(58)【調査した分野】(Int.Cl.,DB名)
前記懸吊板の前記凸部が、円形の突起構造で、その直径は前記懸吊板の最小辺の長さの0.55倍の寸法であることを特徴とする、請求項1に記載の圧電アクチュエータ。
【発明を実施するための形態】
【0010】
本発明の特徴と利点を体現するいくつかの典型的実施例を以下において詳細に説明する。本発明は異なる態様において各種の変化が可能であり、そのいずれも本発明の範囲を逸脱せず、かつ本発明の説明及び図面は本質的に説明のために用いられ、本発明を制限するものではないことが理解されるべきである。
【0011】
本発明の小型空気圧動力装置1は、医薬・バイオテクノロジー、エネルギー、コンピューターテクノロジー、または印刷等の工業に応用し、気体を伝送するために用いることができるが、これに限らない。
図1A、
図1B、
図2A、
図2B、
図7Aから
図7Eを参照する。
図1Aは本発明の最良の実施例の小型空気圧動力装置の正面立体分解図であり、
図1Bは
図1Aの小型空気圧動力装置の正面立体図であり、
図2Aは
図1Aの小型空気圧動力装置の背面立体分解図であり、
図2Bは
図1Aの小型空気圧動力装置の背面立体図であり、
図7Aから
図7Eは
図1Aの小型空気圧動力装置の圧力蓄積動作を示す断面図である。
図1Aと
図2Aに示すように、本発明の小型空気圧動力装置1は、小型流体制御装置1Aと小型バルブ装置1Bから構成されて成り、そのうち、小型流体制御装置1Aが殼体1a、圧電アクチュエータ13、絶縁片141、142、導電片15等の構造を備え、そのうち、殼体1aが集気板16と座体10を含み、座体10が気体導入板11と共振片12を含むが、これらに限らない。圧電アクチュエータ13は共振片12に対応して設置され、気体導入板11、共振片12、圧電アクチュエータ13、絶縁片141、導電片15、別の絶縁片142、集気板16等が順に重ねて設置され、かつ前記圧電アクチュエータ13が懸吊板130、外枠131、少なくとも1つのフレーム132、圧電セラミック板133を組み立てて成り、小型バルブ装置1Bがバルブ片17と出口板18を含むが、これらに限らない。かつ本実施例において、
図1Aに示すように、集気板16は単なる単一の板体構造に限らず、周縁に側壁168を備えた枠体構造としてもよく、かつ前記集気板16は9mm〜17mmの間の長さ、9mm〜17mmの間の幅を備え、かつ前記長さ及び前記幅の比が0.53倍〜1.88倍の間であり、前記周縁が構成する側壁168とその底部の板体が共同で1つの収容空間16aを定義し、前記圧電アクチュエータ13が前記収容空間16a内に設置される。このため、本発明の小型空気圧動力装置1は組み立てが完了すると、その正面図が
図1B、
図7Aから
図7Eに示すようになり、前記小型流体制御装置1Aが小型バルブ装置1Bと相互に対応して組み立てられて成ることが分かり、つまり、前記小型バルブ装置1Bのバルブ片17及び出口板18が順に重ねて前記小型流体制御装置1Aの集気板16上に設置かつ位置決めされて成る。その組み立てが完了した背面図から分かるように、前記出口板18上の圧力リリーフ通孔181及び出口19は、出口19が装置(図示しない)と連接するために用いられ、圧力リリーフ通孔181が小型バルブ装置1B内の気体を排出し、圧力逃がしの効果を達するために用いられる。この小型流体制御装置1Aと小型バルブ装置1Bの組み立て設置により、気体が小型流体制御装置1Aの気体導入板11上の少なくとも1つの気体導入孔110から導入され、かつ圧電アクチュエータ13の作動を通じて、複数の圧力チャンバ(図示しない)を経由して継続的に伝送され、気体を小型バルブ装置1B内で単方向に流動させて、圧力を小型バルブ装置1Bの出口側に連接された装置(図示しない)中に蓄積させることができ、かつ圧力リリーフを行う必要があるときは、小型流体制御装置1Aの出力量を制御して、気体を小型バルブ装置1Bの出口板18上の圧力リリーフ通孔181から排出させ、圧力逃がしを行う。
【0012】
図1Aと
図2Aを参照する。
図1Aに示すように、小型流体制御装置1Aの気体導入板11は第1表面11b、第2表面11a及び少なくとも1つの気体導入孔110を備え、本実施例において、気体導入孔110の数量は4個であるが、これに限らず、気体導入板11の第1表面11bと第2表面11aに貫通され、主に気体を装置外から大気圧の作用に順応して前記少なくとも1つの気体導入孔110から小型流体制御装置1A内に流入させるために用いられる。かつ、
図2Aに示すように、気体導入板11の第1表面11bから分かるとおり、その上には少なくとも1つの気体ガイド溝112が設けられ、気体導入板11の第2表面11aの前記少なくとも1つの気体導入孔110に対応して設置される。本実施例において、気体ガイド溝112の数量は気体導入孔110に対応し、その数量は4個であるが、これに限らず、そのうち前記気体ガイド溝112が中心で交わる箇所に中心凹部111が設けられ、かつ中心凹部111が気体ガイド溝112と相互に連通され、これにより気体導入孔110から気体ガイド溝112に進入した気体をガイドし、中心凹部111に合流させて集め、伝送することができる。本実施例において、気体導入板11が一体成型された気体導入孔110、気体ガイド溝112、中心凹部111を備え、かつ前記中心凹部111箇所に気体を合流させる合流チャンバが対応して形成され、気体を一時的に格納するために用いられる。