては、勾配光学フィルム300A中の複数のボイド320の体積分率は、約20%以上、約30%以上、約40%以上、約50%以上、約60%以上、約70%以上、約80%以上、又は約90%以上である。
【0057】
場合によっては、たとえ勾配光学フィルムが高い光学ヘイズ及び/又は拡散反射率を有するとしても、勾配光学フィルムの部分は、ある程度低屈折率特性を表すことができる。例えば、このような場合、勾配光学フィルムの部分は、バインダー310の屈折率nよりも小さい屈折率に対応する角度におけるTIRを支援することができる。
【0058】
例示的な勾配光学フィルム300Aでは、粒子340A及び340Bなどの粒子340は、固体粒子である。場合によっては、勾配光学フィルム300Aは、複数の中空又は多孔性粒子350を追加的又は代替的に含んでもよい。
【0059】
粒子340は、ある用途で望ましい場合のある任意のタイプの粒子であってよい。例えば、粒子340は、有機又は無機粒子であってよい。例えば、粒子340は、シリカ、酸化ジルコニウム、又はアルミナ粒子であってよい。
【0060】
粒子340は、ある用途で望ましい場合のある又は使用可能である任意の形状を有することができる。例えば、粒子340は、規則的な形状又は不規則な形状を有し得る。例えば、粒子340は、ほぼ球形であってよい。別の例として、粒子は細長であってよい。このような場合には、勾配光学フィルム300Aは、複数の細長粒子340を含む。場合によっては、細長粒子は、約1.5以上、約2以上、約2.5以上、約3以上、約3.5以上、約4以上、約4.5以上、又は約5以上の平均アスペクト比を有する。場合によっては、粒子は、真珠のネックレスの形態若しくは形状(例えば、Nissan Chemical(Houston,TX)から入手可能なSnowtex−PS粒子)、又は例えば、ヒュームドシリカのような球形若しくは非晶質粒子の凝集した鎖状であってよい。
【0061】
粒子340は、官能化されていても又はされていなくてもよい。場合によっては、粒子340は官能化されていない。場合によっては、粒子340は官能化されており、それにより、凝集することなく、又は凝集することがほとんどなく、所望の溶媒又はバインダー310に分散させることができる。場合によっては、粒子340は更に官能化することでバインダー310に化学結合させることができる。例えば、粒子340Aなどの粒子340は、バインダー310に化学結合するように、表面修飾することができ、また、反応性官能基又は反応基360を有することができる。このような場合には、粒子340の少なくともかなりの割合は、バインダーに化学結合する。場合によっては、粒子340は、バインダー310に化学結合するための反応性官能基を有さない。このような場合には、粒子340はバインダー310に物理的に結合することができ、又はバインダー310は粒子340を封入することができる。
【0062】
場合によっては、一部の粒子は反応性基を有し、その他の粒子は反応性基を有さない。例えば、場合によっては、粒子の約10%は反応性基を有し、粒子の約90%は反応性基を有さない、又は粒子の約15%は反応性基を有し、粒子の約85%は反応性基を有さない、又は粒子の約20%は反応性基を有し、粒子の約80%は反応性基を有さない、又は粒子の約25%は反応性基を有し、粒子の約75%は反応性基を有さない、又は粒子の約30%は反応性基を有し、粒子の約60%は反応性基を有さない、又は粒子の約35%は反応性基を有し、粒子の約65%は反応性基を有さない、又は粒子の約40%は反応性基を有し、粒子の約60%は反応性基を有さない、又は粒子の約45%は反応性基を有し、粒子の約55%は反応性基を有さない、又は粒子の約50%は反応性基を有し、粒子の約50%は反応性基を有さない。場合によっては、一部の粒子は、同粒子上の反応性基及び非反応性基の両方によって官能化されてもよい。
【0063】
粒子の集合は、サイズを混ぜたもの、反応性基及び非反応性基を有する粒子、及び異なるタイプの粒子、例えば、アクリル、ポリカーボネート、ポリスチレン、シリコーン及びこれらに類するものなどの高分子粒子を含む有機粒子、又は例えば、シリカ及び酸化ジルコニウムなどのガラス若しくはセラミックスなどの無機粒子を含んでもよい。
【0064】
バインダー310は、ある用途で望ましい場合のある任意の材料であってもよく又はこれを含むことができる。例えば、バインダー310は、架橋ポリマーなどのポリマーを形成する紫外線硬化材料であってもよい。広くは、バインダー310は任意の重合可能な材料(例えば、UV硬化性材料などの放射線硬化性である重合可能な材料など)であってもよい。
【0065】
勾配光学フィルム300Aは、ある用途で望ましい場合のある任意の方法を用いて作製することができる。場合によっては、勾配光学フィルム300Aは、同時係属中の表題「ナノボイド物品のための方法及び装置(Process and Apparatus for a Nanovoided Article)」の米国仮特許出願第61/169429号(代理人整理番号第65046US002号)、同時係属中の表題「欠陥を低減させたコーティングのための方法及び装置(Process and Apparatus for Coating with Reduced Defects)」の米国仮特許出願第61/169427号(代理人整理番号第65185US002号)及び同時係属中の表題「勾配ナノボイド物品のための方法(Process for Gradient Nanovoided Article)」の米国特許仮出願第61/254674号(代理人整理番号第65766US002号)に記載の方法により製造することができ、これらの開示は参照によりこれらの全体が本明細書に組み込まれる。
【0066】
一般に、本明細書では典型的には「GEL」方法として参照される1つの方法では、まず、ナノ粒子などの複数の粒子と、溶媒に溶解した重合性材料と、を含む溶液を調製し、この場合、この重合性材料には、例えば、1種類以上のモノマーを含ませることができる。次に、重合可能な材料を、例えば、熱又は光を適用することによって重合し、溶媒に不溶性のポリマーマトリックスを形成する。重合が生じるにつれて、(硬化したマトリックスにおける)溶媒溶解度は低下し、マトリックスから相分離し得る。このことは、マトリックスの豊富なネットワーク及び相分離した溶媒の豊富なネットワークを生じる。続いて溶媒は除去され、多孔質コーティングを生じさせる孔及びボイドが残される。相分離の程度及びタイプは、フィルムのモルホロジー及びトポグラフィーを決定する際の主要な因子である。最終構造は、マトリックスネットワークの機械的特性にも依存する。ネットワーク弾性率及び強度は、溶媒が除去されたときにボイド空間を維持するのに十分であるべきである。組成と硬化の程度は、モルホロジーを決定する際の因子である。
【0067】
重合、乾燥及び硬化環境を制御することにより、モルホロジーを制御することができる。この方法はまた、別の箇所に記載のように、コーティングステーションと重合装置との間の制御環境領域も利用し得る。この領域は、コーティングしたフィルム組成及び環境の制御を改善することを可能にする。重合装置は、コーティングステーションとドライヤーとの間の任意の場所に配置することができる。重合中の環境制御もまた有利である。重合したコーティングは次に乾燥させ、更に、例えば、材料を更に硬化させるための従来の紫外線システムなどで後処理を行ってもよい。重合装置で使用され得る放射線源としては、LED、紫外線レーザー、紫外線ランプ及びeビームが挙げられる。
【0068】
場合によっては、重合工程の後、溶媒は依然として重合性材料をある程度の量で含んでいてもよいが、濃度は低い。次に、溶液を乾燥又は蒸発させることによって溶媒を除去して、ポリマーバインダー310の中に分散されたボイド320のネットワーク、又は複数のボイド320を含む勾配光学フィルム300Aを得る。勾配光学フィルムは、ポリマー中に分散された複数の粒子340を更に含む。粒子は、バインダーに結合し(その場合、結合は物理的若しくは化学的であってよい)、又はバインダーによって封入され得る。
【0069】
勾配光学フィルム300Aは、バインダー310及び粒子340に加えて他の材料を有することができる。例えば、勾配光学フィルム300Aは、例えば、カップリング剤などの1種以上の添加剤を含んで、図1には明確に示されない、その上に勾配光学フィルムが形成される基材の表面を湿潤するのを助けることができる。別の例として、勾配光学フィルム300Aは、勾配光学フィルムに黒色などの色を付与するために、カーボンブラックなどの1種以上の着色剤を含むことができる。勾配光学フィルム300Aにおける他の代表的な材料としては、1つ以上の光開始剤、帯電防止剤、接着プロモーター、界面活性剤、紫外線吸収剤、剥離剤又は別の箇所に記載のような他のものが挙げられる。場合によっては、勾配光学フィルム300Aは、ダウンコンバージョン材料を含むことができ、この材料は、光を吸収してより長い波長の光を再放出することができる。例示的なダウンコンバージョン材料としては蛍光物質が挙げられる。
【0070】
広くは、勾配光学フィルム300Aは、バインダー310と複数の粒子340の任意の重量比におけるある範囲の所望の多孔性を有することができる。したがって、広くは、重量比は、ある用途で望ましい場合のある任意の値であってよい。場合によっては、バインダー310と複数の粒子340の重量比は、約1:2.5以上、約1:2.3以上、約1:2以上、約1:1以上、約1.5:1以上、約2:1以上、約2.5:1以上、約3:1以上、約3.5:1以上、約4:1以上、又は約5:1以上である。場合によっては、重量比は、約1:2.3〜約4:1の範囲である。
【0071】
場合によっては、勾配光学フィルム300Aの上部主表面332を処理して、例えば、他の層への勾配光学フィルムの接着を改善することができる。例えば、上面をコロナ処理することができる。
【0072】
図1B図1Iは、それぞれ、本開示の異なる態様による勾配光学フィルム300B〜300Iの概略側面図である。明確にするために、図1Aに関して説明される番号付けされた要素310〜360及びサイズd〜dは、図1B図1Iに示されていないが、図1Aの勾配光学フィルム300Aに関して提供される説明のそれぞれは、図1B図1Iの勾配光学フィルム300B〜300Iにもそれぞれ該当する。厚さについて変化する勾配光学フィルムを作製するための技術は、図1A〜1Iに示すように横断面にわたって(フィルムの表面に平行に)変化する勾配光学フィルムと共に使用することもできる。厚さ勾配における変化のための技術は、例えば、同時係属中出願の表題「勾配ナノボイド物品のための方法(Process for Gradient Nanovoided Article)」の米国特許仮出願第61/254674号(代理人整理番号第65766US002号)に記載されている。
