(58)【調査した分野】(Int.Cl.,DB名)
25℃から175℃まで3分で昇温し、次いで175℃を3時間維持する条件下のDSC測定により描かれるDSC曲線において、175℃に達してから反応ピークが消滅するまでの時間が30分未満であり、
175℃で30分加熱することにより硬化させて得られる硬化物の粘弾性を10Hzで測定することにより得られる200℃の引張貯蔵弾性率が100MPa以上である、
半導体装置の製造に用いられる接着シート。
【発明を実施するための形態】
【0015】
以下に実施形態を掲げ、本発明を詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
【0016】
[実施形態1]
(接着シート3)
図1に示すように、接着シート3の形態はシート状である。接着シート3は熱硬化性を備える。
【0017】
接着シート3は次の性質をさらに備える。すなわち、25℃から175℃まで3分で昇温し、次いで175℃を3時間維持する条件下のDSC測定により描かれるDSC曲線において、175℃に達してから反応ピークが消滅するまでの時間が30分未満である。175℃に達してから反応ピークが消滅するまでの時間は30分未満であるので、短時間で硬化させることが可能である。また、標準的なワイヤーボンディング条件で完全又は略完全に硬化させることが可能で、半導体チップの振動を低減できる。175℃に達してから反応ピークが消滅するまでの時間は、好ましくは25分未満である。一方、175℃に達してから反応ピークが消滅するまでの時間の下限は、例えば5分、10分、15分などである。
【0018】
「反応ピークが消滅する」とは、測定用サンプルとリファレンス用サンプルの温度が等しくなるように両者に加えた単位時間当たりの熱エネルギーの入力の差が一定になることをいう。
【0019】
175℃に達してから反応ピークが消滅するまでの時間は、硬化促進剤の種類、硬化促進剤の含有量、樹脂の種類などによりコントロールできる。
【0020】
好ましくは、接着シート3は次の性質をさらに備える。すなわち、25℃〜300℃の範囲を毎分10℃で昇温する条件下のDSC測定により得られる反応熱量は80mJ/mg以上、より好ましくは85mJ/mg以上である。一方、反応熱量は、好ましくは300mJ/mg以下、より好ましくは200mJ/mg以下である。
【0021】
「反応熱量」とは、25℃〜300℃の範囲を毎分10℃で昇温する条件下のDSC測定により測定される熱量を試験片の重量で割ることにより算出される値である。
【0022】
接着シート3を硬化させて得られる硬化物の粘弾性を10Hzで測定することにより得られる200℃の引張貯蔵弾性率は100MPa以上、好ましくは200MPa以上である。100MPa以上であるので、半導体チップの振動を低減することが可能で、銅ワイヤーとパッドの接合不良、半導体チップの割れを低減できる。200℃の引張貯蔵弾性率は、好ましくは1000MPa以下、より好ましくは700MPa以下である。200℃の引張貯蔵弾性率の上限として、例えば、500MPa、400MPaなども例示できる。
なお、硬化物は、接着シート3を175℃で30分加熱し、硬化させることにより得られたものである。
【0023】
硬化物の200℃の引張貯蔵弾性率は、フェノール樹脂の水酸基当量、シリカフィラーの含有量、シリカフィラーの粒径などによりコントロールできる。例えば、水酸基当量が小さいフェノール樹脂を使用すること、シリカフィラーの含有量を増加させること、粒径の小さいシリカフィラーを使用することにより、200℃の引張貯蔵弾性率を高めることができる。
【0024】
硬化物のTgは、好ましくは150℃以上、より好ましくは180℃以上である。150℃以上であると、硬化物の200℃の引張貯蔵弾性率を100MPa以上に設定しやすい。一方、硬化物のTgは、好ましくは250℃以下、より好ましくは220℃以下である。
【0025】
硬化物のTg(「ガラス転移温度」)は、フェノール樹脂の水酸基当量などによりコントロールできる。
【0026】
接着シート3は、樹脂成分を含む。樹脂成分としては、アクリル樹脂、エポキシ樹脂、フェノール樹脂などが挙げられる。
【0027】
アクリル樹脂としては、特に限定されるものではなく、炭素数30以下、特に炭素数4〜18の直鎖若しくは分岐のアルキル基を有するアクリル酸又はメタクリル酸のエステルの1種又は2種以上を成分とする重合体(アクリル共重合体)などが挙げられる。前記アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、イソブチル基、アミル基、イソアミル基、ヘキシル基、へプチル基、シクロヘキシル基、2−エチルヘキシル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、オクタデシル基、又はドデシル基などが挙げられる。
【0028】
また、重合体(アクリル共重合体)を形成する他のモノマーとしては、特に限定されるものではなく、例えばアクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマール酸若しくはクロトン酸などの様なカルボキシル基含有モノマー、無水マレイン酸若しくは無水イタコン酸などの様な酸無水物モノマー、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸6−ヒドロキシヘキシル、(メタ)アクリル酸8−ヒドロキシオクチル、(メタ)アクリル酸10−ヒドロキシデシル、(メタ)アクリル酸12−ヒドロキシラウリル若しくは(4−ヒドロキシメチルシクロヘキシル)−メチルアクリレートなどの様なヒドロキシル基含有モノマー、スチレンスルホン酸、アリルスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート若しくは(メタ)アクリロイルオキシナフタレンスルホン酸などの様なスルホン酸基含有モノマー、又は2−ヒドロキシエチルアクリロイルホスフェートなどの様な燐酸基含有モノマーが挙げられる。