一部の実施例において、気体導入板11の材質は、ステンレス材質で構成することができるがこれに限らず、かつその厚さが0.4mm〜0.6mmの間であり、好ましくは0.5mmであるが、これに限らない。別の一部の実施例において、前記中心凹部111箇所に構成された合流チャンバの深さと前記気体ガイド溝112の深さが同じであり、かつ前記合流チャンバと前記気体ガイド溝112の深さは好ましくは0.2mm〜0.3mmの間であるが、これに限らない。共振片12は可撓性材質で構成されるが、これに限らず、かつ共振片12上に中空孔120が設けられ、気体導入板11の第1表面11bの中心凹部111に対応して設置され、気体を流通させるために用いられる。別の一部の実施例において、共振片12は銅材質で構成しても良いが、これに限らず、かつその厚さは0.03mm〜0.08mmの間であり、好ましくは0.05mmであるが、これに限らない。
【0013】
図3A、
図3B、
図3Cを同時に参照する。
図3Aから
図3Cはそれぞれ、
図1Aの小型空気圧動力装置の圧電アクチュエータの正面立体斜視図、背面立体図、断面図である。圧電アクチュエータ13は懸吊板130、外枠131、少なくとも1つのフレーム132、圧電セラミック板133を組み立てて成り、そのうち、前記圧電セラミック板133が懸吊板130の第1表面130bに貼付され、電圧を印加して変形を生じ、前記懸吊板130を駆動して湾曲振動させるために用いられ、懸吊板130は中心部130dと外周部130eを備え、圧電セラミック板133が電圧を受けて駆動されると、懸吊板130が前記中心部130dから外周部130eまで湾曲振動することができ、さらに前記少なくとも1つのフレーム132が懸吊板130と外枠131の間に連接される。本実施例において、前記フレーム132は懸吊板130と外枠131の間を連接して設置され、その両端点が外枠131、懸吊板130にそれぞれ連接されて、弾性的な支持を提供し、かつ、フレーム132、懸吊板130、外枠131の間に気体を流通させるための少なくとも1つの空隙135をさらに備え、かつ前記懸吊板130、外枠131、フレーム132の形態と数量はさまざまな変化が可能である。このほか、外枠131は懸吊板130の外側に周設され、かつ電気的接続に用いるための導電ピン134が外側に向かって凸設されるが、これに限らない。本実施例において、懸吊板130は階段状の構造であり、つまり、懸吊板130の第2表面130aが凸部130cをさらに備え、前記凸部130cは円形の突起構造とすることができるが、これに限らず、かつ凸部130cの高さは0.02mm〜0.08mmの間であり、好ましくは0.03mmで、その直径は懸吊板130の最小辺の長さの0.55倍の寸法であるが、これに限らない。
図3Aと
図3Cを同時に参照すると分かるように、懸吊板130の凸部130cの表面は外枠131の第2表面131aと同一平面にあり、かつ懸吊板130の第2表面130aとフレーム132の第2表面132aも同一平面にあり、かつ前記懸吊板130の凸部130c及び外枠131の第2表面131aと、懸吊板130の第2表面130a及びフレーム132の第2表面132aの間には特定の深さを備えている。懸吊板130の第1表面130bは、
図3Bと
図3Cに示すように、外枠131の第1表面131b及びフレーム132の第1表面132bと平坦な同一平面の構造にあり、圧電セラミック板133がこの平坦な懸吊板130の第1表面130bに貼付される。別の一部の実施例において、懸吊板130の形態は両面が平坦な板状の正方形構造としてもよいが、これに限らず、実際の実施状況に応じて任意に変化させることができる。一部の実施例において、懸吊板130、フレーム132、外枠131は一体成型の構造とすることができ、かつ金属板で構成してもよく、例えばステンレス材質で構成することができるが、これに限らない。かつ一部の実施例において、前記懸吊板130の厚さは0.1mm〜0.4mmの間であり、好ましくは0.27mmである。また、前記懸吊板130の長さは7.5mm〜12mmの間であり、好ましくは7.5mm〜8.5mmで、幅は7.5mm〜12mmの間であり、好ましくは7.5mm〜8.5mmであるが、これに限らない。前記外枠131の厚さは0.2mm〜0.4mmの間であり、好ましくは0.3mmであるが、これに限らない。
【0014】
また、別の一部の実施例において、圧電セラミック板133の厚さは0.05mm〜0.3mmの間であり、好ましくは0.10mmで、前記圧電セラミック板133は前記懸吊板130辺の長さより大きくない辺の長さを備え、長さは7.5mm〜12mmの間であり、好ましくは7.5mm〜8.5mmで、幅は7.5mm〜12mmの間であり、好ましくは7.5mm〜8.5mmで、また長さと幅の比は好ましくは0.625倍〜1.6倍の間であるが、これに限らない。さらに別の一部の実施例において、圧電セラミック板133の辺の長さは懸吊板130の辺の長さより小さくすることができ、かつ同様に懸吊板130に対応する正方形の板状構造に設計できるが、これに限らない。
【0015】
本発明の小型空気圧動力装置1における関連の実施例において、圧電アクチュエータ13が正方形の懸吊板130を採用する理由としては、円形の懸吊板(
図4Aの(j)〜(l)の態様の円形懸吊板j0)の設計と比較して、前記正方形の懸吊板130の構造のほうが明らかに省電力の利点を有するためで、その消費電力は次の表1に示すとおりである。
【0017】