【0073】
ある特定の実施形態では、横断面変化を有する勾配光学フィルムは、例えば、重合開始剤濃度の差異又は近接する隣接領域における重合開始剤濃度の差異を用いることにより、生じ得る。ある特定の実施形態では、シャドーマスクは、近接する隣接領域で重合光の強度が低下するように、ランプとコーティングの間に配置することができる。ある特定の実施形態では、放射線の強度は、コーティングの幅にわたって時間的又は空間的に変化させることができ、別の箇所に記載のように、局所的モルホロジーに影響を与える。ある具体的な実施形態では、多層コーティング技術を使用することができ、例えば、この領域は高分子バインダーと粒子の異なる比率を含む。
【0074】
勾配構造を付与するために、例えば、投与量を変更する技術、溶媒変更技術、化学、コーティング及び外的技術、並びに、当業者にとって想定可能である他の技術といった複数の技術を使用することができる。投与量を変更する技術としては、例えば、時間的変更(LEDのパルス化)、LEDレーザーライティング、異なる波長光源の制御及びビデオ画像(ウェブと共に移動)といった光源技術、シャドーマスク、グレースケールマスク、プリントマスク、内部に光源を有する透明ロールの内側のマスクといったマスク技術、ウェブ速度変動、光の距離又は焦点の変動といった機械技術が挙げられる。溶媒変更技術としては、例えば、温度勾配、真空、流れ、マスク付き乾燥、及び気体の飽和といった差異乾燥技術、並びに、他のパターンのストライプにおけるコーティングといった溶媒コーティング技術が挙げられる。化学技術としては、例えば、化学的添加剤、気体及び酸素阻害剤などのパターン付き光開始剤及びパターン付き光阻害剤が挙げられる。コーティング技術としては、例えば、ストライプコーティング及びパターンオーバーコーティングが挙げられる。外的技術としては、電界又は磁界又はこれらに類するものなどの場の印加が挙げられる。
【0075】
広くは、記載の技術の組み合わせにより、例えば、文字、単語、記号又は更には絵などのしるしといった任意の所望のパターンを生じることができる。パターンは、連続、不連続、単調、S字、任意の滑らかに変化する写像、ストライプ、機械方向、横断方向又はその両方での変化であることができ、勾配は、像、ロゴ又はテキストを形成することができ、これらはパターン付きコーティング及び/又はミシン目を含むことができる。
【0076】
図1Bでは、勾配光学フィルム300Bは、横断面LWを決定する長さLと幅Wを備える。勾配光学フィルム300Bは、横断面LWに沿って例えば、図示されるように単調様式で変化する局所的モルホロジー390Bを更に備える。ある特定の実施形態では、勾配光学フィルム300Bの第一端部330Bに近接した相互接続したボイドの第一局所的体積分率370Bは、勾配光学フィルム300Bの第二端部332Bに近接した相互接続したボイドの第二局所的体積分率375Bよりも低く、これらの端部間で単調変化する。勾配光学フィルム300Bは、別の箇所に記載のように、様々な技術を用いて調製され得る。
【0077】
図1Cでは、勾配光学フィルム300Cは、横断面LWを決定する長さLと幅Wを備える。勾配光学フィルム300Cは、横断面LWに沿って例えば、図示されるように階段状様式で変化する局所的モルホロジー390Cを更に備える。ある特定の実施形態では、勾配光学フィルム300Cの第一端部330Cに近接した相互接続したボイドの第一局所的体積分率370Cは、勾配光学フィルム300Cの第二端部332Cに近接した相互接続したボイドの第二局所的体積分率375Cよりも低い。場合によっては、例えば、図1Cに示されるように、相互接続したボイドの第一局所的体積分率370Cは、相互接続したボイドの第二局所的体積分率375Cへと急激に(つまり、階段状に)移行する。場合によっては、相互接続したボイドの第二体積分率375Cのライン幅d1は、例えば、全幅Wの約1%〜約5%、又は約10%まで、又は約20%まで、又は約30%まで又はそれ以上といった、幅Wの小さな百分率であり得る。相互接続したボイドの第一局所的体積分率370Cを有する任意の数の領域は、当業者に明白なように、勾配光学フィルム300Cの幅Wにわたって形成することができる。勾配光学フィルム300Cは、別の箇所に記載のように、様々な技術を用いて調製することができる。
【0078】
図1Dでは、勾配光学フィルム300Dは、横断面LWを決定する長さLと幅Wを備える。勾配光学フィルム300Dは、例えば、図示されるように相互接続したボイドの最小局所的体積分率377Dを有する、横断面LWに沿って変化する局所的モルホロジー390Dを更に備える。ある特定の実施形態では、勾配光学フィルム300Dの第一端部330Dに近接した相互接続したボイドの第一局所的体積分率370Dは、勾配光学フィルム300Dの第二端部332Dに近接した相互接続したボイドの第二局所的体積分率375Dとほぼ同じである。場合によっては、例えば、図1Dに示されるように、相互接続したボイドの第一局所的体積分率370Dは、相互接続したボイドの最小局所的体積分率377Dへと急激に(つまり、階段状に)移行する。場合によっては、この移行は階段状変化におけるように急であることができ、あるいは、この移行は例えば「S」形状移行(図示せず)といったようにわずかずつ滑らかにすることができる。場合によっては、相互接続したボイドの最小体積分率377Dのライン幅d1は、例えば、全幅Wの約1%〜約5%、又は約10%まで、又は約20%まで、又は約30%まで又はそれ以上といった、幅Wの小さな百分率であり得る。場合によっては、相互接続したボイドの最小体積分率377Dの相対位置は、任意の場所及び幅Wにわたって複数の位置に配置することができる。勾配光学フィルム300Dは、別の箇所に記載のように、様々な技術を用いて調製することができる。
【0079】
図1Eでは、勾配光学フィルムは、横断面LWを決定する長さLと幅Wを備える。勾配光学フィルム300Eは、例えば、図示されるように、第一端部330E及び第二端部332Eに近接する相互接続したボイドの階段状変化する局所的体積分率を有するといった、横断面LWに沿って変化する局所的モルホロジー390Eを更に備える。ある特定の実施形態では、勾配光学フィルム300Eの第一端部330Eに近接した相互接続したボイドの第一局所的体積分率370Eは、勾配光学フィルム300Eの第二端部332Eに近接した相互接続したボイドの第二局所的体積分率375Eとほぼ同じである。例えば、図1Eに示される一部の例では、第一の相互接続したボイドの局所的体積分率370Eは、最大相互接続したボイドの局所的体積分率377Eへと急激に(つまり、階段状に)移行する。場合によっては、第一及び第二の相互接続したボイドの局所的体積分率370E及び375Eのそれぞれは、階段状でない(図示していないが、図1Bに示される単調変化と同様な)移行を有することができる。勾配光学フィルム300Eは、別の箇所に記載のように、様々な技術を用いて調製され得る。
【0080】
図1Fでは、勾配光学フィルム300Fは、横断面LWを決定する長さLと幅Wを備える。勾配光学フィルム300Fは、例えば、図示されるように相互接続したボイドの勾配最小局所的体積分率377Fを有する、横断面LWに沿って変化する局所的モルホロジー390Fを更に備える。ある特定の実施形態では、勾配光学フィルム300Fの第一端部330Fに近接した相互接続したボイドの第一局所的体積分率370Fは、勾配光学フィルム300Fの第二端部332Fに近接した相互接続したボイドの第二局所的体積分率375Fとほぼ同じである。例えば、図1Fに示される一部の例では、第一の相互接続したボイドの局所的体積分率370Fは、最小相互接続したボイドの局所的体積分率377Fへと徐々に(つまり、単調勾配で)移行し、相互接続したボイド375Fの第二体積分率へと再度徐々に移行する。勾配光学フィルム300Fは、別の箇所に記載のように、様々な技術を用いて調製することができる。
【0081】
図1Gでは、勾配光学フィルム300Gは、横断面LWを決定する長さLと幅Wを備える。勾配光学フィルム300Gは、例えば、図示されるように相互接続したボイドの一対の階段状に変化する局所的体積分率377G、378Gを有する、横断面LWに沿って変化する局所的モルホロジー390Gを更に備える。ある特定の実施形態では、勾配光学フィルム300Gの第一端部330Gに近接した相互接続したボイドの第一局所的体積分率370Gは、勾配光学フィルム300Gの第二端部332Gに近接した相互接続したボイドの第二局所的体積分率375Gとほぼ同じである。場合によっては、例えば、図1Gに示されるように、第一の相互接続したボイドの局所的体積分率370Gは、最小相互接続したボイドの局所的体積分率377Gへと急激に(つまり、階段状に)移行し、相互接続したボイドの局所的体積分率380Gへと再度急激に移行し、最小相互接続したボイドの局所的体積分率378Gへと再度急激に移行し、最後に、第二の相互接続したボイドの局所的体積分率375Gへと再度急激に移行する。場合によっては、相互接続したボイドの局所的体積分率のそれぞれは、階段状でない(図示していないが、図1Bに示される単調変化と同様な)移行を有することができる。勾配光学フィルム300Gは、別の箇所に記載のように、様々な技術を用いて調製され得る。
【0082】
図1Hでは、勾配光学フィルム300Hは、横断面LWを決定する長さLと幅Wを備える。勾配光学フィルム300Hは、例えば、図示されるように、勾配光学フィルム300Hの長さLに沿って変化する相互接続したボイドの階段状変化する局所的体積分率380H、382Hを有するといった、横断面LWに沿って変化する局所的モルホロジー390Hを更に備える。ある特定の実施形態では、相互接続したボイドの第一局所的体積分率380Hは、勾配光学フィルム300Gの第一端部330H及び第二端部332Hの両方に垂直であり、相互接続したボイドの第二局所的体積分率382Hも、勾配光学フィルム300Gの第一端部330H及び第二端部332Hに対して垂直である。場合によっては、例えば、図1Hに示されるように、相互接続したボイドの第一局所的体積分率380Hは、相互接続したボイドの最小局所的体積分率382Hに急激に(すなわち、階段状に)移行し、勾配光学フィルムの長さLの下方に同様の方式で連続する。場合によっては、相互接続したボイドの局所的体積分率のそれぞれは、階段状でない(図示していないが、図1Bに示される単調変化と同様な)移行を有することができる。勾配光学フィルム300Hは、別の箇所に記載のように、様々な技術を用いて調製され得る。