【0029】
アクリル樹脂のなかでも、重量平均分子量が10万以上のものが好ましく、30万〜300万のものがより好ましく、50万〜200万のものがさらに好ましい。かかる数値範囲内であると、接着性及び耐熱性に優れるからである。なお、重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値である。
【0030】
アクリル樹脂は、エポキシ基と反応可能な官能基を含むことが好ましい。これにより、アクリル樹脂をエポキシ樹脂と架橋させることができる。
【0031】
エポキシ基と反応可能な官能基としては、例えば、カルボキシル基、ヒドロキシル基などが挙げられる。なかでも、エポキシ基との反応性が高いという理由から、カルボキシル基が好ましい。
【0032】
アクリル樹脂の酸価は、好ましくは5mgKOH/g以上、より好ましくは10mgKOH/g以上である。一方、アクリル樹脂の酸価は、好ましくは40mgKOH/g以下、より好ましくは25mgKOH/g以下である。
なお、酸価は、JIS K 0070−1992に規定される中和滴定法で測定できる。
【0033】
樹脂成分100重量%中のアクリル樹脂の含有量は、好ましくは14重量%以下、より好ましくは12重量%以下、さらに好ましくは11重量%以下である。14重量%以下であると、200℃の引張貯蔵弾性率を高めることができる。樹脂成分100重量%中のアクリル樹脂の含有量は、好ましくは5重量%以上、より好ましくは7重量%以上である。
【0034】
エポキシ樹脂としては特に限定されず、例えばビスフェノールA型、ビスフェノールF型、ビスフェノールS型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールAF型、ビフェニル型、ナフタレン型、フルオンレン型、フェノールノボラック型、オルソクレゾールノボラック型、トリスヒドロキシフェニルメタン型、テトラフェニロールエタン型などの二官能エポキシ樹脂や多官能エポキシ樹脂、又はヒダントイン型、トリスグリシジルイソシアヌレート型若しくはグリシジルアミン型などのエポキシ樹脂が用いられる。これらのエポキシ樹脂のうちノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリスヒドロキシフェニルメタン型樹脂又はテトラフェニロールエタン型エポキシ樹脂が特に好ましい。これらのエポキシ樹脂は、硬化剤としてのフェノール樹脂との反応性に富み、耐熱性などに優れるからである。
【0035】
エポキシ樹脂のエポキシ当量は、好ましくは120g/eq.以上、より好ましくは140g/eq.以上、さらに好ましくは150g/eq.以上である。一方、エポキシ樹脂のエポキシ当量は、好ましくは250g/eq.以下、より好ましくは200g/eq.以下である。
なお、エポキシ樹脂のエポキシ当量は、JIS K 7236−2009に規定された方法で測定できる。
【0036】
フェノール樹脂は、エポキシ樹脂の硬化剤として作用するものであり、例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、クレゾールノボラック樹脂、tert−ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂などのノボラック型フェノール樹脂、レゾール型フェノール樹脂、ポリパラオキシスチレンなどのポリオキシスチレンなどが挙げられる。これらのフェノール樹脂のうちフェノールノボラック樹脂、フェノールアラルキル樹脂が特に好ましい。半導体装置の接続信頼性を向上させることができるからである。
【0037】
フェノール樹脂の水酸基当量は、好ましくは120g/eq.以下、より好ましくは110g/eq.以下である。120g/eq.以下であると、架橋密度を高めることが可能で、200℃の引張貯蔵弾性率を高めることができる。一方、フェノール樹脂の水酸基当量は、好ましくは80g/eq.以上、より好ましくは90g/eq.以上である。
【0038】
エポキシ樹脂とフェノール樹脂との配合割合は、例えば、エポキシ樹脂成分中のエポキシ基1当量当たりフェノール樹脂中の水酸基が0.5〜2.0当量になるように配合することが好適である。より好適なのは、0.8〜1.2当量である。即ち、両者の配合割合がかかる範囲を外れると、十分な硬化反応が進まず、硬化物の特性が劣化し易くなるからである。
【0039】
樹脂成分100重量%中のエポキシ樹脂及びフェノール樹脂の合計含有量は、好ましくは86重量%以上、より好ましくは88重量%以上、さらに好ましくは89重量%以上である。86重量%以上であると、200℃の引張貯蔵弾性率を高めることができる。一方、エポキシ樹脂及びフェノール樹脂の合計含有量は、好ましくは95重量%以下、より好ましくは93重量%以下である。
【0040】
接着シート3がBET比表面積が4m
2/g以上のシリカフィラーを含むことが好ましい。
【0041】
シリカフィラーのBET比表面積は、好ましくは15m
2/g以上である。一方、シリカフィラーのBET比表面積は、好ましくは100m
2/g以下、より好ましくは50m
2/g以下である。
BET比表面積は、BET吸着法(多点法)により測定する。具体的には、接着シート3を、大気雰囲気下、700℃で2時間強熱して灰化させる。得られた灰分を110℃、6時間以上で真空脱気した後に、Quantachrome製4連式比表面積・細孔分布測定装置「NOVA−4200e型」を用い、窒素ガス中、77.35Kの温度下で測定する。
【0042】
シリカフィラーの新モース硬度は好ましくは4以上である。4以上であると、200℃の引張貯蔵弾性率を効果的に高めることができる。シリカフィラーの新モース硬度の上限は特に限定されないが、例えば、10である。
【0043】
接着シート3中のシリカフィラーの含有量は、好ましくは50重量%以上、より好ましくは51重量%以上である。50重量%以上であると、200℃の引張貯蔵弾性率を高めることができる。一方、シリカフィラーの含有量は、好ましくは70重量%以下、より好ましくは65重量%以下である。