従って、実験による上表から、前記正方形の辺の長さ寸法(8mm〜10mm)の懸吊板130を備えた圧電アクチュエータ13は、前記円形の直径(8mm〜10mm)の懸吊板j0を備えた圧電アクチュエータよりも省電力であることが分かる。上述の実験で得られた消費電力の比較データから、省電力である理由は、共振周波数下で作用する容量性負荷は、その消費電力が周波数の上昇に伴って増加し、また辺の長さの寸法が正方形の設計の懸吊板130は共振周波数が同様の円形の懸吊板j0より明らかに低いため、相対して消費電力も明らかに低いと推測することができる。つまり、本発明で正方形の設計を採用した懸吊板130は円形の懸吊板j0の設計よりも省電力であるという利点を備え、特にウェアラブルデバイスでの応用において、省電力であることは非常に重要な設計ポイントとなる。とは言え、上述の正方形の設計の懸吊板による省電力の効果は実験により得られたものであって、理論の公式によって直接導き出されるものではなく、その省電力である理由の推測は実験の合理的な参考説明とするのみである。
【0018】
圧電アクチュエータの多様な実施態様を示す
図4A、4B、4Cを参照する。これらの図に示すように、圧電アクチュエータ13の懸吊板130、外枠131、フレーム132は多様な形態とすることができ、かつ少なくとも
図4Aに示す(a)〜(l)等の多様な態様がある。例えば、(a)の態様の外枠a1及び懸吊板a0は方形の構造であり、かつ両者間が複数(例えば8個)のフレームa2で連結されるが、これに限らず、かつフレームa2及び懸吊板a0、外枠a1の間に気体を流通させるための空隙a3が備えられる。別の(i)の態様において、外枠i1と懸吊板i0も同様に方形の構造であるが、2個のフレームi2のみで連結されている。また、更なる関連技術を備えており、例えば
図4B、
図4Cに示すように、圧電アクチュエータ13の懸吊板は
図4Bの(m)〜(r)と
図4Cの(s)〜(x)等の多様な態様を有することもできるが、これらの態様において、懸吊板130と外枠131はいずれも正方形の構造である。例えば、(m)態様の外枠m1及び懸吊板m0はいずれも正方形の構造であり、かつ両者の間が複数(例えば4個)のフレームm2で連結されるが、これに限らず、かつフレームm2及び懸吊板m0、外枠m1の間に気体を流通させるための空隙m3が備えられる。かつこの実施例において、外枠m1及び懸吊板m0の間に連結されたフレームm2は板連接部m2とすることができるが、これに限らず、かつこの板連接部m2は両端部m2’、m2”を備え、そのうち1つの端部m2’が外枠m1に連接され、別の1つの端部m2”が懸吊板m0に連接され、かつこの2つの端部m2’とm2”が相互に対応し、同一軸線上に設置される。(n)の態様においては、同様に外枠n1、懸吊板n0、及び外枠n1と懸吊板n0の間に連接されたフレームn2、流体を流通させるための空隙n3を備え、かつフレームn2が板連接部n2であるが、これに限らず、板連接部n2が同様に2つの端部n2’とn2”を備え、かつ端部n2’が外枠n1に連接され、別の端部n2”則が懸吊板n0に連接されるが、本実施態様において、前記板連接部n2は0〜45度の傾斜角で外枠n1及び懸吊板n0に連接される。つまり、前記両端部n2’及びn2”は同一の水平軸線上に設置されず、互い違いの設置関係にある。(o)の態様において、外枠o1、懸吊板o0、及び外枠o1と懸吊板o0の間に連接されたフレームo2、気体を流通させるための空隙o3等の構造はいずれも前述の実施例と同じであるが、そのうちフレームである板連接部o2の設計形態が(m)の態様と若干異なり、この態様において、前記板連接部o2の両端部o2’とo2”は相互に対応し、かつ同一軸線上に設置される。
【0019】
また、(p)の態様は、同様に外枠p1、懸吊板p0、及び外枠p1と懸吊板p0の間に連接されたフレームp2、流体を流通させるための空隙p3等の構造を備えており、この実施態様において、フレームである板連接部p2が懸吊板連接部p20、梁部p21、外枠連接部p22等の構造をさらに備えており、そのうち、梁部p21が懸吊板p0と外枠p1の間の間隙p3中に設置され、かつその設置方向が外枠p1及び懸吊板p0に平行であり、また、懸吊板連接部p20が梁部p21と懸吊板p0の間に連接され、かつ外枠連接部p22が梁部p21と外枠p1の間に連接され、かつ前記懸吊板連接部p20と外枠連接部p22も相互に対応し、同一軸線上に設置される。
【0020】
(q)の態様において、外枠q1、懸吊板q0、及び外枠q1と懸吊板q0の間に連接されたフレームq2、流体を流通させるための空隙q3等の構造がいずれも前述の(m)、(o)の態様と同じであるが、そのうちフレームである板連接部q2の設計形態が(m)、(o)の態様と若干異なり、この態様において、前記懸吊板q0は正方形の形態であり、かつその各辺がいずれも外枠q1に連接された2つの板連接部q2を備え、かつそのうち各板連接部q2の2つの端部q2’とq2”が同様に相互に対応し、かつ同一軸線上に設置される。また、(r)の態様においても、外枠r1、懸吊板r0、フレームr2及び空隙r3等の構造を備えており、かつフレームr2も板連接部r2とすることができるが、これに限らず、この実施例において、板連接部r2はV字形の構造であり、つまり、前記板連接部r2も0〜45度の傾斜角で外枠r1及び懸吊板r0に連接されているため、各板連接部r2がいずれも懸吊板r0に連接された端部r2”を備え、かつ2つの端部r2’が外枠r1に連接され、即ち、前記2つの端部b2’と端部b2”が同一の水平軸線上に設置されていない。