【0083】
図1Iでは、勾配光学フィルム300Iは、横断面LWを決定する長さLと幅Wを備える。勾配光学フィルム300Iは、例えば、図示されるように、碁盤状に変化する相互接続したボイドの階段状変化する局所的体積分率380I、382Iを有するといった、横断面LWに沿って変化する局所的モルホロジー390Iを更に備える。例えば、幾何学的形状、単語、しるし、像及びこれらに類するものといった、任意の所望のパターンを横断面にわたって形成することができる。ある特定の実施形態では、例えば、図1Iに示されるように、相互接続したボイドの第一局所的体積分率380Iは、相互接続したボイドの最小局所的体積分率382Iに急激に(すなわち、階段状に)移行し、勾配光学フィルムの横断面LWにわたって同様の方式で連続する。場合によっては、相互接続したボイドの局所的体積分率のそれぞれは、階段状でない(図示していないが、図1Bに示される単調変化と同様な)移行を有することができる。勾配光学フィルム300Iは、別の箇所に記載のように、様々な技術を用いて調製され得る。
【0084】
図2は、基材610の上に配置された勾配光学フィルム630を含む光学構造体600の概略側面図である。場合によっては、基材610は、移転可能な勾配光学フィルム630を提供する剥離ライナーである。すなわち、例えば、勾配光学フィルム630の露出した上部主表面632は、基材又は表面と接触させて設置されてもよく、剥離ライナーはその後勾配光学フィルムから剥離されて勾配光学フィルムの底部主表面634を露出し、この底部主表面634を、例えば、別の基材又は表面に接合することができる。剥離ライナー610から低屈折率層630を剥離するための剥離力は、一般に、約200g力/インチ(0.77N/cm)未満、約150g力/インチ(0.58N/cm)未満、約100g力/インチ(0.39N/cm)未満、約75g力/インチ(0.29N/cm)未満、又は約50g力/インチ(0.19N/cm)未満である。
【0085】
勾配光学フィルム630は、本明細書に開示されるあらゆる勾配光学フィルムと同様であってよい。例えば、勾配光学フィルム630は、勾配光学フィルム300A〜300Iのうちの1つと同様であってよい。場合によっては、勾配光学フィルム630は、複数の層を備えることができ、1つ以上の層は勾配光学フィルム300A〜300Iのうちの1つと同様であり、1つ以上の層は、別の箇所に記載のような「z」勾配フィルムを備え、あるいは、1つ以上の層は、非勾配フィルム、又は、勾配フィルムと非勾配フィルムの組み合わせを備える。場合によっては、勾配光学フィルム300A〜300Iのうちの1つを、基材610の上に直接コーティングしてもよい。場合によっては、最初に勾配光学フィルム300A〜300Iのうちの1つを形成して、その後基材610の上に移動させてもよい。基材610は、半透明、透明、又は不透明であり得る。
【0086】
基材610は、用途に好適であり得る任意の材料であり得るか、又はそのような材料を含み得、例えば誘電体、半導体、又は導体(金属など)であり得る。例えば、基材610は、ガラス及びポリエチレンテレフタレート(PET)、ポリカーボネート、及びアクリルなどのポリマーを含むことができ、又はこれらから作製することができる。一部の場合では、基材610は、反射偏光子、吸収偏光子、ワイヤグリッド偏光子又は繊維偏光子などの、偏光子を含むことができる。一部の場合では、基材610は、例えば、多層反射フィルム及び多層偏光フィルムといった多層光学フィルムのような多層を備えることができる。場合によっては、基材610は、例えば、輝度向上フィルム(BEF)のようなv字溝、再帰反射器のような立方体角部、又は当該技術分野において既知の他のミクロ構造といった、複数のミクロ構造を有する表面などの構造化表面を備えることができる。場合によっては、基材610は、例えば、下塗りコーティング又は接着剤コーティングなどのコーティングを主表面上に更に含むことができる。
【0087】
本明細書で使用するとき、繊維偏光子は、バインダー内に埋め込まれた1つ以上の繊維層を形成する複数の実質的に平行な繊維を備え、バインダー及び繊維のうち少なくとも1つが複屈折材料を含む。実質的に平行な繊維は、透過軸及び反射軸を画定する。繊維偏光子は、透過軸に平行に偏光された入射光を実質的に透過し、反射軸に平行に偏光された入射光を実質的に反射する。繊維偏光子の例は、例えば、その全体が参照により本明細書に組み込まれている米国特許第7,599,592号及び同第7,526,164号に記載されている。
【0088】
一部の場合では、基材610は、部分反射子を備えることができる。部分反射子は、少なくとも30%の入射光を反射する一方で残部から吸収損失をマイナスした分を透過する、光学素子又は光学素子の集合体である。好適な部分反射子としては、例えば、発泡体、偏光及び非偏光多層光学フィルム、微細複製構造(例えば、BEF)、偏光及び非偏光ブレンド、ワイヤグリッド偏光子、銀又はニッケルなどの部分的透過性金属、銀と酸化インジウムスズなどの金属/誘電体積層体、並びに非対称光学フィルムが挙げられる。非対称光学フィルムは、例えば、米国特許第6,924,014号(Ouderkirk et al.)、更に国際公開第2008/144636号に記載されている。更に部分反射体として有用なのは、例えば、穿孔ESR(3M Companyより入手可能)などの穿孔された部分反射体又はミラーである。
【0089】
ある特定の実施形態では、基材610は、反射偏光子であることができる。反射偏光子層は、第一偏光状態を有する光を実質的に反射し、第二偏光状態を有する光を実質的に透過させるものであり、ここで、これら2つの偏光状態は互いに直交するものである。例えば、可視光領域で反射偏光子によって実質的に反射される偏光状態における反射偏光子の平均反射率は、少なくとも約50%、又は少なくとも約60%、又は少なくとも約70%、又は少なくとも約80%、又は少なくとも約90%、又は少なくとも約95%である。別の例として、可視光領域で反射偏光子によって実質的に透過される偏光状態における反射偏光子の平均透過率は、少なくとも約50%、又は少なくとも約60%、又は少なくとも約70%、又は少なくとも約80%、又は少なくとも約90%、又は少なくとも約95%、又は少なくとも約97%、又は少なくとも約98%、又は少なくとも約99%である。一部の場合では、反射偏光子は、第一直線偏光状態を有する光を(例えば、x軸方向に沿って)実質的に反射し、第二直線偏光状態を有する光を(例えば、z方向に沿って)実質的に透過する。
【0090】
Vikuiti(商標)二重輝度上昇フィルム(DBEF)などの多層光学フィルム(MOF)反射偏光子、連続相及び分散相を有する拡散反射型偏光フィルム(DRPF)、例えば、3M Company(St.Paul,Minnesota)より入手可能なVikuiti(商標)拡散反射偏光フィルム(「DRPF」)、例えば、米国特許第6,719,426号に記載されているワイヤグリッド反射偏光子、又はコレステリック反射偏光子などの、任意の好適なタイプの反射偏光子を使用してもよい。
【0091】
例えば、一部の場合では、反射偏光層は、異なるポリマー材料の交互層で形成されるMOF反射偏光子であるか、これを含むことができ、一連の交互層のうち1つは複屈折材料で形成され、ここで、異なる材料の屈折率は、1つの直線偏光状態で偏光された光に一致し、直交直線偏光状態の光には一致しない。このような場合、一致した偏光状態の入射光は、反射偏光子を実質的に透過し、一致しない偏光状態の入射光は、反射偏光子によって実質的に反射される。一部の場合では、MOF反射偏光子は無機誘電体層の積層体を含んでもよい。
【0092】
別の例として、反射偏光子は、透過状態において中間的な軸上平均反射率を有する部分反射層であるか、又はこれを含んでもよい。例えば、部分反射層は、xy平面などの第一平面にて偏光された可視光に対して、少なくとも約90%の軸上平均反射率を、また第一平面に垂直な、xz平面などの第二平面にて偏光された可視光に対して、約25%〜約90%の範囲の軸上平均反射率を有することができる。そのような部分反射層は、例えば、米国特許出願第2008/064133号に記載されており、当該特許の開示は参照によりそのすべてが本明細書に組み込まれる。
【0093】
一部の場合では、反射偏光子は、円反射偏光子であるか、これを含んでよく、ある観点(時計回り又は反時計回りの観点であってもよく、右円偏光又は左円偏光とも呼ばれる)では円偏光した光が優先的に透過され、反対の観点で偏光された光は優先的に反射される。円偏光子の1つのタイプは、コレステリック液晶偏光子を含む。
【0094】
一部の場合では、反射偏光子は、米国特許仮出願第61/116132号(2008年11月19日出願);同第61/116291号(2008年11月19日出願);同第61/116294号(2008年11月19日出願);同第61/116295号(2008年11月19日出願);同第61/116295号(2008年11月19日出願);及び同第60/939085号(2007年5月20日出願)からの優先権を主張している国際出願PCT/US2008/060311号(2008年5月19日出願)に記載されるものなどの、光学干渉によって光を反射又は透過する多層光学フィルムであってよく、これらすべてはその全体が参照により本明細書に組み込まれる。
【0095】
ある特定の実施形態では、基材610は、プリズム状導光フィルムなどの微細構造化表面であることができる。例えば、勾配光学フィルム630は、Vikuiti(商標)輝度向上フィルム(BEF)(3M Companyより入手可能)などの光方向転換フィルムのプリズム側にコーティングされ得る。BEFは、ピッチ24マイクロメートル、プリズムピーク又は頂角が約90度の複数の線状プリズムを含む。勾配光学フィルム630は、当業者に既知であるように、微細構造化表面上に絶縁保護コーティング、平坦化コーティングとしてコーティングすることができ、又はパターンコーティングすることができる。
【0096】