【0044】
接着シート3は硬化促進剤を含むことが好ましい。硬化促進剤の含有量は、樹脂成分100重量部に対し、好ましくは0.1〜5重量部、より好ましくは0.1〜3重量部である。0.1重量部以上であると、短時間で硬化させることが可能である。
【0045】
硬化促進剤としては特に限定されず、例えば、イミダゾール系化合物、トリフェニルフォスフィン系化合物、アミン系化合物、トリフェニルボラン系化合物、トリハロゲンボラン系化合物等が挙げられる。
【0046】
イミダゾール系化合物としては、2−メチルイミダゾール(商品名;2MZ)、2−ウンデシルイミダゾール(商品名;C11Z)、2−ヘプタデシルイミダゾール(商品名;C17Z)、1,2−ジメチルイミダゾール(商品名;1.2DMZ)、2−エチル−4−メチルイミダゾール(商品名;2E4MZ)、2−フェニルイミダゾール(商品名;2PZ)、2−フェニル−4−メチルイミダゾール(商品名;2P4MZ)、1−ベンジル−2−メチルイミダゾール(商品名;1B2MZ)、1−ベンジル−2−フェニルイミダゾール(商品名;1B2PZ)、1−シアノエチル−2−メチルイミダゾール(商品名;2MZ−CN)、1−シアノエチル−2−ウンデシルイミダゾール(商品名;C11Z−CN)、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト(商品名;2PZCNS−PW)、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン(商品名;2MZ−A)、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1’)]−エチル−s−トリアジン(商品名;C11Z−A)、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン(商品名;2E4MZ−A)、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物(商品名;2MA−OK)、2−フェニル−4,5−ジヒドロキシメチルイミダゾール(商品名;2PHZ−PW)、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール(商品名;2P4MHZ−PW)等が挙げられる(いずれも四国化成(株)製)。
【0047】
トリフェニルフォスフィン系化合物としては特に限定されず、例えば、トリフェニルフォスフィン、トリブチルフォスフィン、トリ(p−メチルフェニル)フォスフィン、トリ(ノニルフェニル)フォスフィン、ジフェニルトリルフォスフィン等のトリオルガノフォスフィン、テトラフェニルホスホニウムブロマイド(商品名;TPP−PB)、メチルトリフェニルホスホニウム(商品名;TPP−MB)、メチルトリフェニルホスホニウムクロライド(商品名;TPP−MC)、メトキシメチルトリフェニルホスホニウム(商品名;TPP−MOC)、ベンジルトリフェニルホスホニウムクロライド(商品名;TPP−ZC)等が挙げられる(いずれも北興化学社製)。
【0048】
トリフェニルボラン系化合物としては特に限定されず、例えば、トリ(p−メチルフェニル)フォスフィン等が挙げられる。また、トリフェニルボラン系化合物としては、さらにトリフェニルフォスフィン構造を有するものも含まれる。トリフェニルフォスフィン構造及びトリフェニルボラン構造を有する化合物としては特に限定されず、例えば、テトラフェニルホスホニウムテトラフェニルボレート(商品名;TPP−K)、テトラフェニルホスホニウムテトラ−p−トリボレート(商品名;TPP−MK)、ベンジルトリフェニルホスホニウムテトラフェニルボレート(商品名;TPP−ZK)、トリフェニルホスフィントリフェニルボラン(商品名;TPP−S)等が挙げられる(いずれも北興化学社製)。
【0049】
アミノ系化合物としては特に限定されず、例えば、モノエタノールアミントリフルオロボレート(ステラケミファ(株)製)、ジシアンジアミド(ナカライテスク(株)製)等が挙げられる。
【0050】
トリハロゲンボラン系化合物としては特に限定されず、例えば、トリクロロボラン等が挙げられる。
【0051】
接着シート3は、前記成分以外にも、フィルム製造に一般に使用される配合剤、例えば、架橋剤などを適宜含有してよい。
【0052】
接着シート3は、通常の方法で製造できる。例えば、前記各成分を含有する接着剤組成物溶液を作製し、接着剤組成物溶液を基材セパレータ上に所定厚みとなる様に塗布して塗布膜を形成した後、塗布膜を乾燥させることで、接着シート3を製造できる。
【0053】
接着剤組成物溶液に用いる溶媒としては特に限定されないが、前記各成分を均一に溶解、混練又は分散できる有機溶媒が好ましい。例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶媒、トルエン、キシレンなどが挙げられる。塗布方法は特に限定されない。溶剤塗工の方法としては、例えば、ダイコーター、グラビアコーター、ロールコーター、リバースコーター、コンマコーター、パイプドクターコーター、スクリーン印刷などが挙げられる。なかでも、塗布厚みの均一性が高いという点から、ダイコーターが好ましい。
【0054】
基材セパレータとしては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤などの剥離剤により表面コートされたプラスチックフィルムや紙などが使用可能である。接着剤組成物溶液の塗布方法としては、例えば、ロール塗工、スクリーン塗工、グラビア塗工などが挙げられる。また、塗布膜の乾燥条件は特に限定されず、例えば、乾燥温度70〜160℃、乾燥時間1〜5分間で行うことができる。
【0055】
接着シート3の製造方法としては、例えば、前記各成分をミキサーにて混合し、得られた混合物をプレス成形して接着シート3を製造する方法なども好適である。ミキサーとしてはプラネタリーミキサーなどが挙げられる。