【0021】
続いて
図4Cに示すように、(s)〜(x)の態様の外観形態は
図4Bに示す(m)〜(r)の形態にほぼ対応しているが、これら(s)〜(x)の態様においては、各圧電アクチュエータ13の懸吊板130上にいずれも凸部130c(図中のs4、t4、u4、v4、w4、x4等の構造)が設けられており、かつ、(m)〜(r)の態様または(s)〜(x)等の態様のいずれも、前記懸吊板130が正方形の形態に設計され、前述の低消費電力の効果が達せられる。かつ、これらの実施態様から分かるように、懸吊板130が両面平坦な平板構造であっても、あるいは一表面が凸部を備えた階段状構造であっても、本発明の保護範囲内であり、かつ懸吊板130及び外枠131の間に連接されたフレーム132の形態と数量は実際の実施状況に応じて任意に変化させることができ、本発明の示す態様に限らない。また、前述のように、前記等懸吊板130、外枠131及びフレーム132は一体成型の構造としてもよいが、これに限らず、その製造方法は従来の加工、またはフォトリソグラフィエッチング、或いはレーザー加工、または電気鋳造加工、放電加工等の方法で製造できるが、これらに限らない。
【0022】
このほか、
図1Aと
図2Aに示すように、小型流体制御装置1Aはさらに絶縁片141、導電片15及び別の絶縁片142を備え、圧電アクチュエータ13の下に順に対応して設置され、かつその形態は圧電アクチュエータ13の外枠の形態にほぼ対応している。一部の実施例において、絶縁片141、142は絶縁が可能な材質(例えばプラスチックなど、但しこれに限らない)で構成することができ、絶縁を行うために用いられる。別の一部の実施例において、導電片15は導電可能な材質(例えば金属など、但しこれに限らない)で構成することができ、電気の導通に用いられる。また、本実施例において、導電片15上に導電ピン151を設置して電気の導通に用いてもよい。
【0023】
図1Aと
図5Aから
図5Eを同時に参照する。そのうち、
図5Aから
図5Eは
図1Aの小型空気圧動力装置の小型流体制御装置1Aの局部動作を示す断面図である。まず、
図5Aに示すように、小型流体制御装置1Aは気体導入板11、共振片12、圧電アクチュエータ13、絶縁片141、導電片15及び別の絶縁片142等を順に重ねて成り、かつ本実施例において、共振片12と圧電アクチュエータ13の外枠131周縁の間の間隙g0内に材料(例えば導電ペーストなど、但しこれに限らない)が充填され、共振片12と圧電アクチュエータ13の懸吊板130の凸部130cの間で前記間隙g0の深さを維持させ、気流をガイドしてより迅速に流動させるとともに、懸吊板130の凸部130cと共振片12に適切な距離を保たせ、相互に接触して生じる干渉を減少し、騒音の発生を抑制することができる。
【0024】
続いて
図5Aから
図5Eに示すように、気体導入板11、共振片12、圧電アクチュエータ13が順に対応して組み立てられた後、共振片12の中空孔120箇所がその上の気体導入板11と共同で気体を合流させるチャンバを形成し、かつ共振片12と圧電アクチュエータ13の間に第1チャンバ121がさらに形成され、気体を一時的に格納するために用いられるとともに、第1チャンバ121が共振片12の中空孔120を介して気体導入板11の第1表面11bの中心凹部111箇所のチャンバと相互に連通され、かつ第1チャンバ121の両側が圧電アクチュエータ13のフレーム132の間の空隙135によりその下に設置された小型バルブ装置1Bと相互に連通される。
【0025】
小型空気圧動力装置1の小型流体制御装置1Aの作動時は、主に圧電アクチュエータ13が電圧を受けて作動し、フレーム132を支点として垂直方向の往復振動を行う。
図5Bに示すように、圧電アクチュエータ13が電圧を受けて作動し、下に向かって振動すると、共振片12が軽くて薄い片状構造であるため、圧電アクチュエータ13の振動時、共振片12もそれに伴って共振し、垂直の往復振動を行い、即ち、共振片12が前記気体導入板11の中心凹部111の部分に対応し、湾曲振動と形状変化を生じる。前記共振片12は前記気体導入板11の中心凹部111に対応した部分が共振片12の可動部12aであり、圧電アクチュエータ13が下に向かって湾曲振動すると、このとき共振片12の可動部12aが流体の導入と押圧及び圧電アクチュエータ13の振動により動かされ、圧電アクチュエータ13が下に向かって湾曲振動と形状変化を生じることに伴い、気体が気体導入板11上の少なくとも1つの気体導入孔110から進入し、その第1表面11bの少なくとも1つの気体ガイド溝112を介してその中央の中心凹部111箇所に集められ、共振片12上の中心凹部111に対応して設置された中央孔120を経由して下に向かって第1チャンバ121内へと流入した後、
図5Cに示すように、圧電アクチュエータ13の振動により動かされることで、共振片12も共振して垂直の往復振動を行い、このとき共振片12の可動部12aも下に振動して、圧電アクチュエータ13の懸吊板130の凸部130c上に貼り付くように当接され、懸吊板130の凸部130c以外の区域と共振片12両側の固定部12bの間の合流チャンバの間隔が小さくならず、かつこの共振片12の形状変化により、第1チャンバ121の体積が圧縮され、かつ第1チャンバ121内の流通空間が閉じられることで、その内部の気体が圧迫されて両側へと流動し、圧電アクチュエータ13のフレーム132の間の空隙135を介して下へと流動される。