光学構造体600内の2つの隣り合う主表面のそれぞれのかなりの部分は、勾配光学フィルム630の底部主表面634に沿って互いに物理的に接触する。例えば、2つの隣り合う主表面の少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%、又は少なくとも95%は、互いに物理的に接触する。例えば、場合によっては、勾配光学フィルム630は、基材610上に直接コーティングされる。
【0097】
図3は、基材710上に配置される勾配光学フィルム730と、勾配光学フィルム730上に配置される光学接着剤層720と、を含む光学構造体700の概略側面図である。基材710は、別の箇所に記載の基材のいずれかであることができ、例えば、図2を参照しながら記載した基材610などの基材が挙げられる。場合によっては、光学接着剤層720は、勾配光学フィルム730のボイドの浸潤を妨げるシーラーとして作用し得る。場合によっては、基材710の反対側に任意の接着剤層720及び勾配光学フィルム730を有するのが望ましい場合がある。他の場合には、基材710の両側に勾配光学フィルム730を有するのが望ましい場合がある。
【0098】
光学接着剤層720は、ある用途で望ましい場合があり、及び/又は使用可能であってよい任意の光学接着剤であってもよい。光学接着剤層720は、例えば、接着剤層が経時的に又は天気に曝されたときに黄変して接着剤を、及び勾配光学フィルムの光学性能を劣化させないように、十分な光学品質及び光安定性を有するものである。場合によっては、光学接着剤層720は、実質的に透明な光学接着剤であってよい。すなわち、接着剤層は、高い正透過率と低い拡散透過率とを有する。例えば、このような場合、光学接着剤層720の正透過率は、約70%以上、約80%以上、約90%以上、又は約95%以上である。
【0099】
一部の場合では、光学接着層720は、実質的に光拡散性であり、すなわち、接着層は高い拡散透過性及び低い鏡面透過性を有し、光学接着層720は、白色の外観を有することができる。例えば、このような場合、光学拡散性接着層720の光学ヘイズは、約30%以上、又は約30%以上、又は約50%以上、又は約60%以上、又は約70%以上、又は約80%以上、又は約90%以上、又は約95%以上である。場合によっては、拡散接着剤層の拡散反射率は、約20%以上、約30%以上、約40%以上、約50%以上、又は約60%以上である。このような場合、接着剤層は、光学接着剤中に分散された複数の粒子を含むことによって、光拡散性であってよく、その場合、粒子及び光学接着剤は異なる屈折率を有する。2つの屈折率の不一致は、光散乱を引き起こす可能性がある。
【0100】
例示的な光学接着剤としては、感圧接着剤(PSA)、感熱接着剤、溶媒揮発性接着剤(solvent-volatile adhesive)、再配置可能な接着剤又は再加工可能な接着剤、及びNorland Products,Inc.から入手可能なUV硬化性光学接着剤などのUV硬化性接着剤が挙げられる。
【0101】
例示的なPSAとしては、天然ゴム、合成ゴム、スチレンブロックコポリマー、(メタ)アクリルブロックコポリマー、ポリビニルエーテル、ポリオレフィン、及びポリ(メタ)アクリレートをベースにするものが挙げられる。本明細書で使用される場合、(メタ)アクリル(又はアクリレート)は、アクリル類とメタクリル類の両方を指す。他の例示的なPSAとしては、(メタ)アクリレート、ゴム、熱可塑性エラストマー、シリコーン、ウレタン、及びこれらの組み合わせが挙げられる。場合によっては、PSAは、(メタ)アクリルPSA又は少なくとも1つのポリ(メタ)アクリレートに基づくものである。例示的なシリコーンPSAとしては、ポリマー又はゴム、及び任意の粘着性樹脂が挙げられる。他の例示的なシリコーンPSAとしては、ポリジオルガノシロキサンポリオキサミド及び任意選択による粘着付与剤が挙げられる。
【0102】
勾配光学フィルム730は、本明細書に開示されるあらゆる勾配光学フィルムと同様であってよい。例えば、勾配光学フィルム730は、勾配光学フィルム300A〜300Iのうちの1つと同様であってよい。別の例として、勾配光学フィルム730は、複数の層を含むことができ、その場合、各層は、勾配光学フィルム300A〜300Iのうちの1つと同様である。
【0103】
ある特定の実施形態では、任意選択的な光拡散体(図示せず)が光学接着剤層720の上に配置されて、光拡散体/光学接着剤/勾配光学フィルム/基材の積層体を形成することができる。任意選択的な光拡散体としては、ある用途で望ましい場合のある及び/又は使用可能であるあらゆる光拡散体を挙げることができる。例えば、光拡散体は、表面拡散体、体積拡散体、又はこれらの組み合わせであってもよく、又はこれらを含んでもよい。例えば、任意選択的な光拡散体は、異なる屈折率nを有するバインダー又はホスト媒質中に分散された第一屈折率nを有する複数の粒子を含むことができ、その場合、2つの屈折率の差は、少なくとも約0.01、少なくとも約0.02、少なくとも約0.03、少なくとも約0.04、又は少なくとも約0.05である。
【0104】
図4は、基材810上に配置される第一光学接着剤層820と、第一光学接着剤層820上に配置される勾配光学フィルム830と、勾配光学フィルム830上に配置される任意選択的な第二光学接着剤層840と、を含む光学構造体800の概略側面図である。基材810は、別の箇所に記載の基材のいずれかであることができ、例えば、図2を参照しながら記載した基材610などの基材が挙げられる。光学接着層820及び840は、光学接着層720に類似のものであり得る。場合によっては、光学接着剤層820及び840は、同じ屈折率を有する。場合によっては、2つの接着剤層は、異なる屈折率を有することができる。
【0105】
勾配光学フィルム830は、本明細書に開示されるあらゆる勾配光学フィルムと同様であってよい。例えば、勾配光学フィルム830は、勾配光学フィルム300A〜300Iのうちの1つと同様であってよい。別の例として、勾配光学フィルム830は、複数の層を含むことができ、その場合、各層は、勾配光学フィルム300A〜300Iのうちの1つと同様である。
【0106】
図8は、本開示の一態様によるパターン付き再帰反射器900の概略断面図である。パターン付き再帰反射器900は、立方体角部再帰反射器の配列920を有する基材910を備える。第一領域930は、立方体角部再帰反射器920に隣接して高屈折率材を備える。立方体角部再帰反射器920に隣接する低屈折率材料を備える第二領域940は、第一領域930に隣接する。第一領域930及び第二領域940は、別の箇所に記載の方法により調製及びパターン化できるポリマー勾配フィルムである。着色したコーティング950は、第一領域930及び第二領域940にかけて配置することができる。第二領域940に隣接する立方体角部再帰反射器920上に入射した第一光線960は、図示されるように、再帰反射する。第一領域930に隣接する立方体角部再帰反射器上に入射した第二光線970は再帰反射せず、その代わりに第一領域930に隣接する着色したコーティング950を示す。
【0107】
図9は、本開示の一態様によるパターン付き光ガイド1000の概略断面図である。パターン付き光ガイド1000は、光を光ガイド1020の中に入射できる光源1010を備える。光ガイド1020は、別の箇所に記載のように、中空光ガイド又は中実光ガイドであることができる。光ガイド1020は、第一領域1040が光ガイド1020の屈折率よりも低い屈折率の材料を備え、第二隣接領域1050が光ガイド1020の屈折率よりも低くない屈折率を有する材料を備えるように、別の箇所に記載のように調製できる勾配光学フィルム1030を備える。光ガイド1020は、TIRにより光の伝播を可能にし、第一光線1060は第一領域1040に隣接してTIRを受けるように示され、TIRは第二領域1050において漏れるので、第二光線1070は光ガイドの外に方向づけられるように示される。場合によっては、第二隣接領域1050の屈折率は、光ガイド1020の屈折率と本質的に同じであることができ、第二光線1070は、当業者に既知であるように、方向に変化なく光ガイドを出る。当業者に既知のように、光ガイドを出る光を方向づけるために、様々な抽出器要素を勾配ポリマーフィルム1030の上面1080に隣接させて配置することができる。
【0108】
場合によっては、開示されている勾配は、X(ダウンウェブ)、Y(クロスウェブ)、XY、XZ、YZ及びXYZ勾配の組み合わせを作り出すために、任意の所望される方式で組み合わせることができる。これらはまた、任意の所望の表面パターンと組み合わせ、例えば、PET、ポリカーボネート、MOF、ミクロ複製光学フィルム及びこれらに類するものといった異なる基材に適用することができる。
【0109】
場合によっては、基材は、剥離ライナー、接着剤、体積拡散体、表面拡散体、回折拡散体、屈折拡散体、再帰反射器、吸収偏光子、反射偏光子、繊維偏光子、コレステリック偏光子、多層偏光子、ワイヤグリッド偏光子、部分反射子、体積反射子、多層高分子反射子、金属反射子、金属/誘電体多層反射子、繊維、レンズ、ミクロ構造、中実光ガイド及び中空光ガイドのうちの少なくとも1つを備える。場合によっては、ミクロ構造は、再帰反射器、輝度向上フィルム(BEF)、小型レンズ、ゲイン拡散体、光抽出フィルム又は転向フィルムであることができる。
【0110】
場合によっては、勾配高分子光学フィルムは、複数の層を備えることができ、1つ以上の層は勾配光学フィルム300A〜300Iのうちの1つと同様であり、1つ以上の層は、別の箇所に記載のような「z」勾配フィルムを備え、あるいは、1つ以上の層は、非勾配フィルム、又は、勾配フィルムと非勾配フィルムの組み合わせを備える。場合によっては、勾配高分子フィルムは、低ヘイズ/高ヘイズ/低ヘイズである層の組み合わせを備えることができる。一般に、多層コーティング内のこのような他の層としては、例えば、体積拡散体、多孔質コーティング、拡散多孔質コーティング、シーリング材、プライマー、接着剤及びこれらに類するものを含むことができる。多層コーティング層は、多層コーティング積層体の準表面層の表面層であることができる。一般に、多層コーティングは、当業者に既知のように同時又は順次のいずれかで製造することができる。
【0111】