【0056】
接着シート3の厚みは特に限定されないが、5μm以上が好ましく、15μm以上がより好ましい。5μm未満であると、反りが生じた半導体ウエハや半導体チップと接着しない箇所が発生し、接着面積が不安定となる場合がある。また、接着シート3の厚みは100μm以下が好ましく、50μm以下がより好ましい。100μmを超えると、ダイアタッチの荷重によって接着シート3が過度にはみ出し、パッドを汚染する場合がある。
【0057】
接着シート3は、半導体装置の製造に使用される。具体的には、リードフレームなどの被着体と半導体チップとを接着するためのフィルム(以下、「ダイアタッチフィルム」という)として使用される。被着体としては、リードフレーム、インターポーザ、半導体チップなどが挙げられる。
【0058】
接着シート3は、ダイシングシート付き接着シートの形態で使用することが好ましい。
【0059】
(ダイシングシート付き接着シート10)
ダイシングシート付き接着シート10について説明する。
【0060】
図2に示すように、ダイシングシート付き接着シート10は、ダイシングシート1及びダイシングシート1上に配置された接着シート3を備える。ダイシングシート1は、基材11及び基材11上に配置された粘着剤層12を備える。接着シート3は粘着剤層12上に配置されている。
【0061】
図3に示すように、ダイシングシート付き接着シート10は、ワーク(半導体ウエハ4など)貼り付け部分にのみ接着シート3を形成した構成であってもよい。
【0062】
基材11は、ダイシングシート付き接着シート10の強度母体となるものであり、紫外線透過性を有するものが好ましい。基材11としては、例えば、低密度ポリエチレン、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテンなどのポリオレフィン、エチレン−酢酸ビニル共重合体、アイオノマー樹脂、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン−ブテン共重合体、エチレン−ヘキセン共重合体、ポリウレタン、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリフェニルスルフイド、アラミド(紙)、ガラス、ガラスクロス、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース系樹脂、シリコーン樹脂、金属(箔)、紙などが挙げられる。
【0063】
基材11の表面は、隣接する層との密着性、保持性などを高める為、慣用の表面処理、例えば、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理などの化学的又は物理的処理、下塗剤(例えば、後述する粘着物質)によるコーティング処理を施すことができる。
【0064】
基材11の厚さは、特に制限されず適宜に決定できるが、一般的には5〜200μm程度である。
【0065】
粘着剤層12の形成に用いる粘着剤としては特に制限されず、例えば、アクリル系粘着剤、ゴム系粘着剤などの一般的な感圧性接着剤を用いることができる。感圧性接着剤としては、半導体ウエハやガラスなどの汚染をきらう電子部品の超純水やアルコールなどの有機溶剤による清浄洗浄性などの点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。
【0066】
アクリル系ポリマーとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、s−ブチルエステル、t−ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2−エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステルなどのアルキル基の炭素数1〜30、特に炭素数4〜18の直鎖状又は分岐鎖状のアルキルエステルなど)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステルなど)の1種又は2種以上を単量体成分として用いたアクリル系ポリマーなどが挙げられる。なお、(メタ)アクリル酸エステルとはアクリル酸エステル及び/又はメタクリル酸エステルをいい、本発明の(メタ)とは全て同様の意味である。
【0067】
アクリル系ポリマーは、凝集力、耐熱性などの改質を目的として、必要に応じ、前記(メタ)アクリル酸アルキルエステル又はシクロアルキルエステルと共重合可能な他のモノマー成分に対応する単位を含んでいてもよい。この様なモノマー成分として、例えば、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸などのカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸などの酸無水物モノマー;(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸6−ヒドロキシヘキシル、(メタ)アクリル酸8−ヒドロキシオクチル、(メタ)アクリル酸10−ヒドロキシデシル、(メタ)アクリル酸12−ヒドロキシラウリル、(4−ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレートなどのヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸などのスルホン酸基含有モノマー;2−ヒドロキシエチルアクリロイルホスフェートなどのリン酸基含有モノマー;アクリルアミド、アクリロニトリルなどが挙げられる。これら共重合可能なモノマー成分は、1種又は2種以上使用できる。これら共重合可能なモノマーの使用量は、全モノマー成分の40重量%以下が好ましい。
【0068】