図5Dに示すように、共振片12の可動部12aは湾曲振動と形状変化を生じた後、初期位置に戻り、その後圧電アクチュエータ13が電圧を受けて駆動され、上に向かって振動し、同じように第1チャンバ121の体積が圧迫され、またこのとき圧電アクチュエータ13が上に向かって持ち上げられ、この持ち上げの移動をdとすることができ、これにより第1チャンバ121内の気体を両側に向かって流動させ、気体を継続的に気体導入板11上の少なくとも1つの気体導入孔110から進入させて、中心凹部111に形成されたチャンバ内に流入させる。
図5Eに示すように、前記共振片12は圧電アクチュエータ13の上に向かう振動を受けて共振して上に向かい、共振片12の可動部12aも上の位置に向かい、中心凹部111内の気体を共振片12の中央孔120から第1チャンバ121内に流入させ、圧電アクチュエータ13のフレーム132の間の空隙135を介して下の小型流体制御装置1Aへと流出させる。この実施態様から分かるように、共振片12が垂直の往復振動を行うと、共振片12と圧電アクチュエータ13の間の間隙g0がその垂直移動の最大距離を増加することができる。つまり、それら2つの構造の間に設けられた間隙g0が、共振片12の共振時により大きな幅で上下移動を生じさせることができる。そのうち、前記圧電アクチュエータの振動移動をdとし、前記間隙g0との差をxとすると、即ちx=g0−dであり、試験によるとx≦0μmのとき、騒音がある状態となり、x=1〜5μmのとき、小型空気圧動力装置1の最大出力空気圧が350mmHgを達成し、x=5〜10μmのとき、小型空気圧動力装置1の最大出力空気圧が250mmHgを達成し、x=10〜15μmのとき、小型空気圧動力装置1の最大出力空気圧が150mmHgを達成する。これら数値の対応関係を下の表2に示す。上述の数値は操作周波数が17K〜20Kの間であり、操作電圧が±10V〜±20Vの間である。このように、この小型流体制御装置1Aを経る流路設計中において圧力勾配を発生し、気体を高速で流動させ、流路の出入方向の抵抗差異を通じ、気体を吸入側から排出側へと伝送するとともに、排出側に気圧がある状態下でも、気体の押し出しを持続でき、かつ静音の効果を達することができる。
【0027】
また、一部の実施例において、共振片12の垂直往復振動周波数は圧電アクチュエータ13の振動周波数と同じとすることができ、即ち、両者は同時に上にまたは同時に下に向かわせることができ、実際の実施の状況に基づいて任意に変化させることが可能であり、本実施例に示す作動方式に限らない。
【0028】
図1A、
図2A、
図6A、
図6Bを同時に参照する。そのうち、
図6Aは
図1Aの小型空気圧動力装置の集気板16と小型バルブ装置1Bの圧力蓄積動作を示す断面図であり、
図6Bは
図1Aの小型空気圧動力装置の集気板16と小型バルブ装置1Bの圧力逃がし動作を示す断面図である。
図1Aと
図6Aに示すように、本発明の小型空気圧動力装置1の小型バルブ装置1Bは、バルブ片17及び出口板18を順に重ねて成り、小型流体制御装置1Aの集気板16を組み合わせて運用される。
【0029】
本実施例において、集気板16は表面160及び基準表面161を備え、前記表面160上が凹設されて集気チャンバ162が形成され、前記圧電アクチュエータ13がその中に設置される。小型流体制御装置1Aが下に向かって伝送する気体がこの集気チャンバ162内に一時的に蓄積され、かつ集気板16が第1貫通孔163及び第2貫通孔164を含む複数の貫通孔を備え、第1貫通孔163及び第2貫通孔164の一端が集気チャンバ162と相互に連通され、他端が集気板16の基準表面161上の第1圧力リリーフチャンバ165及び第1出口チャンバ166とそれぞれ相互に連通される。また、第1出口チャンバ166箇所に凸部構造167がさらに増設され、例えば円柱構造とすることができるが、これに限らず、前記凸部構造167の高さは前記集気板16の基準表面161より高く、かつ凸部構造167の高さが0.3mm〜0.55mmの間であり、かつ好ましくは0.4mmである。
【0030】
出口板18は圧力リリーフ通孔181、出口通孔182、基準表面180、第2表面187を含み、そのうち、前記圧力リリーフ通孔181、出口通孔182は出口板18の基準表面180と第2表面187を貫通しており、前記基準表面180上に第2圧力リリーフチャンバ183及び第2出口チャンバ184が凹設され、前記圧力リリーフ通孔181が第2圧力リリーフチャンバ183の中心部分に設けられ、かつ第2圧力リリーフチャンバ183と第2出口チャンバ184の間に気体の流通に用いる連通流路185がさらに設けられ、出口通孔182の一端が第2出口チャンバ184と相互に連通され、他端が出口19と相互に連通される。本実施例において、出口19は例えば圧力装置(但しこれに限らない)などの装置(図示しない)に連接することができる。
【0031】
バルブ片17上には弁孔170と複数の位置決め孔171が備えられ、前記バルブ片17の厚さは0.1mm〜0.3mmの間であり、好ましくは0.2mmである。
【0032】
バルブ片17を集気板16及び出口板18の間に位置決めして組み立てると、前記出口板18の圧力リリーフ通孔181が前記集気板16の前記第1貫通孔163に対応し、前記第2圧力リリーフチャンバ183が前記集気板16の第1圧力リリーフチャンバ165に対応し、前記第2出口チャンバ184が前記集気板16の第1出口チャンバ166に対応し、前記バルブ片17が前記集気板16及び前記出口板18の間に設置され、第1圧力リリーフチャンバ165と第2圧力リリーフチャンバ183の連通を阻隔し、かつ前記バルブ片17の弁孔170が前記第2貫通孔164及び前記出口通孔182の間に設置され、弁孔170が集気板16に位置する第1出口チャンバ166の凸部構造167に対応して設置され、この単一の弁孔170の設計により気体をその圧力差によって単方向に流動させる目的を達することができる。