ある特定の実施形態では、屈折率にパターン化した差異を有する勾配付き光学フィルムは、光抽出に有用であることができる。このような勾配付き光学フィルムは、例えば、光ガイドから光方向転換要素への選択的透過を可能にし得る。光ガイドは、光ガイドの表面からの全内部反射(TIR)に起因して、領域全体に光を伝播する。TIRは、光ガイドと包囲媒体とに大きな屈折率差異が生じる場合に生じる。低屈折率の領域が、光ガイドに積層化される同様の屈折率の領域と交互になっている勾配光学フィルムは、光に選択的TIRを受けさせることができ、屈折率は低いが、光は高屈折領域が存在する光ガイドを抜け出ることが可能であり得る。典型的には、この制御抽出は、プリズム、ゲイン拡散体、転向フィルム又は他の当該技術分野において既知の構造などの光方向再転換要素への光を計量するために使用することができる。場合によっては、光方向再転換要素は、ミクロ複製又は角度選択MOFのいずれかであり得る。
【0112】
開示されている勾配フィルムは、例えば、中実光ガイド抽出器、中空(空気)光ガイド、繊維及びこれらに類するものなどの光ガイド可変性抽出器、例えば、特にバックライトディスプレイにおける検出及び/又はバルブ非表示に有用な勾配ヘイズフィルム、可変性拡散体、可変性吸収体、高反射率反射子(ESR)などの可変性反射子、並びに、これらに類するものといった用途で使用することができる。
【実施例】
【0113】
以下の実施例では、BYK−Gardner Haze−Gard Plusヘイズメーター(BYK−Gardner(Silver Springs,MD))を用いて、透過率、ヘイズ及び透明度を測定した。特に明示しない限り、すべての化学物質は、Aldrich Chemical(Milwaukee,WI)から入手可能である。コーティングの屈折率(RI)を、Model 2010 Prism Coupler(Metricon Corporation(Pennington NJ)より入手可能)を使用して測定した。Model 2010 Metriconには、632.8nmの波長で動作するHeNeレーザー及び光学プリズム(コード6567.9)を装着させた。測定はTE及びTMモードの両方で行われた。コーティングのフィルム側の屈折率を測定するために、基材をプリズム結合器に密着させて試料を装填した。コーティングの空気側の屈折率を測定するために、コーティングをプリズム結合器に密着させて試料を装填した。
【0114】
図5は、例えば、本開示の一態様による時間勾配を生じさせるためのランプ(この場合では紫外線LED)をプログラム及び制御するのに使用される方法200の概略を示す。方法200は、アンペアvs %ヘイズ(又は、例えば、%T、%C若しくは屈折率などの他の所望の制御曲線)曲線を生じる第一工程210、制御電圧vsアンペア曲線を生じる第二工程220、並びに、アンペアを制御電圧に転換して制御電圧vs %ヘイズ曲線を生じる第三工程230を含む。結果として、図5に示す工程210〜230では、0.5Vのステップで0V〜10Vの制御ランプ電圧で高ヘイズGELのサンプルを作製することにより、電圧vsヘイズ(又は代わりに電圧vs %T)曲線が作成される。方法200は、必要とされる%ヘイズ勾配が画定される第四工程240と、必要とされる%ヘイズ勾配に関数を適合させる第五工程250と、所望の勾配を内挿して、例えば、約0.1秒といった、短い時間間隔で%ヘイズを得る第六工程260と、を更に含む。結果として、工程240〜260では、必要とされるヘイズ勾配は、勾配の最終目的用途に基づいて画定される。次に、必要とされる曲線を、Matlab(The MathWorks(Natick,MA)から入手可能)での曲線の多項目記載に適合させる。次に、この関数を使用して、0.001インチ(25.4マイクロメートル)の間隔で、必要とされるヘイズ勾配曲線の間に点を内挿する。方法200における第二工程220、第三工程230、第五工程250、第六工程260及び第七工程270は、典型的にはソフトウェアプログラム290に属する。方法200は、第三工程230からの制御電圧vs%ヘイズ曲線を第六工程260からの短い時間間隔で%ヘイズを提供する内挿された所望の勾配と組み合わせる第七工程270を更に含む。結果として、第七工程270では、次に、制御電圧vsヘイズ曲線を使用して、各位置で必要とされる電圧を計算して、必要とされるヘイズ値を得る。方法200は、第七工程270からの結果を用いてランプに、必要とされる電圧勾配を適用する第八工程280を更に含む。結果として、第八工程280では、サンプルの作製中に、電圧曲線をランプに適用する。
【0115】
コーティング溶液「A」の調製
Nalco 2327(400g)(Nalco(Naperville Il)から入手可能な20nmコロイドシリカ分散体)を1qtジャーに充填した。1−メトキシ−2−プロパノール(450g)とトリメトキシ(2,4,4−トリメチルペンチル)シラン(11.95g)(Waker Silicones Adrian MIから入手可能)と4−(トリエトキシシリル)−ブチロニトリル(11.85g)と5% Prostab 5128水溶液(0.23g)(Ciba Specialties Chemical,Inc(Tarrytown,NY)から入手可能)を互いに混合し、コロイドシリカ分散体に撹拌しながら添加した。ジャーを密閉し、16時間80℃に加熱した。
【0116】
得られた溶液を、室温まで冷却した。上記分散体(606.7g)と1−メトキシ−2−プロパノール(102.3g)を1000mL RBフラスコに充填した。回転蒸発により314.8gの重量になるまで水と1−メトキシ−2−プロパノールを除去した。追加の分散体(258.61g)と1−メトキシ−2−プロパノール(202.0g)をフラスコに充填した。水と1−メトキシ−2−プロパノールを回転蒸発により除去して343.69gの重量を得た。1−メトキシ−2−プロパノール(89.2g)を添加して、1−メトキシ−2−プロパノールに表面改質させた20nmシリカをおよそ43重量%固形分で分散したものを得た。
【0117】
結果として得られた溶液は、1−メトキシ−2−プロパノール中に分散した43重量%の改質20nmシリカであった。次に、この溶液100gと、64.5gのSR444(Sartomer Company(Exton PA)から入手可能)と、2.15gの光開始剤Irgacure 184(Ciba Specialty Chemicals Company(High Point NC)から入手可能)と、167.2gのイソプロピルアルコールと、26.6gの1−メトキシ−2−プロパノールとを、撹拌により互いに混合して、均質なコーティング溶液A(30%固形分コーティング溶液)を形成した。
【0118】
コーティング溶液「B」の調製
コーティング溶液「B」を作製した。まず、360gのNalco 2327コロイドシリカ粒子(固体40重量%、平均粒径約20ナノメートル)(Nalco Chemical Company(Naperville IL)から入手可能)と300gの1−メトキシ−2−プロパノール溶媒とを、冷却器と温度計を取り付けた2リットルの三口フラスコ内で高速撹拌して互いに混合した。次に、22.15gのSilquest A−174シラン(GE Advanced Materials(Wilton CT)から入手可能)を添加した。この混合物を10分間撹拌した。次に、追加の400gの1−メトキシ−2−プロパノールを加えた。この混合物を、加熱マントルを使用して85℃で6時間加熱した。得られた溶液を、室温まで冷却した。次に、60℃の水槽の下方でロータリーエバポレータを使用して、水と1−メトキシ−2−プロパノール溶媒の大部分(約700g)を除去した。
【0119】
結果として得られた溶液は、1−メトキシ−2−プロパノール中に分散した43重量%の透明なA−174改質20nmシリカであった。次に、82.65gのこの溶液と、24gのSR 444(Sartomer Company(Exton PA)から入手可能)と、0.119の光開始剤Irgacure 819(Ciba Specialty Chemicals Company(High Point NC)から入手可能)と、91.7gのイソプロピルアルコールとを撹拌によって互いに混合して、均質なコーティング溶液B(30%固形分コーティング溶液)を形成した。
【0120】
実施例1:ヘイズ及び透過率のダウンウェブ勾配
実施例1は、透過率パーセントを一定値に維持しながらのヘイズのダウン勾配と、ヘイズを一定に維持しながらの透過率のダウンウェブ勾配と示す。
【0121】
検量線の作製:
2.5cc/分の速度で10.15cm(4インチ)幅のスロットタイプコーティングダイにコーティング溶液「A」をシリンジで吸い上げた。スロットコーティングダイは、5フィート/分(152cm/分)で移動するPET基板の上に、10.15cm幅のコーティングを均一に分配した。
【0122】
次に、紫外線を透過させることのできる石英窓を含む紫外線LED硬化チャンバーに、コーティングされた基材を通すことによって、コーティングを重合させた。紫外線LEDバンクは、ダウンウェブ方向に16個、クロスウェブ方向に22個(およそ20.3cm×20.3cmの範囲を占める)の352個の紫外線LEDの長方形配列を含むものであった。この紫外線LEDを、2つの水冷式ヒートシンクの上に置いた。LED(Cree,Inc.(Durham NC)から入手可能)は公称波長395nmで操作され、45ボルト、13アンペアで作動した。TENMA 72−6910(42V/10A)電力供給機(Tenma(Springboro OH))により、UV−LED配列を通電し、ファンで冷却した。紫外線LEDを、基板から約2.54cmの距離を置いて硬化チャンバーの石英窓の上に配置した。紫外線LED硬化チャンバーに、46.7リットル/分(毎時100立方フィート)の流量で窒素流を供給し、結果として、硬化チャンバー内に約150ppmの酸素濃度を得た。すべての場合において、硬化チャンバー内の石英窓の下に配置したセンサーを用いて、およそ1/4インチ(6.4mm)の距離でコーティングされた幅の中心にて、コーティングからの酸素濃度を測定した。
【0123】
紫外線LEDによる重合後、150°F(66℃)で動作する乾燥炉にコーティングを5フィート/分(152cm/分)のウェブ速度で2分間移送することにより硬化コーティング内の溶媒を除去した。次に、乾燥したコーティングを、H型バルブを取り付けて設定したFusion System Model I300P(Fusion UV Systems,Inc.(Gaithersburg MD)から入手可能)を使用して後硬化させた。UV Fusionチャンバーに、チャンバー内の酸素濃度が約50ppmになるように窒素流を供給した。