更に、アクリル系ポリマーは、架橋させる為、多官能性モノマーなども、必要に応じて共重合用モノマー成分として含むことができる。この様な多官能性モノマーとして、例えば、ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレートなどが挙げられる。これらの多官能性モノマーも1種又は2種以上用いることができる。多官能性モノマーの使用量は、粘着特性などの点から、全モノマー成分の30重量%以下が好ましい。
【0069】
アクリル系ポリマーは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合、乳化重合、塊状重合、懸濁重合などの何れの方式で行うこともできる。清浄な被着体への汚染防止などの点から、低分子量物質の含有量が小さいのが好ましい。この点から、アクリル系ポリマーの数平均分子量は、好ましくは30万以上、更に好ましくは40万〜300万程度である。
【0070】
また、前記粘着剤には、ベースポリマーであるアクリル系ポリマーなどの数平均分子量を高める為、外部架橋剤を適宜に採用することもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤などのいわゆる架橋剤を添加し反応させる方法が挙げられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、更には、粘着剤としての使用用途によって適宜決定される。一般的には、前記ベースポリマー100重量部に対して、5重量部程度以下、更には0.1〜5重量部配合するのが好ましい。更に、粘着剤には、必要により、前記成分のほかに、従来公知の各種の粘着付与剤、老化防止剤などの添加剤を用いてもよい。
【0071】
粘着剤層12は放射線硬化型粘着剤により形成することができる。放射線硬化型粘着剤は、紫外線などの放射線の照射により架橋度を増大させてその粘着力を容易に低下させることができる。
【0072】
図2に示す粘着剤層12のワーク貼り付け部分に対応する部分12aのみを放射線照射することにより他の部分12bとの粘着力の差を設けることができる。この場合、未硬化の放射線硬化型粘着剤により形成されている前記部分12bは接着シート3と粘着し、ダイシングする際の保持力を確保できる。
【0073】
また、
図3に示す接着シート3に合わせて放射線硬化型の粘着剤層12を硬化させることにより、粘着力が著しく低下した前記部分12aを形成できる。この場合、未硬化の放射線硬化型粘着剤により形成されている前記部分12bにウエハリングを固定できる。
【0074】
つまり、粘着剤層12を放射線硬化型粘着剤により形成する場合には、粘着剤層12における前記部分12aの粘着力<その他の部分12bの粘着力、となるように前記部分12aを放射線照射することが好ましい。
【0075】
放射線硬化型粘着剤は、炭素−炭素二重結合などの放射線硬化性の官能基を有し、かつ粘着性を示すものを特に制限なく使用することができる。放射線硬化型粘着剤としては、例えば、前記アクリル系粘着剤、ゴム系粘着剤などの一般的な感圧性粘着剤に、放射線硬化性のモノマー成分やオリゴマー成分を配合した添加型の放射線硬化型粘着剤を例示できる。
【0076】
配合する放射線硬化性のモノマー成分としては、例えば、ウレタンオリゴマー、ウレタン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、ジペンタエリストールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレートなどが挙げられる。また放射線硬化性のオリゴマー成分はウレタン系、ポリエーテル系、ポリエステル系、ポリカーボネート系、ポリブタジエン系など種々のオリゴマーがあげられ、その分子量が100〜30000程度の範囲のものが適当である。放射線硬化性のモノマー成分やオリゴマー成分の配合量は、前記粘着剤層の種類に応じて、粘着剤層の粘着力を低下できる量を、適宜に決定することができる。一般的には、粘着剤を構成するアクリル系ポリマーなどのベースポリマー100重量部に対して、例えば5〜500重量部、好ましくは40〜150重量部程度である。
【0077】
また、放射線硬化型粘着剤としては、前記説明した添加型の放射線硬化型粘着剤のほかに、ベースポリマーとして、炭素−炭素二重結合をポリマー側鎖又は主鎖中もしくは主鎖末端に有するものを用いた内在型の放射線硬化型粘着剤が挙げられる。内在型の放射線硬化型粘着剤は、低分子成分であるオリゴマー成分などを含有する必要がなく、又は多くは含まない為、経時的にオリゴマー成分などが粘着剤在中を移動することなく、安定した層構造の粘着剤層を形成することができる為好ましい。
【0078】
前記炭素−炭素二重結合を有するベースポリマーは、炭素−炭素二重結合を有し、かつ粘着性を有するものを特に制限なく使用できる。この様なベースポリマーとしては、アクリル系ポリマーを基本骨格とするものが好ましい。アクリル系ポリマーの基本骨格としては、前記例示したアクリル系ポリマーが挙げられる。
【0079】
前記アクリル系ポリマーへの炭素−炭素二重結合の導入法は特に制限されず、様々な方法を採用できるが、炭素−炭素二重結合はポリマー側鎖に導入するのが分子設計が容易である。例えば、予め、アクリル系ポリマーに官能基を有するモノマーを共重合した後、この官能基と反応しうる官能基及び炭素−炭素二重結合を有する化合物を、炭素−炭素二重結合の放射線硬化性を維持したまま縮合又は付加反応させる方法が挙げられる。
【0080】
これら官能基の組合せの例としては、カルボン酸基とエポキシ基、カルボン酸基とアジリジル基、ヒドロキシル基とイソシアネート基などが挙げられる。これら官能基の組合せのなかでも反応追跡の容易さから、ヒドロキシル基とイソシアネート基との組合せが好適である。また、これら官能基の組み合わせにより、前記炭素−炭素二重結合を有するアクリル系ポリマーを生成するような組合せであれば、官能基はアクリル系ポリマーと前記化合物のいずれの側にあってもよいが、前記の好ましい組み合わせでは、アクリル系ポリマーがヒドロキシル基を有し、前記化合物がイソシアネート基を有する場合が好適である。この場合、炭素−炭素二重結合を有するイソシアネート化合物としては、例えば、メタクリロイルイソシアネート、2−メタクリロイルオキシエチルイソシアネート、m−イソプロペニル−α,α−ジメチルベンジルイソシアネートなどが挙げられる。また、アクリル系ポリマーとしては、前記例示のヒドロキシ基含有モノマーや2−ヒドロキシエチルビニルエーテル、4−ヒドロキシブチルビニルエーテル、ジエチレングルコールモノビニルエーテルのエーテル系化合物などを共重合したものが用いられる。