【0033】
また、前記出口板18の圧力リリーフ通孔181の一端は凸出されて形成された凸部構造181aをさらに増設することができ、例えば円柱構造とすることができるが、これに限らず、前記凸部構造181aの高さが0.3mm〜0.55mmの間であり、好ましくは0.4mmであって、この凸部構造181aが改良によってその高さが追加されており、前記凸部構造181aの高さが前記出口板18の基準表面180より高く、バルブ片17がより迅速に当接されて圧力リリーフ通孔181を封鎖し、プレストレスの当接作用による完全な密閉効果を達するように強化されている。また、出口板18は少なくとも1つの位置規制構造188をさらに備え、前記位置規制構造188の高さが0.32mmであり、本実施例を例とすると、位置規制構造188は第2圧力リリーフチャンバ183内に設置され、かつ環状ブロック体の構造であるが、これに限らず、主に小型バルブ装置1Bが圧力蓄積作業を行うとき、バルブ片17を補助的に支持するために用いられ、バルブ片17が外れないように防止するとともに、バルブ片17をより迅速に開閉させることができる。
【0034】
小型バルブ装置1Bの圧力が蓄積されて作動するとき、主に
図6Aに示すように、小型流体制御装置1Aから下に向かって伝送される気体が提供する圧力に対応するか、または外部の大気圧が出口19に連接された装置(図示しない)の内部圧力より大きいとき、気体を小型流体制御装置1Aの集気板16中の集気チャンバ162から第1貫通孔163と第2貫通孔164それぞれを介して下に向かって第1圧力リリーフチャンバ165及び第1出口チャンバ166内に流入させ、このとき、下に向かう気体圧力が可撓性のバルブ片17を下に湾曲させて変形させ、第1圧力リリーフチャンバ165の体積を増大させると同時に、第1貫通孔163に対応する箇所において下に向かって平らに貼り付かせ、圧力リリーフ通孔181の端部に当接させて、出口板18の圧力リリーフ通孔181を封鎖することができるため、第2圧力リリーフチャンバ183内の気体が圧力リリーフ通孔181箇所から流出してしまうことがない。当然、本実施例は圧力リリーフ通孔181端部に凸部構造181aを増設する設計を利用して、バルブ片17が迅速に圧力リリーフ通孔181に当接されてこれを封鎖し、プレストレスの当接作用による完全な密封効果を達するように強化し、同時に、圧力リリーフ通孔181周辺に周設された位置規制構造188を通じて、バルブ片17を補助的に支持し、外れないようにすることができる。また、気体が第2貫通孔164から下に向かって第1出口チャンバ166内に流入し、かつ第1出口チャンバ166箇所に対応するバルブ片17も下に湾曲されて変形するため、その対応する弁孔170が下に向かって開かれ、気体が第1出口チャンバ166から弁孔170を経由して第2出口チャンバ184内へ流入し、かつ出口通孔182から出口19及び出口19に連接された装置(図示しない)内に流入することで、前記装置に対して圧力蓄積の動作を行うことができる。
【0035】
図6Bに示すように、小型バルブ装置1Bが圧力を逃がすとき、小型流体制御装置1Aの気体伝送量を調整することで、気体が集気チャンバ162内に入らないようにするか、出口19に連接された装置(図示しない)の内部圧力が外部の大気圧より大きいとき、小型バルブ装置1Bに圧力を解放させることができる。このとき、気体は出口19に連接された出口通孔182から第2出口チャンバ184内に入力され、第2出口チャンバ184の体積を膨張させて、可撓性のバルブ片17を上に湾曲させて変形させ、上に向かって集気板16上に貼り付き、当接させるため、バルブ片17の弁孔170が集気板16に当接されて閉じられる。当然、本実施例においては、第1出口チャンバ166に凸部構造167を増設した設計を利用することができ、可撓性のバルブ片17を上に湾曲変形させ、より迅速に当接させて、弁孔170により有利にプレストレスの当接作用を達成させ、完全に貼付した密閉状態とすることができるため、初期状態にあるとき、バルブ片17の弁孔170が前記凸部構造167にしっかりと貼り付いて閉じられ、前記第2出口チャンバ184内の気体が第1出口チャンバ166内に逆流せず、気体を外部に漏らさないという、より高い効果が得られる。また、第2出口チャンバ184内の気体は連通流路185を経由して第2圧力リリーフチャンバ183内へ流れ、第2圧力リリーフチャンバ183の体積が拡張されて、第2圧力リリーフチャンバ183に対応するバルブ片17を同様に上に湾曲変形させ、このときバルブ片17は圧力リリーフ通孔181端部に当接せず、これを封鎖しないため、前記圧力リリーフ通孔181が開いた状態となり、第2圧力リリーフチャンバ183内の気体を圧力リリーフ通孔181から外部に流出させて、圧力逃がし作業を行うことができる。当然、本実施例は圧力リリーフ通孔181端部に増設した凸部構造181aまたは第2圧力リリーフチャンバ183内に設置した位置規制構造188を利用して、可撓性のバルブ片17をより迅速に上に湾曲変形させ、より有利に圧力リリーフ通孔181が閉じた状態を離脱させることができる。このように、この単方向の圧力逃がし作業によって出口19に連接された装置(図示しない)内の気体を排出して圧力を低下させたり、完全に排出して圧力逃がし作業を完了したりすることができる。