【0124】
LabViewソフトウェア(National Instruments(Austin TX))により制御されたCompaq 6910pラップトップとDAQCard−6062E PCMCIA Multifunction I/Oカード(National Instruments(Austin TX))を有する電力供給の入力ピンに制御電圧を印加することにより、電力供給を制御した。0.5ボルトのステップで0〜10Vの範囲の制御電圧でサンプルを作製したが、これらの電圧は0〜12アンペアのランプでの出力アンペアに対応している。BYK−Gardner Haze−gard plusで透過率パーセント(%T)、ヘイズ(%H)及び透明度(%C)を測定し、図5を参照して先述したように適合曲線と共に図6A〜6Bにvs投与量でプロットして示した。
【0125】
ヘイズ勾配サンプルの作製:
上記の検量線のために使用するものと同じコーティング溶液を、5cc/分の速度で、20.3cm(8インチ)幅のスロットタイプコーティングダイにシリンジで送り出した。スロットコーティングダイは、5フィート/分(152cm/分)で移動するPET基板の上に、20.3cm幅のコーティングを均一に分配した。
【0126】
検量線の場合と同じ技術でサンプルを加工した。ウェブがランプ硬化領域を通過したときに時間制御電圧傾斜をランプ電力供給に適用することにより、サンプルを作製した。電圧傾斜プロファイルを図6Cに示す。対応する%H及び%T vs位置を図6Dに示す。このグラフは、ヘイズが約10%H〜約95%Hで位置に対して線形に変化し、一方、%Tがサンプルの長さにわたって一定を維持することを示す。
【0127】
透過率勾配サンプルの作製:
上記の検量線の場合に使用したものと同じコーティング溶液を、5cc/分の速度で、20.3cm(8インチ)幅のスロットタイプコーティングダイにシリンジで送り出した。スロットコーティングダイは、5フィート/分(152cm/分)で移動するPET基板の上に、20.3cm幅のコーティングを均一に分配した。
【0128】
次に、検量線の場合と同じ技術を用いて、サンプルを加工した。ウェブがランプ硬化領域を通過したときに時間制御電圧傾斜をランプ電力供給に適用することにより、サンプルを作製した。電圧傾斜プロファイルを図6Eに示す。対応する%H及び%T vs位置を図6Fに示す。このグラフは、透過率が約60〜80%Tで変化し、一方、%Hがサンプルの長さにわたって本質的に一定を維持することを示す。
【0129】
実施例2:ヘイズ及び透過率のクロスウェブ勾配
2.5cc/分の速度で10.15cm(4インチ)幅のスロットタイプコーティングダイにコーティング溶液「A」をシリンジで吸い上げた。スロットコーティングダイは、5フィート/分(152cm/分)で移動するPET基板の上に、10.15cm幅のコーティングを均一に分配した。
【0130】
次に、紫外線を透過させることのできる石英窓を含む紫外線LED硬化チャンバーに、コーティングされた基材を通すことによって、コーティングを重合させた。紫外線LEDバンクは、ダウンウェブ方向に16個、クロスウェブ方向に22個(およそ20.3cm×20.3cmの範囲を占める)の352個の紫外線LEDの長方形配列を含むものであった。この紫外線LEDを、2つの水冷式ヒートシンクの上に置いた。LED(Cree,Inc.(Durham NC)から入手可能)は公称波長395nmで操作され、45ボルト、13アンペアで作動した。TENMA 72−6910(42V/10A)電力供給機(Tenma(Springboro OH))により、UV−LED配列を通電し、ファンで冷却した。紫外線LEDを、基板から約2.54cmの距離を置いて硬化チャンバーの石英窓の上に配置した。紫外線LED硬化チャンバーに、46.7リットル/分(毎時100立方フィート)の流量で窒素流を供給し、結果として、硬化チャンバー内に約150ppmの酸素濃度を得た。石英上クロームマスクをLEDランプとコーティングの間に配置した。このマスクの透過率の線形勾配は、10.15cmコーティング幅にわたって100%T〜0%Tの範囲であった。
【0131】
紫外線LEDによる重合後、150°F(66℃)で動作する乾燥炉にコーティングを5フィート/分(152cm/分)のウェブ速度で2分間移送することにより硬化コーティング内の溶媒を除去した。次に、乾燥したコーティングを、H型バルブを取り付けて設定したFusion System Model I300P(Fusion UV Systems,Inc.(Gaithersburg MD)から入手可能)を使用して後硬化させた。UV Fusionチャンバーに、チャンバー内の酸素濃度が約50ppmになるように窒素流を供給した。
【0132】
得られたサンプルは、一端に沿って低い透過率と共に高いヘイズを有し、反対側の端部に沿って高い透過率と共に低いヘイズを有した。
【0133】
実施例3:屈折率のダウンウェブ及び厚さ(Z軸)勾配の組み合わせ
2.5cc/分の速度で10.15cm(4インチ)幅のスロットタイプコーティングダイにコーティング溶液「B」をシリンジで吸い上げた。スロットコーティングダイは、5フィート/分(152cm/分)で移動するPET基板の上に、10.15cm幅のコーティングを均一に分配した。
【0134】
次に、紫外線を透過させることのできる石英窓を含む紫外線LED硬化チャンバーに、コーティングされた基材を通すことによって、コーティングを重合させた。紫外線LEDバンクは、ダウンウェブ方向に16個、クロスウェブ方向に22個(およそ20.3cm×20.3cmの範囲を占める)の352個の紫外線LEDの長方形配列を含むものであった。この紫外線LEDを、2つの水冷式ヒートシンクの上に置いた。LED(Cree,Inc.(Durham NC)から入手可能)は公称波長395nmで操作され、45ボルト、13アンペアで作動した。TENMA 72−6910(42V/10A)電力供給機(Tenma(Springboro OH))により、UV−LED配列を通電し、ファンで冷却した。紫外線LEDを、基板から約2.54cmの距離を置いて硬化チャンバーの石英窓の上に配置した。UV−LED硬化チャンバーに、毎分46.7リットル/分(毎時100立方フィート)の流速で窒素流を供給した。毎時1.5立方フィート(0.7リットル/分)の気流をこの窒素流に供給し、ランプにておよそ1000ppmの酸素濃度を生じさせた。硬化チャンバーにおける酸素の高濃度は、例えば、同時係属中の米国特許出願の表題「勾配低屈折率物品及び方法(Gradient Low Index Article and Method)」の米国特許仮出願第61/254673号(代理人整理番号第65716US002号)に記載のように、コーティングの表面での硬化の阻害をもたらした。実施例1の別の箇所に記載の技術によりコーティングを更に乾燥及び硬化させた後、この阻害は、コーティングの厚さにわたって屈折率の勾配をもたらした。結果として、非常に低い多孔性(及び対応するより高い屈折率)を有する「スキン」コーティングが、酸素阻害に最も近い表面上に生じた。
【0135】
同時に、別の箇所に記載のように、LabView software(National Instruments(Austin TX))により制御されたCompaq 6910pラップトップとDAQCard−6062E PCMCIA Multifunction I/Oカード(National Instruments(Austin TX))を有する電力供給の入力ピンに制御電圧を印加することにより、電力供給を時間制御した。ウェブがランプを通ったときに時間制御電圧傾斜をランプ電力供給に適用することにより、サンプルを作製した。図7Aは、実施例3で使用される電圧傾斜プロファイルを示す。
【0136】
各サンプルの屈折率は、2つの向きで測定した:別の箇所に記載のように、第一は、格子に近接するコーティング面に関し、第二は、プリズムに近接するPET基材に関する。対応する屈折率vs位置は、図7Bに示す。第一曲線410は、層の表面における低屈折率層の屈折率を示す。曲線410は、屈折率が1.38〜1.48で変化することを示す。第二曲線420は、基材と低屈折率コーティングの間の境界面に近接する領域における低屈折率層の屈折率を示す。各位置にて、第二曲線420により示されるコーティングの内側と第一曲線410により示されるコーティングの上面の間の屈折率の差が存在する。各位置におけるこの差は、コーティングの「Z」勾配を画定する。
【0137】
第二曲線420は、コーティングの内側における屈折率が1.22〜1.48で変化することを示す。位置についての屈折率のこの変化は、コーティングの「X」勾配を画定する。第三曲線430は、PET基材の屈折率がサンプル全体を通して一定であることを示す。
【0138】
実施例4:直接光バックライトのためのバルブ非表示勾配
この実施例は、液晶ディスプレイに使用されるもののような、直接光バックライトにおいてバルブ非表示を増加させるように特にデザインされたヘイズ勾配を有するよう製造したフィルムを説明する。ヘイズ勾配フィルムは、バルブのピッチに位置する、高ヘイズ領域と低ヘイズ領域のストライプを有することにより、特徴づけられた。高ヘイズストライプがバルブ上に配列された場合、これらは、バルブから来る入射光の明るいスポットを一様にすることができる。ヘイズのパターンは、LEDランプ下でフォトマスクを用いてGEL方法により製造される多孔質層を光学的にパターニングすることにより作り出さたが、GEL方法を用いてパターン付きモルホロジーを示す。
【0139】
コーティング溶液「C」の調製
N−(3−トリエトキシシリルプロピル)メトキシエトキシエチルカルバメート(PEG2シラン)をまず調製した。磁器撹拌棒を取り付けた250mL丸底フラスコにジエチレングリコールメチルエーテル(150g)及びメチルエチルケトン(65g)を充填した。回転蒸発により水を除去することにより、溶媒の大部分を除去した。3−(トリエチルシリル)プロピルイソシアネート(308.5g)をフラスコに充填した。ジラウリン酸ジブチル錫(約3mg)を添加し、この混合物を撹拌した。反応は、穏やかな発熱を伴い進行した。この反応は、およそ16時間にわたって進行し、この時間において赤外分光法は、イソシアネートが全く残っていないことを示した。溶媒の残部を回転蒸発(90℃)により除去した。得られたPEG2シランは、透明な無色の液体であった。