【0081】
前記内在型の放射線硬化型粘着剤は、前記炭素−炭素二重結合を有するベースポリマー(特にアクリル系ポリマー)を単独で使用することができるが、特性を悪化させない程度に前記放射線硬化性のモノマー成分やオリゴマー成分を配合することもできる。放射線硬化性のオリゴマー成分などは、通常ベースポリマー100重量部に対して30重量部の範囲内であり、好ましくは0〜10重量部の範囲である。
【0082】
前記放射線硬化型粘着剤には、紫外線などにより硬化させる場合には光重合開始剤を含有させる。光重合開始剤としては、例えば、4−(2−ヒドロキシエトキシ)フェニル(2−ヒドロキシ−2−プロピル)ケトン、α−ヒドロキシ−α,α’−ジメチルアセトフェノン、2−メチル−2−ヒドロキシプロピオフェノン、1−ヒドロキシシクロヘキシルフェニルケトンなどのα−ケトール系化合物;メトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフエノン、2,2−ジエトキシアセトフェノン、2−メチル−1−[4−(メチルチオ)−フェニル]−2−モルホリノプロパン−1などのアセトフェノン系化合物;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アニソインメチルエーテルなどのベンゾインエーテル系化合物;ベンジルジメチルケタールなどのケタール系化合物;2−ナフタレンスルホニルクロリドなどの芳香族スルホニルクロリド系化合物;1−フェノン−1,1―プロパンジオン−2−(o−エトキシカルボニル)オキシムなどの光活性オキシム系化合物;ベンゾフェノン、ベンゾイル安息香酸、3,3’−ジメチル−4−メトキシベンゾフェノンなどのベンゾフェノン系化合物;チオキサンソン、2−クロロチオキサンソン、2−メチルチオキサンソン、2,4−ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4−ジクロロチオキサンソン、2,4−ジエチルチオキサンソン、2,4−ジイソプロピルチオキサンソンなどのチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナートなどが挙げられる。光重合開始剤の配合量は、粘着剤を構成するアクリル系ポリマーなどのベースポリマー100重量部に対して、例えば0.05〜20重量部程度である。
【0083】
また放射線硬化型粘着剤としては、例えば、特開昭60−196956号公報に開示されている、不飽和結合を2個以上有する付加重合性化合物、エポキシ基を有するアルコキシシランなどの光重合性化合物と、カルボニル化合物、有機硫黄化合物、過酸化物、アミン、オニウム塩系化合物などの光重合開始剤とを含有するゴム系粘着剤やアクリル系粘着剤などが挙げられる。
【0084】
前記放射線硬化型の粘着剤層12中には、必要に応じて、放射線照射により着色する化合物を含有させることもできる。放射線照射により、着色する化合物を粘着剤層12に含ませることによって、放射線照射された部分のみを着色することができる。放射線照射により着色する化合物は、放射線照射前には無色又は淡色であるが、放射線照射により有色となる化合物であり、例えば、ロイコ染料などが挙げられる。放射線照射により着色する化合物の使用割合は、適宜設定できる。
【0085】
粘着剤層12の厚さは、特に限定されないが、チップ切断面の欠け防止や接着シート3の固定保持の両立性などの点よりは、1〜50μm程度であるのが好ましい。好ましくは2〜30μm、更には5〜25μmが好ましい。
【0086】
ダイシングシート付き接着シート10は、セパレータにより保護されていることが好ましい(図示せず)。すなわち、接着シート3上にセパレータが配置されていることが好ましい。セパレータは、実用に供するまで接着シート3を保護する保護材としての機能を有している。セパレータは接着シート3上にワークを貼着する際に剥がされる。セパレータとしては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤などの剥離剤により表面コートされたプラスチックフィルムや紙なども使用可能である。
【0087】
ダイシングシート付き接着シート10は、通常の方法で製造できる。例えば、ダイシングシート1の粘着剤層12と接着シート3とを貼り合わせることで、ダイシングシート付き接着シート10を製造できる。
【0088】
剥離温度25℃、剥離速度300mm/minの条件下で、接着シート3をダイシングシート1から引き剥がしたときの剥離力は、好ましくは0.1N/10mm以上である。0.1N/10mm未満であると、チップ飛びが発生するおそれがある。一方、剥離力は、好ましくは0.2N/10mm以下である。0.2N/10mmを超えると、ピックアップが困難になる傾向がある。
【0089】
(半導体装置の製造方法)
図4に示すように、ダイシングシート付き接着シート10に半導体ウエハ4を圧着する。半導体ウエハ4としては、シリコンウエハ、シリコンカーバイドウエハ、化合物半導体ウエハなどが挙げられる。化合物半導体ウエハとしては、窒化ガリウムウエハなどが挙げられる。
【0090】
圧着方法としては、例えば、圧着ロールなどの押圧手段により押圧する方法などが挙げられる。
【0091】
圧着温度(貼り付け温度)は、35℃以上が好ましく、37℃以上がより好ましい。圧着温度の上限は低い方が好ましく、好ましくは50℃以下、より好ましくは45℃以下である。低温で圧着することにより、半導体ウエハ4への熱影響を防止することが可能で、半導体ウエハ4の反りを抑制できる。また、圧力は、1×10