【0036】
図1A、
図2A及び
図7Aから
図7Eを同時に参照する。そのうち、
図7Aから
図7Eは
図1Aの小型空気圧動力装置の圧力蓄積動作を示す作動示意圖断面図である。
図7Aに示すように、小型空気圧動力装置1は小型流体制御装置1Aと小型バルブ装置1Bの組み合わせで成る。そのうち、小型流体制御装置1Aは前述のように、気体導入板11、共振片12、圧電アクチュエータ13、絶縁片141、導電片15、別の絶縁片142、集気板16等の構造を順に重ねて組み立て、位置決めして成り、かつ共振片12と圧電アクチュエータ13の間は間隙g0を備え、共振片12と圧電アクチュエータ13の間に第1チャンバ121が設けられる。小型バルブ装置1Bは同様にバルブ片17及び出口板18等を順に重ねて組み立て、前記小型流体制御装置1Aの集気板16上に位置決めして成り、かつ小型流体制御装置1Aの集気板16と圧電アクチュエータ13の間に集気チャンバ162を備え、集気板16の基準表面161に第1圧力リリーフチャンバ165と第1出口チャンバ166がさらに凹設され、出口板18の基準表面180に第2圧力リリーフチャンバ183と第2出口チャンバ184がさらに凹設される。本実施例において、前記小型空気圧動力装置による操作周波数が27K〜29.5Kの間であり、操作電圧が±10V〜±16Vであり、これら複数の異なる圧力チャンバに圧電アクチュエータ13の駆動と共振片12、バルブ片17の振動を組み合わせることで、気体の圧力を蓄積して下に伝送させる。
【0037】
図7Bに示すように、小型流体制御装置1Aの圧電アクチュエータ13が電圧を受けて作動して下に振動すると、気体が気体導入板11上の気体導入孔110から小型流体制御装置1A内に進入し、かつ少なくとも1つの気体ガイド溝112を経由してその中心凹部111箇所に集められ、さらに共振片12上の中空孔120を経由して下に向かって第1チャンバ121内へ流入される。その後、
図7Cに示すように、圧電アクチュエータ13の振動の共振作用を受けて、共振片12もそれに伴い往復振動し、即ち下に向かって振動して、圧電アクチュエータ13の懸吊板130の凸部130c上に接近し、共振片12の形状変化によって、気体導入板11の中心凹部111箇所のチャンバの体積が増大し、かつ同時に第1チャンバ121の体積が圧縮され、第1チャンバ121内の気体が押されて両側に向かって流動し、圧電アクチュエータ13のフレーム132の間の空隙135を経由して下に流通し、小型流体制御装置1Aと小型バルブ装置1Bの間の集気チャンバ162内へと流れ、さらに集気チャンバ162と相互に連通された第1貫通孔163及び第2貫通孔164から下に第1圧力リリーフチャンバ165及び第1出口チャンバ166内へと対応して流れ込む。この実施態様から分かるように、共振片12が垂直の往復振動を行うとき、圧電アクチュエータ13との間の間隙g0によりその垂直移動の最大距離が増加され、つまり、前記2つの構造の間に設けられた間隙g0が共振片12の共振時により大きな幅の上下移動を生じさせることができる。
【0038】
続いて、
図7Dに示すように、小型流体制御装置1Aの共振片12が初期位置に戻り、圧電アクチュエータ13が電圧を受けて駆動され、上に向かって振動し、そのうち前記圧電アクチュエータの振動の移動をdとし、前記間隙g0との差をxとすると、即ちx=g0−dであり、試験によるとx=1〜5μm、前記操作周波数が27k〜29.5KHz、操作電圧が±10V〜±16Vのとき、その最大出力空気圧が少なくとも300mmHgとなるが、これに限らない。同じように第1チャンバ121の体積が押圧されることで、第1チャンバ121内の気体を両側に流動させ、かつ圧電アクチュエータ13のフレーム132の間の空隙135から集気チャンバ162、第1圧力リリーフチャンバ165、第1出口チャンバ166内に継続的に流入させ、これにより第1圧力リリーフチャンバ165及び第1出口チャンバ166内の気圧をさらに大きくし、可撓性のバルブ片17を下に押し動かして湾曲変形を生じさせ、第2圧力リリーフチャンバ183内で、バルブ片17が下に圧力リリーフ通孔181端部の凸部構造181aに平らに貼り付いて当接され、圧力リリーフ通孔181が封鎖されるとともに、第2出口チャンバ184内で、バルブ片17上の出口通孔182に対応する弁孔170が下に向かって開かれ、第2出口チャンバ184内の気体が出口通孔182から下に出口19及び出口19に連接された任意の装置(図示しない)に伝送され、圧力蓄積作業の目的を達することができる。最後に、
図7Eに示すように、小型流体制御装置1Aの共振片12が共振して上に移動し、気体導入板11の第1表面11bの中心凹部111内の気体が共振片12の中空孔120から第1チャンバ121内に流入し、さらに圧電アクチュエータ13のフレーム132の間の空隙135から下に集気板16内へと継続的に伝送され、気体圧力が下に向かって継続的に増加するため、気体が集気チャンバ162、第2貫通孔164、第1出口チャンバ166、第2出口チャンバ184、出口通孔182を経由して出口19及び出口19に連接された任意の装置内へと継続的に流れる。この圧力蓄積作業は外部の大気圧と装置内の圧力差により駆動できるが、これに限らない。
【0039】
出口19に連接された装置(図示しない)内部の圧力が外部の圧力より大きくなると、小型空気圧動力装置1は