【0140】
凝縮器及び温度計を取り付けた2リットル三口フラスコ内で、288グラムのNalco 2327(Nalco(Naperville,IL)から入手可能な水に40重量%の20nmシリカを分散させたもの)及び300gの1−メトキシ−プロパノールを急速撹拌しながら互いに混合した。その後、8.35gのトリメトキシ(2,4,4トリメチルペンチル)シラン(Gelest(Morrisville,PA)から入手可能)と13.12gのPEG2シラン(上記)を添加し、次に、この混合物を30分にわたって撹拌した。次に、500gの追加の1−メトキシ−プロパノールを添加した。この混合物を6時間にわたって85℃に加熱した。得られた溶液を、室温まで冷却した。60℃にて水浴中でロータリーエバポレータを用いて水/1−メトキシ−プロパノールの溶媒のほとんどを除去したところ、イソオクチル/PEG2改質した20nmシリカ溶液(42.87重量%)を生じた。この方法を複数回繰り返して、加工用の大きなバッチを得た。
【0141】
均質なコーティング溶液が得られるまで急速な撹拌の下、以下のものを互いに混合することにより、コーティング溶液Cを調製した:292.5グラムの42.87%イソオクチル/PEG2改質20nmシリカ溶液、153.6グラムのSR444(Sartomer(Exton,PA)から入手可能)、400グラムのイソプロピルアルコール、30グラムの1−メトキシ−プロパノール及び8.5グラムのIrgacure 184(Ciba Specialties Chemical(Tarrytown,NY))。
【0142】
5.0cc/分の速度で20.3cm(8インチ)幅のスロットタイプコーティングダイにコーティング溶液「C」をシリンジで吸い上げた。スロットコーティングダイは、5フィート/分(152cm/分)で移動する基板の上に、20.3cm幅の塗料を均一に分配した。
【0143】
次に、紫外線を透過させることのできる石英窓を含む紫外線LED硬化チャンバーに、コーティングされた基材を通すことによって、コーティングを重合させた。紫外線LEDバンクは、ダウンウェブ方向に16個、クロスウェブ方向に22個(およそ20.3cm×20.3cmの範囲を占める)の352個の紫外線LEDの長方形配列を含むものであった。この紫外線LEDを、2つの水冷式ヒートシンクの上に置いた。LED(Cree,Inc.(Durham NC)から入手可能)は公称波長395nmで操作され、45ボルト、13アンペアで作動した。TENMA 72−6910(42V/10A)電力供給機(Tenma(Springboro OH))により、UV−LED配列を通電し、ファンで冷却した。紫外線LEDを、基板から約2.54cmの距離を置いて硬化チャンバーの石英窓の上に配置した。紫外線LED硬化チャンバーに、46.7リットル/分(毎時100立方フィート)の流量で窒素流を供給し、結果として、硬化チャンバー内に約150ppmの酸素濃度を得た。フォトマスクを、紫外線LEDの下の紫外線LEDランプと(20.3cm×20.3)石英プレートの間に配列した。フォトマスクは、コーティングしたウェブから一部の光をブロックするために線状クロスウェブパターンに配置された台形のアルミニウムテープで被覆されたPET基材であった。
【0144】
UV−LEDによる重合後、150°F(66℃)で動作する乾燥炉にコーティングを5フィート/分(152cm/分)のウェブ速度で2分間移送することにより硬化コーティング内の溶媒を除去した。次に、乾燥したコーティングを、H型バルブを取り付けて設定したFusion System Model I300P(Fusion UV Systems,Inc.(Gaithersburg MD)から入手可能)を使用して後硬化させた。UV Fusionチャンバーに、チャンバー内の酸素濃度が約50ppmになるように窒素流を供給した。%T及び%Cの正弦波形状変化が得られたが、%T及び%Cは第一領域の76%T及び72%Cから第二隣接領域の58%及び0.6%Cまでの範囲であった。
【0145】
実施例5:パターン付き再帰反射フィルム
この実施例は、再帰反射性である領域と再帰反射性ではない領域を備えるパターン付き再帰反射器を説明する。これらの領域の位置は、角部立方体再帰反射器を結合する材料の屈折率により制御した。屈折率のパターンは、GEL方法により製造される多孔質層を光学的にパターニングすることにより作り出さたが、GEL方法を用いてパターン付きモルホロジーを示す。
【0146】
コーティング溶液「D」の調製
凝縮器と温度計とを取り付けた2リットルの三口フラスコ内で、960グラムのIPA−ST−UP有機シリカ細長粒子(Nissan Chemical America(Houston,TX)から入手可能な、イソプロピルアルコール中に15.6重量%の細長シリカを分散させたもの)と19.2グラムの脱イオン水と350グラムの1−メトキシ−2−プロパノールとを高速撹拌して混合した。細長粒子は、約9nm〜約15nmの範囲の直径、及び約40nm〜約100nmの範囲の長さを有するものであった。粒子を15.2重量%IPA中に分散し、22.8グラムのSilquest A−174シラン(GE Advanced Materials(Wilton CT)から入手可能)をフラスコに添加した。得られた混合物を30分間撹拌した。
【0147】
この混合物を16時間、81℃に保った。次に、この溶液を室温まで冷却し、溶液中の約950グラムの溶媒を、ロータリーエバポレータを使用して40℃水浴で除去し、44.56重量%のA−174で改質された細長いシリカが1−メトキシ−2−プロパノールに分散している透明なA−174で改質された細長いシリカ溶液を得た(本明細書ではA−174改質UPシリカ)。この方法を複数回繰り返して、加工用の大きなバッチを得た。
【0148】
均質なコーティング溶液が得られるまで急速な撹拌の下、以下のものを互いに混合することにより、コーティング溶液「D」を調製した:336.8グラムのA−174改質UPシリカ、150グラムのSR444(Sartomer(Exton,PA)から入手可能)、263グラムのイソプロピルアルコール、及び7.5グラムのIrgacure 184及び0.375グラムのIrgacure 819(どちらもCiba Specialties Chemical(Tarrytown,NY)から入手可能)。
【0149】
立方体角部再帰反射器の立方体角部側をコーティング溶液「D」でハンドコーティングし、ポリプロピレン剥離ライナーをコーティング上に配置した。矩形格子パターンを有する石英マスク上にパターン化されたニッケルをポリプロピレン剥離ライナーの上部に配置した。このサンプルを次に、空気中でFusion Hバルブを取り付けたベルト供給硬化チャンバー(RPC industries)で硬化させた。このサンプルを次にチャンバーから取り出し、マスクと剥離ライナーを取り外し、サンプルを120°Fオーブンに約5分にわたって配置して乾燥させた。このサンプルを次に(窒素雰囲気内の)硬化チャンバーに再び通過させて、残っているアクリレートを十分に硬化させた。このサンプルをTiO2を装填した接着転移媒体に手で積層した。このサンプルでは、矩形格子パターンが再帰反射において視認可能であったことが示され、低屈折率コーティングは再帰反射器の光学活性を維持した。
【0150】
記載の実施形態は、例えば、屈折率、ヘイズ、透過率及び透明度の光学特性の制御のために光学フィルムが使用できる任意の場で使用することができる。広くは、記載の実施形態は、光マネジメントフィルム又は光マネジメントフィルム積層体、中空及び中実バックライトなどのバックライト、TV、ノートブックコンピューター、コンピューターモニターなどのディスプレイといった薄い光学的透過性構造、並びに、広告、情報ディスプレイ又は照射用にも使用される光学的透過性構造が使用される場で適用することができる。本開示は、光学ディスプレイを組み込む、ラップトップ型コンピュータ、及び個人用携帯情報端末(PDA)、個人用ゲーム機器、携帯電話、個人用メディアプレーヤー、携帯用コンピュータ及びこれらに類するものなどの携帯端末が挙げられる電子機器にも適用できる。本開示の非平滑化フィルムを用いるバックライトは、多くの他の領域で用途を有する。例えば、バックライトLCDシステム、照明器具、作業照明、光源、サイン及び店頭表示用ディスプレイは、記載の実施形態を使用して、作製することができる。
【0151】
指示がない限り、本明細書及び請求項で使用される特性となる大きさ、量、及び物理特性を示すすべての数字は、「約」と言う用語によって修飾されることを理解されたい。それゆえに、別途記載のない限りは、本明細書及び添付の請求項に説明される数字のパラメータは近似値であり、本明細書に開示された教示を使用して当業者が獲得しようとする所望の特性に応じて変化し得る。
【0152】
本明細書に引用したすべての参照文献及び刊行物は、本開示と直接矛盾しうる場合を除いて、それらの全容を本開示に明確に援用するものである。以上、本明細書において特定の実施形態について図示及び説明してきたが、当業者であれば、本開示の範囲から逸脱することなく、様々な代替的及び/又は同等の実施形態を、図示及び説明した特定の実施形態に置き換えることが可能である点は認識されるであろう。本出願は、本明細書において考察した特定の実施形態のあらゆる適合形態又は変形形態を網羅するものである。したがって、本開示は「特許請求の範囲」及びその均等物によってのみ限定されるものとする。
本願発明に関連する発明の実施形態について以下に列挙する。
[実施形態1]
バインダーと、
複数のナノボイドと、を備える、勾配ポリマーフィルムであって、ここで、複数のナノボイドの局所的体積分率が前記勾配ポリマーフィルムの横断面にわたって変化する、勾配ポリマーフィルム。
[実施形態2]
前記局所的体積分率が、前記横断面内の第一方向に沿って本質的に一定を維持する、実施形態1に記載の勾配ポリマーフィルム。
[実施形態3]
前記局所的体積分率が、前記横断面にわたって、第一方向に沿って、及び、前記第一方向と直交する第二方向に沿って、変化する、実施形態1に記載の勾配ポリマーフィルム。
[実施形態4]
前記局所的体積分率が、前記横断面に垂直な厚さ方向において更に変化する、実施形態1に記載の勾配ポリマーフィルム。
[実施形態5]
複数の粒子を更に備える、実施形態1に記載の勾配ポリマーフィルム。