5Pa〜1×10
7Paであることが好ましく、2×10
5Pa〜8×10
6Paであることがより好ましい。
【0092】
図5に示すように、半導体ウエハ4をダイシングすることにより、ダイボンド用チップ41を形成する。ダイボンド用チップ41は、半導体チップ5及び半導体チップ5上に配置された接着フィルム31を備える。半導体チップ5は、チップ本体部502及びチップ本体部502上に配置されたパッド501を備える。パッド501は電極パッドである。パッド501の材料としては、アルミニウムなどが挙げられる。本工程では、ダイシングシート付き接着シート10まで切込みを行なうフルカットと呼ばれる切断方式などを採用できる。ダイシング装置としては特に限定されず、従来公知のものを用いることができる。また、半導体ウエハ4は、ダイシングシート付き接着シート10により接着固定されているので、チップ欠けやチップ飛びを抑制できると共に、半導体ウエハ4の破損も抑制できる。
【0093】
ダイボンド用チップ41をピックアップする。ピックアップの方法としては特に限定されず、従来公知の種々の方法を採用できる。例えば、個々の半導体チップ5をダイシングシート付き接着シート10側からニードルによって突き上げ、次いでダイボンド用チップ41をピックアップ装置によってピックアップする方法などが挙げられる。
【0094】
粘着剤層12が紫外線硬化型である場合、粘着剤層12に紫外線を照射した後にピックアップする。これにより、粘着剤層12のダイボンド用チップ41に対する粘着力が低下するので、ダイボンド用チップ41を容易にピックアップできる。紫外線照射の際の照射強度、照射時間などの条件は特に限定されず、適宜必要に応じて設定すればよい。
【0095】
図6に示すように、ダイボンド用チップ41を被着体6に圧着することにより半導体チップ付き被着体61を得る。半導体チップ付き被着体61は、被着体6、被着体6上に配置された接着フィルム31及び接着フィルム31上に配置された半導体チップ5を備える。被着体6は、本体部602及び本体部602上に配置された端子部601を備える。
【0096】
ダイボンド用チップ41を被着体6に圧着する温度(以下、「ダイアタッチ温度」という)は、好ましくは80℃以上、より好ましくは90℃以上である。また、ダイアタッチ温度は、好ましくは150℃以下、より好ましくは130℃以下である。
【0097】
半導体チップ付き被着体61を加圧下で加熱することにより接着フィルム31を硬化させる。これにより、半導体チップ5を被着体6に固着させる。加圧下で接着フィルム31を硬化させることにより、接着フィルム31と被着体6との間に存在するボイドを消滅させることが可能で、接着フィルム31が被着体6と接触する面積を確保できる。
【0098】
加圧下で加熱する方法としては、例えば、不活性ガスが充填されたチャンバー内に配置された半導体チップ付き被着体61を加熱する方法などが挙げられる。加圧雰囲気の圧力は、好ましくは0.5kg/cm
2(4.9×10
−2MPa)以上、より好ましくは1kg/cm
2(9.8×10
−2MPa)以上、さらに好ましくは5kg/cm
2(4.9×10
−1MPa)以上である。0.5kg/cm
2以上であると、接着フィルム31と被着体6との間に存在するボイドを容易に消滅させることができる。加圧雰囲気の圧力は、好ましくは20kg/cm
2(1.96MPa)以下、より好ましくは18kg/cm
2(1.77MPa)以下、さらに好ましくは15kg/cm
2(1.47MPa)以下である。20kg/cm
2以下であると、過度な加圧による接着フィルム31のはみ出しを抑制できる。
【0099】
加熱温度は、好ましくは80℃以上、より好ましくは120℃以上、さらに好ましくは150℃以上、特に好ましくは170℃以上である。80℃以上であると、接着フィルム31を適度な硬さとすることが可能で、加圧キュアによりボイドを効果的に消失させることができる。加熱温度は、好ましくは260℃以下、より好ましくは200℃以下、より好ましくは180℃以下である。260℃以下であると、接着フィルム31の分解を防ぐことができる。
【0100】
加熱時間は、好ましくは0.1時間以上、より好ましくは0.2時間以上である。加熱時間は、好ましくは24時間以下、より好ましくは3時間以下、さらに好ましくは1時間以下、特に好ましくは30分以下である。
【0101】
図7に示すように、パッド501と端子部601をボンディングワイヤー7で電気的に接続するワイヤーボンディング工程を行う。ボンディングワイヤー7の材料としては、銅などが挙げられる。
【0102】
ワイヤーボンディング工程は、ボンディングワイヤー7の一端とパッド501を接合するステップ、ボンディングワイヤー7の他端と端子部601を接合するステップなどを含む。
【0103】
ボンディングワイヤー7の一端とパッド501を接合するステップは、具体的には、ボンディングワイヤー7の一端をパッド501に圧着しながらボンディングワイヤー7に超音波を印加することにより、ボンディングワイヤー7とパッド501を接合するステップである。
【0104】
好ましくは175℃以上、より好ましくは200℃以上で接合する。一方、好ましくは300℃以以下、より好ましくは260℃以以下で接合する。
【0105】
ボンディングワイヤー7の他端と端子部601を接合するステップは、具体的には、ボンディングワイヤー7の他端を端子部601に圧着しながら、ボンディングワイヤー7に超音波を印加することによりボンディングワイヤー7と端子部601を接合するステップである。
【0106】
ワイヤーボンディング工程を行った後、封止樹脂8により半導体チップ5を封止する封止工程を行う。本工程は、被着体6に搭載された半導体チップ5やボンディングワイヤー7を保護する為に行われる。本工程は、封止用の樹脂を金型で成型することにより行う。封止樹脂8としては、例えばエポキシ系の樹脂を使用する。樹脂封止の際の加熱温度は、好ましくは165℃以上、より好ましくは170℃以上であり、加熱温度は、好ましくは185℃以下、より好ましくは180℃以下である。