図8に示すように圧力を下げるか、または圧力を逃がす作業を行うことができる。圧力を下げるか、または圧力を逃がす方法は、主に前述のように、小型流体制御装置1Aの気体伝送量を調整して、気体が集気チャンバ162内に入らないようにし、このとき、気体が出口19に連接された出口通孔182から第2出口チャンバ184内に入り、第2出口チャンバ184の体積を膨張させ、可撓性のバルブ片17を上に湾曲変形させ、第1出口チャンバ166の凸部構造167上に上方向に貼り付いて当接させて、バルブ片17の弁孔170を閉じさせ、第2出口チャンバ184内の気体が第1出口チャンバ166内に逆流しないようにすることができる。また、第2出口チャンバ184内の気体が連通流路185を経由して第2圧力リリーフチャンバ183内へと流れ、さらに圧力リリーフ通孔181から圧力逃がし作業が行われる。このように、この小型バルブ装置1Bの単方向の気体伝送作業によって出口19に連接された装置内の気体を排出して圧力を下げるか、または完全に排出して圧力逃がし作業を完了することができる。
【0040】
上述の説明から分かるように、本発明の小型空気圧動力装置1における、小型空気圧動力装置1の小型化に伴う各項性能の変化を下の表3に示す。
【0042】
この表から分かるように、25個の小型空気圧動力装置1製品からサンプリングした実際の実験後、前記実験で得られた結論は次のとおりである。正方形の懸吊板130の辺の長さを大きい寸法の14mmから徐々に7.5mmまで縮小する過程において、前記辺の長さの寸法が小さくなると同時に、歩留まり及び最大出力空気圧の機能が徐々に向上し、かつ得られた最良の寸法は7.5mm〜8.5mmであることが分かり、さらに前記最良の寸法は特にその操作周波数が27K〜29.5KHzの間で、最大出力空気圧の機能を向上し、少なくとも300mmHg以上を達することができることがわかった。以上の現象は、懸吊板130の辺の長さが小さくなると、前記懸吊板130の垂直振動時にその水平方向の変形が減少するため、垂直方向の動エネルギーが増進されてより有効に利用され、かつ辺の長さが小さくなると同時に組み立て時の垂直方向の誤差値を減少することができ、これにより懸吊板130と共振片12またはその他組み立て部材の間のぶつかり合いによる干渉を減少し、前記懸吊板130と前記共振片12に一定の距離を維持させることができるため、歩留まりが向上され、かつ同時にその最大出力空気圧の機能を高めることができると、合理的に推測される。このほか、圧電アクチュエータ13の懸吊板130の寸法が縮小すると、圧電アクチュエータ13もより小さくすることができ、振動時に傾斜しにくい状況下で、内部の気体流路の容積が減少し、空気の押し出し、または圧縮に有利であるため、性能を向上できるだけでなく、同時に全体の部材の寸法を縮小することができる。さらに、前述したように、圧電アクチュエータ13が比較的大きい寸法の懸吊板130と圧電セラミック板133を装備したものについては、懸吊板130の剛性が比較的劣るため、振動時に容易に曲がって変形し、共振片12またはその他組み立て部材の間でぶつかりあいの干渉が生じやすいため、騒音が発生する割合がより高く、騒音の問題も製品不良の原因の1つとなっていることから、大きい寸法の懸吊板130と圧電セラミック板133の不良率は比較的高い。このため、懸吊板130と圧電セラミック板133の寸法を縮小すれば、性能を高め、騒音を減少する等の利点だけでなく、製品の不良率を抑えることもできる。
【0043】
とはいえ、上述の懸吊板130の辺の長さの寸法を縮小することによる歩留まりの改善と最大出力空気圧の機能向上はいずれも実験で得られたものであり、理論の公式によって直接導き出されるものではなく、その機能増進の原因の推測は実験の合理的な参考説明とするのみである。
【0044】
当然、本発明の小型空気圧動力装置1は薄型化のトレンドを達成するために、小型流体制御装置1Aと小型バルブ装置1Bを組み立てたときの全体厚さは2mm〜6mmの高さであり、小型空気圧動力装置1に軽便で快適な携帯性を具備させる目的を達成するとともに、医療器材や関連設備内で広く応用することができる。
【0045】
上述をまとめると、本発明の小型空気圧動力装置は主に、小型流体制御装置と小型バルブ装置を相互に組み立てて成り、気体を小型流体制御装置上の気体導入孔から進入させ、圧電アクチュエータの作動により、気体を設計後の流路と圧力チャンバ内で圧力勾配を生じさせ、気体を高速流動させて小型バルブ装置内へ伝送し、さらに小型バルブ装置の単方向バルブ設計により、気体を単方向に流動させ、圧力を出口に連接された任意の装置内に累積させることができる。圧力を低下させるか、または圧力を逃がすときは、小型流体制御装置の伝送量を調整し、気体を出口に連接された装置中から小型バルブ装置の第2出口チャンバに伝送し、かつ連通流路により第2圧力リリーフチャンバへと伝送してから、圧力リリーフ通孔より流出させ、気体を迅速に伝送することができる。また同時に静音の効果を達成するとともに、小型空気圧動力装置の全体体積を減少して薄型化でき、小型空気圧動力装置に簡便で快適な携帯性を具備させる目的を達し、医療器材や関連設備内に広く応用することができる。
【0046】
本発明について上述のように実施例に基づいて詳細に説明したが、発明の属する技術分野において通常の知識を有する者であればさまざまな工夫と修飾が可能であり、それらはいずれも本発明の特許請求の範囲が求める保護を逸脱しない。