[実施形態6]
前記バインダーと前記複数の粒子の重量比が約1:2以上である、実施形態5に記載の勾配ポリマーフィルム。
[実施形態7]
前記局所的体積分率が、前記横断面にわたってパターンで変化する、実施形態1に記載の勾配ポリマーフィルム。
[実施形態8]
前記パターンがランダムパターンである、実施形態7に記載の勾配ポリマーフィルム。
[実施形態9]
前記パターンが平行なストライプを含む、実施形態7に記載の勾配ポリマーフィルム。
[実施形態10]
前記パターンが島を含む、実施形態7に記載の勾配ポリマーフィルム。
[実施形態11]
前記島が配列で配置される、実施形態10に記載の勾配ポリマーフィルム。
[実施形態12]
前記局所的体積分率が局所的孔径分布を含む、実施形態1に記載の勾配ポリマーフィルム。
[実施形態13]
バインダーと、
複数のナノボイドと、を備える勾配ポリマーフィルムであって、ここで、前記勾配ポリマーフィルムの第一領域に近接する複数のナノボイドの第一局所的体積分率が、前記勾配ポリマーフィルムの横断面に沿って、前記第一領域に隣接する第二領域に近接する複数のナノボイドの第二局所的体積分率よりも大きい、勾配ポリマーフィルム。
[実施形態14]
前記複数のナノボイドの第一局所的体積分率が、前記勾配ポリマーフィルムの横断面に沿って、前記複数のナノボイドの第二局所的体積分率に対して単調に減少する、実施形態13に記載の勾配ポリマーフィルム
[実施形態15]
前記複数のナノボイドの第一局所的体積分率が、前記勾配ポリマーフィルムの横断面に沿って、前記複数のナノボイドの第二局所的体積分率に対して階段状様式で減少する、実施形態13に記載の勾配ポリマーフィルム。
[実施形態16]
前記複数のナノボイドの第二局所的体積分率が、前記複数のナノボイドの第一局所的体積分率の50%未満である、実施形態13に記載の勾配ポリマーフィルム。
[実施形態17]
前記複数のナノボイドの第二局所的体積分率が、前記複数のナノボイドの第一局所的体積分率の20%未満である、実施形態13に記載の勾配ポリマーフィルム。
[実施形態18]
前記複数のナノボイドの第二局所的体積分率が、前記複数のナノボイドの第一局所的体積分率の10%未満である、実施形態13に記載の勾配ポリマーフィルム。
[実施形態19]
前記複数のナノボイドの第二局所的体積分率が、前記複数のナノボイドの第一局所的体積分率の1%未満である、実施形態13に記載の勾配ポリマーフィルム。
[実施形態20]
前記勾配ポリマーフィルムが、約30%以上である前記複数のナノボイドの嵩体積分率を有する、実施形態13に記載の勾配ポリマーフィルム
[実施形態21]
複数の粒子を更に備える、実施形態13に記載の勾配ポリマーフィルム。
[実施形態22]
前記バインダーと前記複数の粒子の重量比が約1:2以上である、実施形態21に記載の勾配ポリマーフィルム。
[実施形態23]
前記バインダーと前記複数の粒子の重量比が約1:1.5以上である、実施形態21に記載の勾配ポリマーフィルム。
[実施形態24]
前記複数の粒子の少なくとも一部が、前記バインダーに化学結合する反応性基を含む、実施形態21に記載の勾配ポリマーフィルム。
[実施形態25]
前記複数の粒子の少なくとも一部が反応性基を含まない、実施形態21に記載の勾配ポリマーフィルム。
[実施形態26]
前記複数の粒子が、約2マイクロメートル以下である平均サイズを有する、実施形態21に記載の勾配ポリマーフィルム。
[実施形態27]
前記複数の粒子が、約1マイクロメートル以下である平均サイズを有する、実施形態21に記載の勾配ポリマーフィルム。
[実施形態28]
前記複数の粒子が、細長粒子又は球形粒子を含む、実施形態21に記載の勾配ポリマーフィルム。
[実施形態29]
前記複数のナノボイドが、約3マイクロメートル以下である平均ボイドサイズを有する、実施形態13に記載の勾配ポリマーフィルム
[実施形態30]
前記複数のナノボイドが、約1マイクロメートル以下である平均ボイドサイズを有する、実施形態13に記載の勾配ポリマーフィルム。
[実施形態31]
前記複数のナノボイドが、約0.7マイクロメートル以下である平均ボイドサイズを有する、実施形態13に記載の勾配ポリマーフィルム
[実施形態32]
前記勾配ポリマーフィルム内の複数のナノボイドの嵩体積分率が約40%以上である、実施形態20に記載の勾配ポリマーフィルム。
[実施形態33]
前記勾配ポリマーフィルム内の複数のナノボイドの嵩体積分率が約50%以上である、実施形態20に記載の勾配ポリマーフィルム。
[実施形態34]
前記バインダーと前記複数の粒子の重量比が約1:1以上である、実施形態21に記載の勾配ポリマーフィルム。
[実施形態35]
前記バインダーと前記複数の粒子の重量比が約2:1以上である、実施形態21に記載の勾配ポリマーフィルム
[実施形態36]
前記第一領域に近接する前記勾配ポリマーフィルムの有効屈折率が、前記第二領域に近接する前記勾配ポリマーフィルムの屈折率よりも小さい、実施形態13に記載の勾配ポリマーフィルム。
[実施形態37]
前記第一領域に近接する前記勾配ポリマーフィルムの屈折率と前記第二領域に近接する前記勾配ポリマーフィルムの屈折率の差が、約0.01〜約0.25の範囲内である、実施形態36に記載の勾配ポリマーフィルム。
[実施形態38]
前記第一領域に近接する前記勾配ポリマーフィルムの屈折率が約1.35以下である、実施形態36に記載の勾配ポリマーフィルム。
[実施形態39]
前記第一領域に近接する前記勾配ポリマーフィルムの屈折率が約1.25以下である、実施形態36に記載の勾配ポリマーフィルム。
[実施形態40]
前記第一領域に近接する前記勾配ポリマーフィルムの屈折率が約1.20以下である、実施形態36に記載の勾配ポリマーフィルム。
[実施形態41]
前記第一領域に近接する前記勾配ポリマーフィルムの屈折率が約1.15以下である、実施形態36に記載の勾配ポリマーフィルム。
[実施形態42]
前記第一領域が、約20%以下である光学ヘイズを有する、実施形態13に記載の勾配ポリマーフィルム。
[実施形態43]
前記第一領域が、約50%以上である光学ヘイズを有する、実施形態13に記載の勾配ポリマーフィルム。
[実施形態44]
前記第一領域が、約70%以上である光学ヘイズを有する、実施形態13に記載の勾配ポリマーフィルム。
[実施形態45]
前記第一領域が、約80%以上である光学ヘイズを有する、実施形態13に記載の勾配ポリマーフィルム。
[実施形態46]
前記第一領域が、約90%以上である光学ヘイズを有する、実施形態13に記載の勾配ポリマーフィルム。
[実施形態47]
前記第一領域が、約10%以下である光学的透明度を有する、実施形態13に記載の勾配ポリマーフィルム。
[実施形態48]
前記第一領域が、約5%以下である光学的透明度を有する、実施形態13に記載の勾配ポリマーフィルム。
[実施形態49]
前記第一領域が、約50%以上である光学的透明度を有する、実施形態13に記載の勾配ポリマーフィルム。
[実施形態50]
前記第一領域が、約70%以上である光学的透明度を有する、実施形態13に記載の勾配ポリマーフィルム。
[実施形態51]
前記第一領域が、約90%以上である光学的透明度を有する、実施形態13に記載の勾配ポリマーフィルム。
[実施形態52]
前記第一領域が、約30%以上である拡散光反射率を有する、実施形態13に記載の勾配ポリマーフィルム。
[実施形態53]
前記第一領域が、約40%以上である拡散光反射率を有する、実施形態13に記載の勾配ポリマーフィルム。
[実施形態54]
前記第一領域が、約50%以上である拡散光反射率を有する、実施形態13に記載の勾配ポリマーフィルム。
[実施形態55]
前記第一領域が、30%以上である透過率を有する、実施形態13に記載の勾配ポリマーフィルム
[実施形態56]
前記第一局所的体積分率が第一局所的孔径分布を含む、実施形態13に記載の勾配ポリマーフィルム。
[実施形態57]
約1マイクロメートル以上である厚さを有する、実施形態1又は実施形態13に記載の勾配ポリマーフィルム。
[実施形態58]
約2マイクロメートル以上である厚さを有する、実施形態1又は実施形態13に記載の勾配ポリマーフィルム。
[実施形態59]
基材と、
前記基材上に配置される実施形態1又は実施形態13に記載の勾配ポリマーフィルムと、を備える、光学構造体。
[実施形態60]
前記基材が、ポリマーフィルム、剥離ライナー、接着剤、体積拡散体、表面拡散体、回折拡散体、屈折拡散体、再帰反射器、吸収偏光子、反射偏光子、繊維偏光子、コレステリック偏光子、多層偏光子、ワイヤグリッド偏光子、部分反射子、体積反射子、多層高分子反射子、金属反射子、金属/誘電体多層反射子、繊維、レンズ、ミクロ構造、中実光ガイド又は中空光ガイドのうちの少なくとも1つを備える、実施形態59に記載の光学構造体。
[実施形態61]
前記ミクロ構造が、立方体角部再帰反射器、輝度向上フィルム(BEF)、小型レンズ、ゲイン拡散体、光抽出フィルム又は転向フィルムを備える、実施形態60に記載の光学構造体。
[実施形態62]
前記勾配ポリマーフィルム又は前記基材の反対面上に配置される光学接着剤層を更に備える、実施形態59に記載の光学構造体。
[実施形態63]
前記基材と前記勾配ポリマーフィルムとの間に配置される光学接着剤層を更に備える、実施形態59に記載の光学構造体。
[実施形態64]
前記勾配ポリマーフィルムがバルブ非表示フィルムを含む、実施形態59に記載の光学構造体。
[実施形態65]
屈折率、ヘイズ、透明度又は透過率のうちの少なくとも1つが前記横断面にわたって変化する、実施形態1又は実施形態13に記載の勾配ポリマーフィルム。
[実施形態66]
勾配ポリマーのための方法であって、
基材上に溶液を配置してコーティングを形成する工程であって、前記コーティングが重合性バインダーと溶媒とを含む、工程、
前記コーティングの第一部分を選択的に重合して前記溶媒中に不溶性ポリマーマトリックスを形成する工程、
前記コーティングから前記溶媒の大部分を除去する工程、
前記第一部分に隣接する前記コーティングの第二部分を重合する工程、を含む、方法。
[実施形態67]
前記重合性バインダーが、紫外(UV)線硬化性バインダーを含み、選択的に重合する工程が、前記コーティングをマスク越しに紫外線に曝露することを含む、実施形態66に記載の方法。
図1A
図1B
図1C
図1D
図1E
図1F
図1G
図1H
図1I
図2
図3
図4
図5
図6A
図6B
図6C
図6D
図6E
図6F
図7A
図7B
図8
図9