【0107】
必要に応じて、封止後に更に加熱をしてもよい(後硬化工程)。これにより、封止工程で硬化不足の封止樹脂8を完全に硬化できる。加熱温度は適宜設定できる。
【0108】
以上のとおり、ダイシングシート付き接着シート10を準備する工程と、接着シート3に半導体ウエハ4を圧着する工程と、接着シート3上に配置された半導体ウエハ4をダイシングすることにより、パッド501を備える半導体チップ5及び半導体チップ5上に配置された接着フィルム31を備えるダイボンド用チップ41を形成する工程と、端子部601を備える被着体6にダイボンド用チップ41を圧着することによりチップ付き被着体61を形成する工程と、チップ付き被着体61を加熱することにより接着フィルム31を硬化させる工程と、銅を含むワイヤー7の一端とパッド501を接合するステップ及びワイヤー7の他端と端子部601を接合するステップを含み、接着フィルム31を硬化させる工程の後に行う工程とを含む方法により、半導体装置を製造できる。
【実施例】
【0109】
以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
【0110】
実施例で使用した成分について説明する。
アクリルゴム:ナガセケムテックス社製のテイサンレジンSG−708−6(カルボキシル基及びヒドロキシル基を含むアクリル酸エステル共重合体、Mw:70万、酸価:9mgKOH/g、ガラス転移温度:4℃)
エポキシ樹脂1:日本化薬社製のEPPN−501HY(エポキシ当量169g/eq.のエポキシ樹脂)
エポキシ樹脂2:日本化薬社製のEOCN−1020(エポキシ当量198g/eq.のエポキシ樹脂)
エポキシ樹脂3:三菱化学社製のjER828(エポキシ当量190g/eq.のエポキシ樹脂)
フェノール樹脂1:明和化成社製のMEH−7851S(水酸基当量209g/eq.のフェノール樹脂)
フェノール樹脂2:荒川化学社製のP−180(水酸基当量105g/eq.のフェノール樹脂)
シリカフィラー:アドマテックス社製のSO−25R(BET比表面積6.5m
2/g、新モース硬度7の球状シリカ)
触媒:北興化学工業(株)製のTPP−MK(テトラフェニルホスホニウムテトラ−p−トリルボレート)
【0111】
[接着シート及びダイシングシート付き接着シートの作製]
表1に記載の配合比に従い、表1に記載の各成分及び溶媒(メチルエチルケトン)を、ハイブリッドミキサー(キーエンス製 HM−500)の攪拌釜に入れ、攪拌モード、3分で攪拌・混合した。得られたワニスを、離型処理フィルム(三菱樹脂(株)製のMRA50)にダイコーターにて塗布した後、乾燥させて、厚み20μmの接着シートを得た。接着シートから直径230mmの円形状の接着シートを切り出し、円形状の接着シートをダイシングシート(日東電工(株)製のP2130G)の粘着剤層に25℃で貼り付けて、ダイシングシート付き接着シートを作製した。
【0112】
[評価]
得られた接着シート、ダイシングシート付き接着シートについて、以下の評価を行った。結果を表1に示す。
【0113】
(貯蔵弾性率およびTgの測定)
接着シートを60℃で貼り合せて厚み400μmの積層シートを得た。積層シートを10mm×30mm×400μmのサイズに加工することにより加工品を得た。加工品を175℃で30分加熱することにより硬化させた。硬化後に加工品の粘弾性を動的粘弾性系測定装置(TAインスツルメンツ社製のRSA III)を用いて測定した。測定条件は、温度範囲−10℃〜285℃、昇温速度10℃/min、チャック間距離22.5mm、10Hzで行った。得られた貯蔵弾性率データから、200℃の貯蔵弾性率を読み取った。また得られたtanδのピークの温度をTgとした。
【0114】
(反応熱量の測定)
接着シートから10mgの試験片を切り出した。試験片をアルミパンで挟むことにより、測定サンプルを用意した。アルミパンのみからなるリファレンス用サンプルも用意した。示唆走査熱量測定装置(セイコーインスツルメンツ社製のDSC6220)を用いて、昇温速度10℃/min、温度範囲25℃〜300℃で測定を行った。得られた発熱反応ピークの熱量をサンプルの重量で割ることにより反応熱量を算出した。
【0115】
(ピーク消失時間の測定)
接着シートから10mgの試験片を切り出した。試験片をアルミパンで挟むことにより、測定用サンプルを用意した。アルミパンのみからなるリファレンス用サンプルも用意した。示唆操作熱量測定装置(セイコーインスツルメンツ社製、DSC6220)を用いて、25℃から175℃まで3分で昇温し、次いで175℃を3時間維持する条件でDSC測定した。175℃に達してから反応ピークが消滅するまでの時間を、DSC曲線から読み取った。なお、「反応ピークが消滅する」とは、測定用サンプルとリファレンス用サンプルの温度が等しくなるように両者に加えた単位時間当たりの熱エネルギーの入力の差が一定になることをいう。実施例2のDSC曲線を
図8に示す。
【0116】
(ワイヤーボンド性)
片面をアルミ蒸着したウェハを研削することにより、厚み100μmのダイシング用ウェハを得た。ダイシング用ウェハをダイシングシート付き接着シートに貼りつけ、次いで2mm角にダイシングすることにより、接着シート付きのチップを得た。接着シート付きのチップをCuリードフレーム上に120℃、0.1MPa、1secの条件でダイアタッチした。175℃で30分加熱することで接着シートを硬化させた。ワイヤーボンディング装置(K&S社製のMaxum Plus)を用いて、ひとつのチップに線径20μmのCuワイヤーを5本ボンディングした。出力80Amp、時間10ms及び荷重50gの条件でCuワイヤーをCuリードフレームに打った。200℃、出力125Amp、時間10ms及び荷重80gの条件でCuワイヤーをチップに打った。5本のCuワイヤーのうち1本以上をチップに接合できなかった場合を×と判定し、5本のCuワイヤーのうち5本をチップに接合できた場合を○と判定した。
【0117】
【表1】